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 2 

Abstract 14 

 15 

Software programs for parameter estimation, phase visualization and predictive 16 

modeling of supercritical extraction process and data using algorithms is presented in this work. 17 

A contextually appropriate, iterative, ordinary least squares estimation and selection method is 18 

developed for estimating model coefficients of density based semi empirical model equations 19 

associated with this process and data. Visualization of the phase behaviors projected by the 20 

specific density based semiempirical model equation(s) is also performed iteratively by plotting 21 

three-dimensional surfaces involving the state variables and solute solubility mole fraction. 22 

Predictive modeling of input empirical data has been implemented using three supervised 23 

machine learning algorithms (Multilayer perceptron, K-nearest neighbors and support vector 24 

machine). Hyperparameter optimization of the machine learning algorithms is performed prior 25 

to prediction. Detailed analysis of the prediction is conducted by using standard scoring metrics 26 

and descriptive charts. Theoretical inference and discrepancies regarding the predicted window 27 

of maximum solubility, modeling efficiency, vapor liquid equilibrium and phase behaviors 28 

projected by the model equations have been elucidated from the program outputs. In summary, 29 

these programs are first of its kind, accurate, reliable and simple computational tools for 30 

evaluating / designing density based semiempirical equation(s) of supercritical extraction 31 

process and associated data.  32 

 33 

Keywords: Parameter Estimation, Phase Visualization, Predictive modeling, Ordinary Least 34 

Squares, Machine Learning. 35 

 36 

Introduction 37 

 38 

Theoretical, Empirical and Semi empirical Models are being developed and studied for 39 

modeling and understanding Super/subcritical fluid extraction processes (Huang et al. 2012; 40 

Rai et al. 2014). In particular, Density based Semiempirical model equations (DBSE Model 41 

Equations) are very popular and are being designed for modeling this process and therefore is 42 

part of a growing body of research (Hawthorne 1990; Herrero et al. 2010; Knez et al. 2013; 43 

Alwi and Garlapati 2021a).  44 

Novel DBSE models are developed with the aim to capture (approximate) and reproduce data 45 

specific non linearity and complexity (dynamic and non-dynamic behavior) in the process. 46 

Modeling in this scenario is primarily focused on the operating range of the process parameters 47 
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observed during desired output/yield levels (Tabernero et al. 2010). Unfortunately, in most 48 

cases, this window (presumably rich in information) is narrow and is solute specific. Almost 49 

every study regarding a novel DBSE model have proceeded by distilling facts about the 50 

variation in solvating power observed in the process (from similar studies) and drawing 51 

fundamental relations between the operating process parameters and the dependent variable 52 

[ln(y), T, P, D]. A good and elegant example for this is the study and model presented by 53 

(Asgarpour Khansary et al. 2015). Least squares modeling is a subclass of Black box modeling 54 

and has been extensively employed for estimating model parameters, their confidence regions 55 

(Bounds/Intervals) and importantly for identifying causation of variance in linear models. 56 

Herein, Ordinary least squares estimation method is used for estimating parameter coefficients 57 

(and their confidence regions) present in DBSE Model equations (Lakshmi et al. 2021).  58 

Further, A necessary requirement for the design of DBSE models is the qualitative and 59 

quantitative knowledge of phase behavior of components in the reaction mix during the process. 60 

Phase diagrams illustrate important differentials in vapor pressure curves of pure CO2 and other 61 

reaction components in the presence of solutes. This information is crucial for accurately 62 

identifying operating conditions wherein melting of the reaction mix leading to a desirable 63 

solute rich liquid phase occurs. In essence, phase diagrams are central to the process of finding 64 

regions (boundaries) of importance in the P-T-D-x (Pressure-Temperature-Density-solute 65 

solubility mole fraction) projections, wherein separations and extraction is actually possible and 66 

occurs in reality (Bartle et al. 1991). These regions (phase boundaries) depict equilibrium planes 67 

and latency of reaction mix that aid in process design and this is considered as a multifaceted 68 

and multi-attribute dependent endeavour. These attributes can be and are not limited to,  69 

1. Regions where solvent compression occurs leading to repulsive solute-solvent 70 

interactions causing undesired immiscibility.  71 

2. Regions where two-phase retrograde condensation/crystallization occurs near the lower 72 

and upper crossover regions/planes/edges. 73 

3. Regions (edges/paths/points/trajectories) depicting the component(s) latency (phase 74 

change), chemical potential thermal stability of the solute leading to variations in 75 

solvating power/effect. Physical properties of solutes vary widely and significantly 76 

amount to differences during solute solubility prediction.  77 

Machine learning algorithms, in recent years, are gaining importance and are being developed 78 

for predictive modeling at an accelerating pace for engineering applications. ML algorithms 79 

can accommodate (consider) ‘n’ number of parameters, and still can predictively model 80 
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processes with desired tolerance, precision and accuracy. Invaluable for accountability and 81 

research applications, hyperparameters associated with ML algorithms offers the choice of 82 

model optimization and validation. Standardized ML algorithms are applied to model a 83 

multitude of phenomena/processes in Engineering (Selvaratnam and Koodali 2021). Therefore, 84 

with the fast parametrization and modeling of analytical and industrial processes, supervised 85 

learning models like, Regression, Multilayer Perceptron, Support Vector Machine and K-86 

nearest neighbours are (can also be) specially applied to these processes. For Chemistry and 87 

Chemical Engineering applications, A number of Software program packages based on 88 

supervised learning are already available and are always under continuous development (Khatib 89 

and de Jong 2020). In recent years, estimating/predicting solute solubility during the 90 

supercritical fluid extraction process is gaining importance and necessitates predictive 91 

modeling of this process (Butler et al. 2018; Schweidtmann et al. 2021; Roach et al. 2023). The 92 

reliable and utilitarian software program can be used to accurately describe extant pattern and 93 

behavior in the measured data associated with Density based semi empirical Model (DBSE) 94 

equations beyond the regions and scope of this measured empirical data. With this as the goal, 95 

the predictive modeling program described here has been written and focused to meet this 96 

expectation. Further, the complete work (pipeline) presented here, is also designed for 97 

visualization and for explicating the phase behavior of existing (and newer) models and for 98 

estimating the boundedness of the estimated parameter space. This holistic approach in this 99 

pipeline is useful for designing newer, efficient (accurate and precise) equations heuristically. 100 

Conveniently, As previously mentioned, a one-time-run-all code has been provided for 101 

implementing state-of-the-art machine learning algorithms for predictive modeling of DBSE 102 

model equation associated data. When correctly deployed, this work could potentially reach the 103 

helm of this growing body of research from this three-pronged computational modeling 104 

approach. To summarize, the programs are stand alone, simple, unique, computationally 105 

economic and are also easy to implement. The objectives and Software being postured here in 106 

this article are listed below,  107 

1. A MATLAB program for estimating and comparatively analysing, parameters of 108 

extant/newly developed density based semi empirical model equations of supercritical 109 

fluid extraction process comprising of variables [ln(y), T, P, D] using ordinary least 110 

squares parameter estimation method.  111 

2. A MATLAB program for visualizing parameter profiles and Phase behaviors of DBSE 112 

model equations using 3D surface plots.  113 
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3. A Python based Jupyter Notebook for implementing supervised machine learning 114 

algorithms (Multilayer Perceptron, K nearest neighbours and Support vector machines) 115 

based on experimental data involving the variables (Temperature (T), Pressure (P), 116 

Density (D) and Solute solubility Mole fraction (y)).  117 

4. Provide concluding remarks about the program scripts, its usage and availability.  118 

Experimental 119 

 120 

Description of Data: Input Matrices and Parameter Description 121 

 122 

The MATLAB (Matlab 1984) and Python program scripts presented in this work requires two 123 

input matrices. First, Consider, the Input data as a matrix where in, 𝐷𝑎𝑡𝑎 ∈  𝑅𝑛 and 𝑛 ∈ 𝑍, 124 

then,  125 

𝐷𝑎𝑡𝑎𝑖,4 =  [

𝑇1,1 𝑃1,2 𝐷1,3 𝑦1,4

⋮ : : ⋮
𝑇𝑖,1 𝑃𝑖,2 𝐷𝑖,3 𝑦𝑖,4

]  (1) 126 

Where T is temperature in Kelvin, P is pressure in Mpa, D is density in Kg/m3 and y is solubility 127 

mole fraction of the solute in the reaction mix. The index ‘i’, runs over the entire column length 128 

of a single feature. This is the first input data matrix required and is parsed by the scripts via 129 

the Input_Data.xlsx file.  130 

 131 
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Fig. 1 Flow chart illustrating a single iteration by the parameter estimation, 3D visualization 132 

and Predictive modeling program scripts 133 

 134 

Fig. 2 (a) Heat Map plot of correlation values of input parameters (Temperature, Pressure, 135 

Density and Solute Mole fraction). (b) Parameter pair plot of data points including all 136 

combinations of input parameters for illustrating patterns present among variable pairs 137 

 138 

The second matrix required by the program scripts is comprised of the terms of the input density 139 

based semi empirical equations. For illustration, consider a simple four parameter linear model 140 

equation and its basic generalization,  141 

ln(𝑦) = 𝐴 + 𝐵[𝑇] + 𝐶[𝑃] + 𝐷[𝜌]  ≡ Y =  𝑝1[𝑇𝑒𝑟𝑚1] + 𝑝2[𝑇𝑒𝑟𝑚2] + 𝑝3[𝑇𝑒𝑟𝑚3] + 𝑝4[𝑇𝑒𝑟𝑚4]  (2) 142 

Where, A, B, C, D corresponds to p1, p2, p3, p4 and are the parameter coefficients or estimands 143 

of the DBSE model equation given above (however, users can input any number of terms). Let 144 
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these parameter coefficients be grouped into vector ‘P’. Let the terms of the model [term1, 145 

term2, term3, term4] be grouped into a vector named as ‘Terms’. For the estimation of the 146 

model coefficients [P] and for obtaining parameter estimates 𝑝̂, the terms of the sampled DBSE 147 

model equations are input into respective cells of rows particular to each model equation in a 148 

separate .xlsx file (Models_Equations.xlsx). These are the two input matrices (in .xlsx format) 149 

required by the MATLAB based parameter estimation script and the visualization script. A toy 150 

input data sample containing 1000 experiments along with a sample of ten randomly selected, 151 

semiempirical equations have been used for producing the output presented in this article. The 152 

modification path traversed by the data in a single iteration by the program scripts is illustrated 153 

(Fig. 1). Also, the Input data is analyzed using the Jupyter Notebook and the outputs 154 

(Correlation heat map and parameter pair plot) are depicted (Fig. 2 a, b). Refer to the user guide 155 

(given in the repository) for information on using these program scripts for custom data and 156 

model equations (existing/newly proposed). The user guide also provides information regarding 157 

the preselection of the base model along with the descriptions of the randomly sampled model 158 

equations present in the unmodified file (Models_Equations.xlsx) for ease of usage.  159 

 160 

Parameter Estimation: Ordinary Least Squares Method 161 

 162 

Estimation of parameter coefficients represented in the vector P is performed using the method 163 

of Ordinary Least Squares Parameter Estimation (Dismuke and C R Lindrooth 2006) by the 164 

MATLAB program script (DBSE_OLS_Estimation.m). A concise development of the 165 

implemented algorithm is presented. Consider a representation of a DBSE model equation in 166 

the form of the classical linear regression model,  167 

𝑌𝑖,1 = [𝑇𝑒𝑟𝑚𝑠 ]𝑖,𝑘[𝑃] + 𝜀𝑖,1  (3) 168 

Let the assumptions, about the error in the models be, errors are additive, uncorrelated, has zero 169 

mean and has constant variance.  170 

Also,  171 

𝐸(𝜀𝜀𝑇) = 𝜎2𝐼𝑖  (4) 172 

Where ε is the residual vector and σ2 is the variance of the residual. Further, let the data 173 

substituted, matrix of terms ‘Terms matrix’ be represented for brevity as X and let Y be the 174 

vector of natural logarithm of solubility mole fraction values. Then the ordinary least squares 175 

estimator 𝑝̂ is given by, 176 

𝑝̂ = [𝑋𝑇𝑋]−1𝑋𝑇𝑌  (5) 177 

The vector of residuals ε is given by, 178 
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𝜀 = 𝑌 − 𝑋𝑝̂  (6) 179 

The confidence intervals (bounds) of the estimates are computed at 95% confidence level. 180 

Further, model selection is iteratively performed using an F-Statistic score (Belitser et al. 2011) 181 

for each model equation relative to a preselected base model (This is input in the first row of 182 

the Models_Equations.xlsx file). Let the residual sum of squares for the DBSE model of a 183 

particular iteration and the same for base model be,  184 

𝑅𝑜𝑙𝑠
𝑚𝑜𝑑𝑒𝑙 = 𝜀𝑜𝑙𝑠

𝑇 𝜀 𝑅𝑜𝑙𝑠
𝑏𝑎𝑠𝑒 = 𝜀𝑏𝑎𝑠𝑒

𝑇 𝜀  (7) 185 

Then the equation for an F-score metric-based model selection is, 186 

(𝑅𝑜𝑙𝑠
𝑏𝑎𝑠𝑒−𝑅𝑜𝑙𝑠

𝑚𝑜𝑑𝑒𝑙)

(𝑛𝑝,0−𝑛𝑝,𝑏𝑎𝑠𝑒)
⁄

𝑅𝑜𝑙𝑠
𝑚𝑜𝑑𝑒𝑙

(𝑛− 𝑛𝑝,0)
⁄

> 𝐹(𝑛𝑝,0−𝑛𝑝,𝑏𝑎𝑠𝑒),(𝑛− 𝑛𝑝,0)
0.05   (8) 187 

Where np,0 is the number of parameters in the current iteration and n is the number of data points 188 

(experiments) in the parsed input data and np,base is the number of parameters in the base model. 189 

In the data driven paradigm where modeling is focused on fitting a specific sample of empirical 190 

data, this automated selection procedure is beneficial for decimating lower quality equations 191 

and for identifying the most contextually appropriate one.  Further, error metrics namely, mean 192 

squared error (MSE), Root Mean Squared Error (RMSE), Mean Absolute error (MAE) and 193 

Percentage Absolute Average Relative Deviation (% AARD) were computed between 194 

experimental and predicted solubility using the expressions,  195 

𝑀𝑒𝑎𝑛 𝑆𝑞𝑢𝑎𝑟𝑒𝑑 𝐸𝑟𝑟𝑜𝑟 =  
1

𝑛
∑ (ln (𝑦)𝑖

𝑝𝑟𝑒𝑑 − ln (𝑦)𝑖
𝑒𝑥𝑝)

2𝑛
𝑖=1   (9) 196 

𝑅𝑜𝑜𝑡 𝑀𝑒𝑎𝑛 𝑆𝑞𝑢𝑎𝑟𝑒𝑑 𝐸𝑟𝑟𝑜𝑟 =  √1

𝑛
∑ (ln (𝑦)𝑖

𝑝𝑟𝑒𝑑 − ln (𝑦)𝑖
𝑒𝑥𝑝)

2
𝑛
𝑖=1   (10) 197 

𝑀𝑒𝑎𝑛 𝐴𝑏𝑠𝑜𝑙𝑢𝑡𝑒 𝐸𝑟𝑟𝑜𝑟 =
1

𝑛
∑ |(ln (𝑦)𝑖

𝑝𝑟𝑒𝑑 − ln (𝑦)𝑖
𝑒𝑥𝑝)|𝑛

𝑖=1   (11) 198 

%𝐴𝐴𝑅𝐷 =  
100

𝑛
∑

|ln (𝑦)𝑖
𝑝𝑟𝑒𝑑

−ln (𝑦)𝑖
𝑒𝑥𝑝

|

ln (𝑦)
𝑖
𝑒𝑥𝑝

𝑛
𝑖=1   (12) 199 

Error metrics have been computed using natural logarithm of solubility mole fraction values 200 

for predictions after parameter estimation and actual solubility mole fraction values have been 201 

used for predictions from predictive modeling.  202 

 203 

Visualization of Phase Behaviour Projected by DBSE model Equations: 204 

 205 

Visualization of Phase behavior using three dimensional surfaces of the input DBSE model 206 

equation is implemented using MATLAB program. The MATLAB script 207 
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(DBSE_3D_Viewer.m), requires, model equations and empirical data (Input_Data.xlsx and 208 

Models_Equations.xlsx) along with the estimates (Parameter_Predictions_Results.xlsx) and 209 

iteratively plots three dimensional surfaces of the model equations using finitely spaced grid 210 

points of the parameters present in the particular DBSE model equation in the iteration.  211 

 Three surfaces are plotted by this script namely, Pressure-Temperature-Solute mole 212 

fraction, Density-Pressure-Solute mole fraction and, Density-Temperature-Solute mole 213 

fraction. Standard, inbuilt commands from MATLAB are used for plotting the surfaces for all 214 

of the input DBSE model equations. The output images are also in the standard interactive 215 

MATLAB plot window (environment) which allows for altering values of axes to obtain 216 

surfaces (Rovenski 2010). Notedly, empirical data is used by this MATLAB program only for 217 

finalizing extreme values of the grid points used for plotting these surfaces. Therefore, the 218 

surfaces plotted by this script illustrate phase behavior and vapor liquid equilibrium data 219 

projected by the specific DBSE model equation and these surfaces are not influenced by the 220 

pattern prevalent in the input empirical data. Finally, this MATLAB program exports all three 221 

surfaces plotted for a DBSE model equation as subplots in a single image (.jpg) format.  222 

 223 

Prediction of Solute Solubility: Machine Learning Algorithms 224 

 225 

Three Supervised Machine learning algorithms have been implemented using the Python 226 

module, Sklearn (Pedregosa et al. 2011) in a single Jupyter notebook 227 

(DBSE_Predictive_Modeling.ipynb) (Menke 2020). This Notebook, using input empirical data, 228 

in a single run, implements the Multilayer perceptron, K-nearest Neighbours regression and 229 

Support Vector regression algorithms before performing detailed and comparative analysis on 230 

the predictions and results. Standard metrics are used for performing validation and analysis of 231 

results. Numpy (Oliphant 2006), Openpyxl, Pandas (W McKinney 2011), Matplotlib (Hunter 232 

2007) are among the python packages used for implementing these algorithms. The script 233 

requires empirical data (experiments in rows complete with Pressure, Temperature, Density and 234 

the resultant, solute mole fraction) characteristic to density based semi empirical model 235 

equations. Also, the input parameter space is not exhaustive and can incorporate additional 236 

parameters based on user preference. Descriptions of the implemented algorithms and their 237 

tuneable hyperparameters are provided in the subsequent paragraphs.  238 

 239 

Multilayer Perceptron Regression [MLP] 240 

 241 
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Multilayer Perceptron [MLP] is a fully connected class of feed forward artificial neural 242 

networks classified as a supervised machine learning algorithm. This framework consists of 243 

updatable, weight assigned nodes called neurons that are sorted into three types of fully 244 

connected layers namely, input layer, hidden layer(s) and an output layer. During the training 245 

of a single instance (experiment), parameter (feature) information is fed into the input layer 246 

which is then transmitted to the next hidden layer(s) where activation function(s) modify this 247 

information for final modification in the output layer. The output layer, using an activation 248 

function, modifies the received information and provides data output. This output is the 249 

prediction value of the algorithm. Information modification during training (learning) results in 250 

the updation of the initialized weights (associated with neurons and connections) from the 251 

previous learning iteration (Murtagh 1991). In this MLP model, for obtaining accurate and 252 

precise output (solute solubility mole fraction), hyperparameter search space for size of hidden 253 

layer, neurons, activation functions, learning rate, data split ratio, solver, alpha value etc can be 254 

easily optimized in the notebook based on user preference and data. Theoretical explanation 255 

and development of the MLP algorithm can be obtained in literature elsewhere (Schilling et al. 256 

2015). The results and analysis from this program code are exported to an excel notebook 257 

(Ml_Results.xlsx).  258 

 259 

K-Nearest Neighbours Regression [KNN] 260 

 261 

K- Nearest Neighbours algorithm is a non-parametric, supervised machine learning algorithm. 262 

For regression problems, the algorithm learns to predict the target class value based on the k 263 

closest training examples (instances or experiments) in the input data. The model during 264 

learning (training), performs search in the data pattern space for the closest number of training 265 

instances. The results from this search which are the closest ‘k’ number of training instances 266 

(neighbours), are averaged to obtain the prediction value (solute solubility mole fraction) during 267 

testing (Kramer 2013). The adjustable/tuneable hyperparameters for this algorithm is the ‘k’ 268 

value (sampling metric) and the distance (closeness) measurement metric (Cunningham and 269 

Delany 2022). Here in this jupyter notebook, Euclidean distances are calculated to measure 270 

closeness for the preassigned k value which is used to obtain a detailed, comparative, analysis 271 

of the prediction which are exported (Ml_Results.xlsx).  272 

 273 

Support Vector Regression [SVR] 274 

 275 
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The support vector regression algorithm is a class of support vector machine algorithm and is 276 

also a supervised machine learning algorithm. In fewer sentences, support vector regression 277 

algorithm, using a kernel function, tries to map the input parameter variable data to a feature 278 

space (usually of higher dimension) and with the aim of minimizing prediction error, tries to 279 

find a hyperplane in this feature (parameter) space that maximizes the distance margin between 280 

this plane and the closest data points. Theoretical development of the SVR technique and the 281 

mechanism behind its prediction capabilities can be obtained in detail here (Smola and 282 

Schölkopf 2004). The tuneable hyperparameters here are the kernel function, gamma value and 283 

the test-train data split ratio. Scaling of the parameter data has not been implemented in this 284 

jupyter notebook for SVR because the pattern present in the parameter data are highly relevant 285 

for the prediction of the solute solubility mole fraction (Tsirikoglou et al. 2017). The jupyter 286 

notebook, after implementing support vector regression, separately provides results which is 287 

also exported (Ml_Results.xlsx).  288 

Results and discussion 289 

Parameter Estimation: Ordinary Least Squares Method 290 

(a) 

 
  

(b) 

 
  

(c) 
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 291 

Fig. 3 Standard output for the model equation(s) being iterated from the MATLAB based 292 

parameter estimation script. (a) Plot of Experimental (black) v/s Predicted (red) values of the 293 

natural logarithm values of solute solubility molefraction. (b) Plot containing normality plots 294 

and residual plots for base model of choice and the model being iterated. (c) Bar plots pertaining 295 

to error metrics for all input equations 296 

 297 

As previously derived, A customized Ordinary least squares estimation method has been 298 

implemented to obtain parameter estimates of model equation constants along with confidence 299 

intervals in a ‘one model equation at a time’ iterative rule fashion. This provides the users, with 300 

parameter (model coefficients) estimates from a standardized and commonly used method for 301 

all model equations in the batch sample (input using an .xlsx file). Confidence intervals (upper 302 

and lower bounds) are estimated for each parameter estimate at 95 percent confidence. 303 

Conveniently, the results are saved into an excel workbook. The pictorial output from the 304 

program script are presented in (Fig. 3 a – c). Natural logarithm values of solute solubility mole 305 

fractions are plotted against number of experiments for both empirical data and predictions 306 

made using the estimated parameters (model constants) and state variables (Pressure, 307 

temperature and Density) associated with the model equations. Normality plots and residuals 308 

of the base model and the model equation (being iteratively estimated) are also charted for 309 

ascertaining the nature of the data as it is a necessary condition. The normality and residual 310 

plots are showcased (Fig. 3b). Normality plots reaffirm and ascertain the considered 311 

assumptions about the residuals while estimating parameter coefficients (Model constants). 312 

This step makes sure the estimates are contingent with the assumptions made regarding the data 313 

and by extension, also the residuals. In the Fig. 3 b above, the data appear to lie on the line of 314 

reference demonstrating the degree of normality present in the sample data. Unfortunately, the 315 

large amount of data (from the toy data sample) in the residuals plot indicate a pattern and 316 

masks the randomly distributed points in the region of interest. This region of interest 317 

corresponds to the operating conditions where solute solubility is supposedly maximum 318 

(window of maximum solubility). However, this also will change when different empirical data 319 

is used. The results from model selection (outperforming model equation) based on the 320 

previously mentioned F-Scores are also stored in the excel workbook associated with the 321 

predictions from model equation and its estimates. Scores computed from F Distribution, 322 

provide clear, statistical comparison between the model equation being iteratively estimated 323 

and the base model equation of choice (Input in the first row in the Models_Equations.xlsx file). 324 
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Additionally, users can easily make excellent inference based on published literature regarding 325 

the estimates and selection output produced by this program (Garlapati and Madras 2010; 326 

Reddy and Madras 2011; Bian et al. 2016; Alwi and Garlapati 2021b). The pictorial illustration 327 

indicates the plotting constraints (maximum number of subplots in the image output) associated 328 

with the presented code and users are encouraged to consider this factor while sampling model 329 

equations. Plotting natural logarithm values of the predicted data against actual solute solubility 330 

mole fraction values of the predicted data (from model equations), provides clear distinction 331 

and higher resolution of model fit and deviation from empirical data. Errors and residuals are 332 

also calculated using natural logarithm values for this important reason. In reality, based on the 333 

toy sample empirical data, the error metrics and residuals appear to be significantly (desirably) 334 

low when actual solubility values are used as opposed to their natural logarithm values. Mean 335 

squared error (MSE), Root Mean Squared Error (RMSE), Mean Absolute error (MAE) and 336 

Percentage Absolute Average Relative Deviation (% AARD) values are computed using Eq. 337 

(9)-(12), plotted and presented in the form of bar graphs in a single image format (Fig. 3 c). 338 

Errors of all model equations appear to only slightly differ indicating superior quality of the 339 

sampled toy data. However, as previously mentioned, this too will differ for other empirical 340 

data. Due to constraints for assessing and visualizing higher numbers of equations, sampling 341 

(ten to fifteen equations) and selection of model equations must be of higher quality. However, 342 

the provided code for batch estimation (DBSE_OLS_Estimation_Batch.m), has full capability 343 

to estimate one hundred DBSE model equations in a single implementation run. In summary, 344 

this program script provides parameter estimates of model(s) coefficients along with their 345 

confidence regions (intervals). Further, Model selection and identification routine also aids in 346 

comparative assessment and selection of the best performing model equation all of which are 347 

then exported to popular file formats.  348 

 349 
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Visualization of Phase Behavior of DBSE Model Equations: 350 

 351 

Fig. 4 Three dimensional surfaces of ln(y)-P-T, ln(y)-D-P, ln(y)-D-T. (a) This plot is the only 352 

standard output produced by the MATLAB based visualization script. (b) Two dimensional, 353 

color coded contour plot of P-T, P-D, D-T obtained from the same MATLAB interactive plot 354 

window. The projections for these plots are visible on the respective 3D surface (a). (c) Two 355 

dimensional, color coded contour plot of ln(y)-T, ln(y)-D, ln(y)-D obtained from the MATLAB 356 

interactive plot window 357 
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The three-dimensional surfaces of the P-T-D state variables and the natural logarithm values of 358 

solute solubility mole fraction obtained from the MATLAB script for visualization is illustrated 359 

in Fig. 4 a – c. The interactive nature of the MATLAB surface plot window and the ease with 360 

which axes values of the surface can be altered makes the obtained pictorial output very 361 

valuable for evaluating the phase equilibria characteristic to the specific DBSE model equation. 362 

Fig. 4 a shows a grab of the three surfaces [P-T-ln(y), P-D-ln(y), T-D-ln(y)] arranged as 363 

subplots from a single interactive (image) window output. Grabs of two-dimensional plots (Fig. 364 

4 b – c) can be obtained from these surfaces by independently altering the axes values of the 365 

surfaces in the interactive MATLAB plot window. The surfaces are primarily color coded to 366 

indicate the gradient in solute solubility. Projections of these surfaces manifest as grid lines 367 

(phase curves of ln(y)) on the axes planes. These plots provide insight regarding the major and 368 

minute differences in the projected phase behavior put forth by the model equations. 369 

Conveniently, even small or minute variations in a combinatorial pool of model equation 370 

designs (derived from a single parent equation) manifests acutely in the shape and color gradient 371 

of the corresponding surface plots (Goos et al. 2011; Yamini and Moradi 2011; Cockrell et al. 372 

2021). Further, literature (Schneider 1978) can be referred to make accurate inferences 373 

regarding model specific phase behavior from these surfaces and projections. However, a 374 

probable/possible approach for gaining satisfactory information from these surfaces (3D), its 375 

derivative plots and plane projections (2D) is provided below.  376 

Consider a set of model coefficient parameter estimates (from a DBSE model equation) 377 

of a (sufficiently) well modelled super/sub critical fluid extraction process (for example, coffee 378 

or tea decaffeination) pertaining to a ternary system of CO2/H2O solvent, Co-solvent (Ethanol 379 

or methanol) and solute (This is subject to availability and procurement by the user and is not 380 

provided here in this article). Let this set of obtained estimates be then used to plot the 3D 381 

surfaces and derivative plots. Naturally, due to the process being sufficiently well modelled (as 382 

previously assumed), knowledge regarding the Phase diagrams, vapor-liquid equilibrium 383 

behavior, maximum solubility window and equilibrium points and planes is readily available, 384 

importantly reliable and trustworthy for these estimates, plots and the associated empirical data. 385 

Let this information (again, not provided here with this article) be the ground truth and basis 386 

for performing further comparative analysis using the MATLAB based plotting and 387 

visualization script presented here in this article. Then the surfaces and 2D projections obtained 388 

by implementing this script for the same empirical data (and the model coefficient estimates) 389 

for a batch of DBSE model equations (existing/newly developed) can now be used to evaluate 390 

and glean information regarding important attributes like the upper and lower critical end 391 
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points, planes and edges associated with the triple point. Further, vapor pressure curves and the 392 

data characteristic to the components (pure and mixture) in the ternary system can be identified 393 

and compared to this ground truth.  394 

Generally, the qualitative and quantitative data regarding the latency, miscibility, 395 

compression, crystallizability of the components in the reaction mix can be obtained from these 396 

surfaces. Further, the identification of solid-liquid-gas lines describing boundaries of latency 397 

(or miscibility) projected by the specific DBSE model equation can also be compared to this 398 

truth (if available) and the error values quantify deviation and subtle / major differences. 399 

Similarly, values of slope differentials (dP/dT, dT/dD and dP/dD) are easily computed from the 400 

surfaces for these equations. These slope values are important for identifying upper and lower 401 

crossover pressures bordering the retrograde solubility region in the phase diagrams for 402 

explaining retrograde solubility interference (Foster et al. 1991; Esmaeilzadeh and Goodarznia 403 

2005; Kalikin et al. 2021). This approach could be very important and beneficial for 404 

comparatively evaluating newly designed DBSE model equations regarding the maximum 405 

solubility window and the above-mentioned attributes. This comparative evaluation can then 406 

be used for redesigning customized, newer and efficient model equation alternatives. Note that 407 

the maximum solubility window depicted in Figure 4(b) is predicted and shown to lie 408 

somewhere around the red regions (probably between 320K-340K and 30-32 MPa) by the tenth 409 

model equation (from the same randomly mined sample of ten input equations). As pictorially 410 

showcased, this too will differ for different equations for the same data. In summary, the plots 411 

provide satisfactory, quantitative and qualitative knowledge regarding the phase behavior and 412 

equilibria characteristic to the equations being studied, using this MATLAB based plotting and 413 

visualization script.  414 

 415 

Prediction of Solute Solubility: Machine Learning Algorithms 416 

 417 

Multilayer Perceptron regression (MLP), K-Nearest Neighbours regression (KNN) and Support 418 

Vector Regression (SVR) algorithms have been implemented using ‘sklearn’ package in python 419 

in a single jupyter notebook. A toy data sample of 1000 randomly mined experiments are used 420 

to illustrate the working of this jupyter notebook. The input parameters present in the toy data 421 

sample are Temperature, Pressure and Density. The target / output / dependent variable is the 422 

Solute solubility mole fraction. Additional parameters can be easily incorporated into the data 423 

sample by simply concatenating them as columns after the Density data column in the input 424 

Excel workbook (Input_Data.xlsx). The notebook initially provides the description of the data 425 
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by using basic statistical metrics (count, mean, standard deviation, minimum and maximum 426 

value), Correlation values between the parameters and output, Heat map of correlation values 427 

and a parameter pair plot for comparing all parameter pairs (combinations) on a chart. These 428 

charts are depicted in (Fig. 2 a – b). The results (graphs, errors and plots) and discussion 429 

pertaining to each algorithm is provided in the subsequent paragraphs.  430 

 431 

(a) 

 

(b) 

 

(c) 

 
 432 

Fig. 5 Standard output from the jupyter notebook about the predictions and analysis of the 433 

Multilayer perceptron algorithm (a) Scatter Plot of Experimental (green) v/s Predicted (blue) 434 

values of solute solubility molefraction from the Multilayer perceptron algorithm. (b) Plot of 435 

residual values from the Multilayer perceptron algorithm. (c) Bar plot of error metrics of the 436 

predictions from the Multilayer perceptron algorithm 437 

Multilayer Perceptron regression (MLP) is the first algorithm implemented in this 438 

Jupyter notebook. Data scaling (preprocessing) is performed using the ‘MinMaxScaler’ routine 439 

before further transformation of the data. The data is then split (preprocessing) using the test-440 

train-split routine. The results and the output obtained are illustrated in Fig. 5 a – c. Regression 441 

model is built using the standard ‘MLPregressor’ routine. Hyperparameter optimization / tuning 442 

is performed by using the ‘GridSearchCV’ routine for the MLP algorithm. As explained, users 443 

have to define the space for grid search for the hyperparameters (Number of hidden layers, 444 

activation functions, solvers, learning rate) in the beginning of the notebook for hyperparameter 445 

optimization. Further, 5-fold cross validation is performed based on negated values of root 446 

mean square error as the model scoring metric. The program performs tuning and the 447 

hyperparameters of the best model are then used to refit and obtain the prediction output 448 

(Schilling et al. 2015). Error metrics for this algorithm are (output) plotted (Fig. 5 c) separately 449 

for brevity.  450 

 451 

 452 

 453 
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(a) 

 

(b) 

 

(c) 

 
 454 

Fig. 6 Standard output from the jupyter notebook about the predictions and analysis of the K- 455 

Nearest Neighbours algorithm. (a) Scatter Plot of Experimental (green) v/s Predicted (blue) 456 

values of solute solubility molefraction from the K- Nearest Neighbours algorithm. (b) Plot of 457 

residual values from the K- Nearest Neighbours algorithm. (c) Bar plot of error metrics from 458 

the K- Nearest Neighbours algorithm  459 

K-Nearest Neighbours regression (KNN) is implemented next (after MLP) in the 460 

notebook. As discussed, Data scaling was deemed unnecessary and has not been performed. 461 

However, test train split is performed using the same routine as MLP. Further, The 462 

Hyperparameter K is set to a random value of 3 for the toy data sample and can easily be 463 

changed / tuned based on user data and preference at the beginning of the notebook. Error 464 

metrics for the KNN algorithm is plotted (Fig. 6 c) separately. Further insight regarding the 465 

model can be obtained from data, hyperparameter optimization and previous literature 466 

(Soleimani Lashkenari and KhazaiePoul 2017).  467 

 468 

(a) 

 

(b) 

 

(c) 

 
 469 

Fig. 7 Standard output from the jupyter notebook about the predictions and analysis of the 470 

Support Vector Regression algorithm. (a) Scatter Plot of Experimental (green) v/s Predicted 471 

(blue) values of solute solubility molefraction from the Support Vector Regression algorithm. 472 

(b) Plot of residual values from the Support Vector Regression algorithm. (c) Bar plot of error 473 

metrics from the Support Vector Regression algorithm  474 

Support Vector Machine Regression (SVR) algorithm is implemented at last in the 475 

notebook. Like before, data scaling is not performed so as to preserve pattern in the input 476 

https://doi.org/10.26434/chemrxiv-2024-fw30s ORCID: https://orcid.org/0000-0002-5318-8639 Content not peer-reviewed by ChemRxiv. License: CC BY-NC-ND 4.0

https://doi.org/10.26434/chemrxiv-2024-fw30s
https://orcid.org/0000-0002-5318-8639
https://creativecommons.org/licenses/by-nc-nd/4.0/


 19 

parameter space. Data has been split for model training using the test – train split routine like 477 

before and can be easily adjusted by the user. The choice of Kernel function hyperparameter is 478 

also tuned using ‘GridSearchCV’ and users can modify the grid search space for this at the 479 

beginning of the notebook. Five-fold cross validation is performed based on the negated root 480 

mean squared error scoring metric and the kernel function associated with the best scoring 481 

model is then used to refit and obtain the predictions (Tsirikoglou et al. 2017). Error metrics for 482 

SVR, like before, is also plotted (Fig. 7 c) separately.  483 

 484 

(a) 

 

(b) 

 

(c) 

 
      

(d) 

 

(e) 

 

(f) 

 
 485 

Fig. 8 Standard output from the jupyter notebook about the predictions and comparative 486 

analysis of all three algorithms from each complete program run. (a) Combined plot of residual 487 

values of all three machine learning algorithms (MLP, KNN, SVR) for comparison (b) Plot of 488 

Prediction values of KNN and SVR algorithms with experimental solubility values. (c) Bar plot 489 

of mean squared error values of all three machine learning algorithms (MLP, KNN, SVR) for 490 

comparison. (d) Bar plot of root mean squared error values of all three machine learning 491 

algorithms (MLP, KNN, SVR) for comparison. (e) Bar plot of percent absolute average relative 492 

deviation values of all three machine learning algorithms (MLP, KNN, SVR) for comparison. 493 

(f) Bar plot of mean absolute error values of all three machine learning algorithms (MLP, KNN, 494 

SVR) for comparison. 495 

Model fitting and prediction of all three algorithms (MLP, KNN and SVR) for the 496 

sample data yielded results and the computed errors (MSE, RMSE, MAE and %AARD) are 497 

plotted separately on bar plots (Fig. 8 c, d, e, f). The predictions v/s empirical data graph is also 498 
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plotted and exported by the notebook (Fig. 8 b). Likewise, residuals are also plotted for all three 499 

algorithms (Fig. 8 a). Hyperparameter tuning for all three algorithms is implemented and other 500 

intricate nuances pertaining to the predictions can be easily made by the users based on the best 501 

performing algorithm and the input data (Feurer 2019). The parameter space, as previously 502 

explained, can (only) be increased by the user to explore and incorporate additional parameters 503 

like Melting point, Boiling Point, Total polar surface area, Critical Temperature, Critical 504 

Pressure, Molecular Weight of solute, percentage of co-solvent used, type of cosolvent (by 505 

scoring) etc. Therefore, Detailed explanation regarding the obtained numerical output is 506 

unnecessary here since a toy data sample with the standard (Temperature, Pressure and Density) 507 

parameters have been used. However, users can glean and infer information from their custom 508 

empirical data using these plots and tables which are produced for each algorithm by this jupyter 509 

notebook. The notebook has been written to include the best of the plot commands and features 510 

(errors, functions, tables etc) from standard python libraries for ease of use and assessment. The 511 

numerical data predictions and analysis are exported to an excel workbook. Importantly, users 512 

are cautioned against the usage of this notebook for actual experimental purposes as it can be 513 

dangerous when used directly in a laboratory setting without proper consultation. The provided 514 

notebook is an efficient tool for data analysis and is very useful for theoretical research, 515 

modeling (fitting), understanding and comparison. Overall, The Jupyter notebook provides the 516 

users, with a state-of-the-art predictive modeling and analysis tool using standard Machine 517 

learning algorithms for obtaining prediction values of solute solubility mole fraction from input 518 

parameter data.  519 

 520 

Conclusions 521 

 522 

This work showcases program scripts and their workflow (pipeline) as a comprehensive, state 523 

of the art parameter estimation and predictive modeling tool for evaluating density based semi 524 

empirical models (equations) and its associated data. Parameter estimation has been 525 

implemented in a MATLAB based script using a customized version of the popular Ordinary 526 

least squares estimation method. The programs are stand alone in that they fully function even 527 

when the parameter estimates for input equations are externally sourced. Further in this work, 528 

Visualization of phase behaviours projected by preselected (sampled) model equations using a 529 

MATLAB based script has been described. This visualization script produces three-530 

dimensional surface plots in interactive MATLAB windows based on the parameter estimates 531 

(computed from ordinary least squares estimation). An approach for gleaning theoretical 532 
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information regarding phase behaviour using the surface plots is provided. Even subtle 533 

variations in model equation designs acutely manifests in the shapes and color gradients of the 534 

projected surface plots and this makes designing newer, robust, data specific/generalized 535 

equations easier. Standard error and scoring metrics have been computed at each appropriate 536 

stage in the workflow and presented to users in the form of plot illustrations. Importantly, the 537 

maximum solubility window is predicted to lie somewhere around the red regions (probably 538 

between 320K-340K and 30-32 MPa) by the tenth model equation (and is predicted for all the 539 

remaining input equations). A Python based programming script is also presented for predictive 540 

modeling of the empirical data associated with super/sub critical extraction using three Machine 541 

learning algorithms. This notebook has been written to accommodate ‘n’ number of other 542 

variables for improving the accuracy of the solute solubility predictions. This allows users with 543 

diverse forms of data to easily make predictions, interpretations and reach scientifically sound 544 

conclusions about the maximum solubility window. Further, user defined hyperparameter 545 

tuning has been implemented for all three algorithms and has not been entirely focused towards 546 

fitting the toy data sample (However, the presented error metrics are desirably low). Therefore, 547 

Users are strongly advised to use these program scripts for theoretical and academic purposes 548 

since these scripts are under continuous development, refinement and modification. The 549 

surfaces, plots and tables present in this article are the standard predictions and analysis of 550 

outputs from these scripts based on a toy data and model equation(s) sample (mined randomly 551 

from literature) and are not regarding any particular density based semi empirical equation or 552 

published data. Hence, again, strong caution is advised against their usage directly in an 553 

experimental setting without appropriate supervision or reasoning. Importantly, a properly 554 

worded guide is provided for using this repository. Future goals include deploying and testing 555 

this work on established datasets, similar computational tools, and DBSE model equations. In 556 

summary, this work postures a first of its kind, efficient computational tool in the form of 557 

program scripts for evaluating/designing Density based semi empirical equations associated 558 

with super/sub critical extraction process and data.  559 

 560 

Data Availability. The Software programs are available in a GitHub Repository here 561 

https://github.com/Srinidhi-hub/DBSE-Evaluator.git . The software programs are also 562 

accessible upon request from the author.  563 

 564 
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 575 

Symbols 576 

 577 

T Temperature K 578 

P Pressure MPa 579 

D Density Kg/m3 
580 

R Residual Sum of Squares 581 

y Solute Solubility Mole Fraction 582 

 583 

Greek Letters 584 

 585 

ε Error 586 

σ Standard Deviation 587 

ρ Density Kg/m3  588 

  589 

 590 

 591 
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