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ABSTRACT:	The	performance	of	chiral	catalysts	is	typically	evaluated	against	empirical	reaction	outputs	like	yield	and	selec-
tivity	with	traditional	analyses	limited	to	a	single	model	system.	Expansion	of	the	reaction	space	permits	catalysts	to	be	as-
sessed	for	generality	and	this	provides	another	useful	metric	for	measuring	the	effectiveness	of	a	catalyst.	The	catalyst	gen-
erality	algorithm	will	assign	quantitative	generality	values	to	catalyst	structures	but	such	broad	assessments	are	applied	with	
the	assumption	that	the	reactions	under	evaluation	are	more	or	less	the	same	by	disregarding	any	inherent	challenges	asso-
ciated	with	a	particular	reaction	class.	To	address	this	limitation,	we	introduce	two	new	metrics,	relative	generality	and	risk.	
These	are	designed	to	correct	for	variations	in	reaction	difficulty	and	enable	a	more	nuanced	evaluation	of	catalyst	perfor-
mance	relative	to	the	specific	demands	of	each	reaction.	We	show	in	a	number	of	challenging	examples	that	these	metrics	
allow	researchers	to	distinguish	between	catalysts	genuinely	exhibiting	superior	performance	and	those	appearing	favorable	
due	to	application	toward	less	demanding	reactions.	This	represents	a	significant	advancement	in	quantifying	catalyst	suc-
cess,	with	demonstrated	applications	in	retrospective	analyses	and	early	insights	into	emerging	catalyst	classes.	

Introduction		
Well	 performing	 catalyst	 structures	 are	 determined	 by	 a	
meticulous	process	involving	the	generation	and	analysis	of	
experimental	 outcomes	 against	 multiple	 reaction	 objec-
tives,	like	yield	and	selectivity.	While	these	metrics	allow	for	
a	straightforward	assessment	of	catalyst	 function,	 they	do	
not	account	for	the	difficulty	in	facilitating	a	certain	class	of	
reactions.	Trained	organic	chemists	are	acutely	aware	of	re-
actions	that	generate	quaternary	centers	are	exceptionally	
difficult	 to	perform	in	high	yields	and	selectivity.1	Further,	
imparting	 enantioselectivity	 in	 reactions	 that	 require	 the	
catalyst	to	differentiate	between	near-equally	sized	groups	
is	an	enormous	challenge.2	Catalysts	capable	of	effectively	
promoting	such	difficult	transformations	are	highly	prized	
synthetic	tools	enabling	the	synthesis	of	otherwise	inacces-
sible	molecules.	Although	the	notion	of	reaction	difficulty	as	
a	benchmark	to	test	catalysts	against	is	well	known	to	prac-
titioners,	it	has	not	yet	been	formalized	as	a	criterion	in	cat-
alyst	assessment.	

Constraining	the	analysis	to	one	set	of	starting	ma-
terials	 minimizes	 the	 impact	 that	 reaction	 difficulty	 will	
have	on	the	final	result	but	limits	broad	assessments	of	cat-
alyst	performance.	Indeed,	modern	catalyst	screens	aim	to	
maximize	the	diversity	of	the	chemical	space	under	evalua-
tion	to	determine	the	catalyst’s	applicability.3-4	Unintention-
ally,	implementing	this	type	of	protocol	may	introduce	reac-
tions	with	varying	degrees	of	difficulty,	potentially	obscur-
ing	the	true	effectiveness	of	certain	catalysts.	This	overarch-
ing	 issue	 in	 catalyst	 performance	 assessment	 is	 often	

exasperated	 by	 situations	 where	 a	 catalyst	 demonstrates	
wide	applicability	but	provide	poor	outcomes	in	challenging	
transformations,	 and	 vice	 versa	 (Figure	 1).	 These	 factors,	
combined	with	the	complex	nature	of	modern	reactions	and	
the	subtle	variation	in	reaction	conditions	between	similar	
substrates,	 can	make	 the	 identification	of	genuinely	supe-
rior	catalysts	 challenging.5	This	 raises	questions:	1)	Can	a	
catalyst	that	overcomes	the	intrinsic	challenges	of	a	reaction	
be	considered	more	effective	than	those	systems	that	only	
facilitate	straightforward	transformations	?	2)	If	so,	how	can	
the	difficulty	of	one	reaction	be	distinguished	from	another?	
And	finally	3)	can	this	information	be	distilled	into	a	single	
measurement	for	catalyst	evaluation?		Herein,	we	begin	to	
probe	 these	 questions	 by	 developing	 methodologies	 that	
systematically	evaluate	the	performance	of	catalysts	across	
a	diverse	range	of	reactions,	taking	into	account	both	their	
ability	to	address	challenging	transformations	and	their	ef-
fectiveness	 in	 promoting	 straightforward	 ones	 (Figure	 1).	
This	work	represents	new	measures	of	catalyst	success	and	
will	prove	valuable	to	researchers	in	identifying	the	most	ef-
fective	catalyst	structures	by	providing	additional	context	to	
their	experimental	results.		
	
Measuring	Broad	Spectrum	Success	
Analyzing	experimental	selectivities	collected	from	diverse	
reactions	is	now	a	well-established	approach	for	assessing	
the	broad	applicability	of	a	catalyst.6-10	A	powerful	way	for	
interpreting	the	results	of	these	experiments	is	to	calculate	
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Figure	1.	Theoretical	comparison	of	a	specific	catalyst	that	works	well	on	challenging	transformations	compared	to	a	general	
catalyst	that	demonstrates	good	selectivities	throughout.	The	goal	of	this	work	is	to	develop	techniques	to	allow	for	catalysts	
exhibiting	these	characteristics	to	be	analyzed	and	compared.					
	
the	 catalyst	 generality,	 a	 measure	 recently	 introduced	 by	
our	group.11	Our	algorithm	assigns	generality	values	by	de-
termining	 the	 percentage	 of	 reactions	 in	which	 a	 catalyst	
surpassed	a	user-set	threshold.	Key	to	this	approach	is	the	
implementation	of	non-linear	dimensionality	reduction	and	
unsupervised	clustering	techniques	to	define	reactions	with	
a	similar	distribution	of	properties.	This	workflow	offers	a	
comprehensive	 evaluation	 of	 the	 catalyst's	 performance	
across	multiple	unique	reactions	and	has	proven	useful	 in	
shortening	the	timelines	for	reaction	optimization.11,12	How-
ever,	 such	 extensive	 assessments	 are	 applied	with	 the	 as-
sumption	that	the	reactions	being	evaluated	are	largely	sim-
ilar,	discounting	any	inherent	challenges	associated	with	a	
particular	reaction	or	substrate	class.	More	specifically,	be-
cause	the	previous	approach	to	calculating	catalyst	general-
ity	relied	on	setting	a	threshold,	reactions	were	treated	uni-
formly.	To	put	this	into	perspective,	a	catalyst	reaching	the	
threshold	 in	 one	 cluster	 but	 not	 in	 another	 received	 the	
same	score	as	a	catalyst	performing	well	in	the	opposite	sit-
uation.	 A	 second	 problem	with	 our	 approach	 was	 that	 it	
could	not	distinguish	between	well	performing	catalysts.	Af-
ter	 the	 threshold	 was	 reached,	 all	 catalysts	 were	 treated	
equivalently;	for	instance,	when	a	threshold	of	70	%	was	set,	
catalysts	achieving	80%	and	90	%,	were	assigned	the	same	
score.	Defining	reaction	difficulty	within	performative	met-
rics	becomes	even	more	relevant	for	catalyst	systems	that	
demonstrate	 some	 specificity	 towards	 simple	 or	 complex	
reactions.	 Until	 now,	 in	 these	 very	 common	 situations,	
chemists	lacked	a	reliable	method	to	quantify	catalyst	per-
formance	across	a	broad	spectrum	of	reactions	with	varying	
complexity	levels.		

In	designing	our	approach,	we	realized	 that	both	
generality	and	the	ability	to	facilitate	challenging	reactions	
are	valuable	attributes	in	catalyst	design	and	optimization,	
depending	on	the	specific	synthetic	goals	and	requirements.	
In	other	words,	in	certain	situations,	a	user	may	value	the	
ability	of	a	catalyst	to	maintain	high	levels	of	selectivity	in	
adverse	 scenarios	 compared	 to	 broad	 spectrum	 success.	
Therefore,	 we	 pursued	 several	 different	 tactics	 which	

ultimately	provide	a	flexible	approach	that	permits	end	us-
ers	 to	 define	 how	 reaction	 difficulty	 would	 be	 weighted	
within	the	workflow	(Figure	2).		

Challenging	reactions	typically	have	higher	enanti-
oselectivity	 requirements	 as	 they	often	 involve	 substrates	
that	are	less	amenable	to	enantioinduction	through	simple	
steric	control.	Therefore,	we	considered	that	enantioselec-
tivity	differences	between	reaction	types	serve	as	a	readout	
for	reaction	complexity.	Basically,	applying	catalysts	to	facil-
itate	a	complex	reaction	would	lead	to	lower	maximum	and	
minimum	 levels	 of	 enantioselectivity	 being	 recorded.	 On	
this	basis,	one	approach	could	focus	on	correcting	for	reac-
tion	 difficulty	 by	 applying	 adjustments	 or	 normalization	
techniques	to	the	experimental	data	to	account	for	the	var-
ying	degrees	of	complexity	among	different	reactions.	The	
most	 straightforward	method	 to	 achieve	 this	would	be	 to	
calculate	 the	 average	 enantioselectivity	 each	 catalyst	
achieves	 in	 distinct	 transformations	 and	 rank	 the	 results	
(equivalently,	 integrating	over	 thresholds	 for	 the	previous	
generality	metric).	By	standardizing	the	scale	for	catalysts	
across	all	reactions,	regardless	of	their	actual	enantioselec-
tivity,	it	allows	for	differentiation	among	reactions	of	vary-
ing	complexity	(Figure	2A).	This	is	crucial	because	the	aim	
is	often	to	select	the	best	available	option,	and	achieving	the	
highest,	albeit	relatively	low	score	in	a	difficult	reaction	may	
be	more	significant	than	attaining	a	relatively	high	score	but	
not	 the	highest	 in	an	easy	reaction.	 Indeed,	 this	approach	
acknowledges	 that	 some	 reactions	 inherently	 yield	 lower	
enantioselectivity	 values	 due	 to	 their	 complexity,	 and	 it	
evaluates	catalysts	based	on	how	well	they	perform	relative	
to	others	in	those	challenging	scenarios.	
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Figure	2.	(A)	Overview	of	the	workflow	to	assign	the	gener-
ality	 and	 relative	 generality	 scores.	 Relative	 generality	
scores	have	been	assigned	to	correct	for	reaction	differences	
by	measuring	catalyst	performance	relative	to	the	demands	
of	that	reaction	as	defined	by	clustering.	(B)	Risk	metrics	ac-
count	 for	 reaction	differences	by	penalizing	 catalysts	 that	
perform	well	 in	 straightforward	 transformations.	Value	at	
Risk	(VaR)	is	shown	as	the	bold	line	and	Expected	Shortfall	
(ES)	is	the	mean	of	the	pale	yellow	field.	VaR	and	ES	sample	
only	a	 small	part	of	 the	enantioselectivity	distribution	 for	
each	catalyst.	(C)	Chiral	phosphoric	acid	(CPA)	and	imidodi-
phosphorimidate	(IDPi)	are	the	two	catalyst	classes	under	
investigation	in	this	study.					
	
As	this	analysis	now	represents	an	extension	of	the	applica-
bility	 of	 the	 catalyst	 generality	method,	 we	 distinguish	 it	
here	by	using	the	term	‘relative	catalyst	generality’	since	it	
is	modified	to	evaluate	catalysts	relative	to	the	specific	de-
mands	of	each	reaction.	 In	 this	context,	a	catalyst	ranking	
the	most	selective	in	one	reaction	receives	a	score	of	1,	while	
the	least	selective	is	provided	with	a	score	of	0.	This	scale	
remains	consistent	for	all	reactions,	regardless	of	the	actual	

enantioselectivity	differences.	The	scores,	applied	on	a	reac-
tion-by-reaction	basis,	are	then	averaged	over	all	reactions	
within	a	given	cluster.	Therefore,	this	type	of	catalyst	gener-
ality	 metric	 prioritizes	 catalysts	 that	 outperform	 others,	
with	the	best	catalyst	achieving	an	average	enantioselectiv-
ity	score	of	1	(corresponding	to	the	maximum	in	each	reac-
tion).				

An	 entirely	 different	 technique	 would	 focus	 on	
weighting	a	catalyst	as	more	effective	in	cases	where	they	
demonstrate	 resilience	 in	challenging	scenarios	 like	 those	
described	above.	To	achieve	this,	we	introduced	two	well	es-
tablished	 risk	 metrics	 from	 quantitative	 finance,	 namely	
Value	at	Risk	(VaR)13	and	Expected	Shortfall	(ES).14	Within	
this	framework,	a	catalyst’s	efficiency	was	redefined	as	its	
ability	to	maintain	favorable	outcomes	even	in	adverse	sce-
narios.	This	approach,	notably,	places	a	strong	emphasis	on	
reactions	 with	 low	 enantioselectivity	 scores,	 underlining	
the	 catalyst’s	 robustness	 in	 challenging	 situations	 (Figure	
2B).	 However,	 this	 approach	 will	 likely	 minimize	 assess-
ments	of	catalyst	performance	in	relatively	straightforward	
reactions.	 Consequently,	 even	 if	 a	 catalyst	 demonstrated	
suboptimal	performance	in	easy	reactions	while	excelling	in	
difficult	ones,	 it	 could	 still	 attain	a	high	 score.	Essentially,	
VaR	measures	the	maximum	potential	low	enantioselectiv-
ity	a	catalyst	might	cause	in	a	challenging	reaction	(usually	
using	α	=	10%	of	worst	outcomes),	while	ES	calculates	the	
expected	effect	beyond	VaR,	offering	insights	into	the	cata-
lyst’s	 performance	 under	 difficult	 conditions.	 Figure	 2B	
shows	catalysts	that	are	characterized	by	higher	VaR	values	
indicate	a	lower	risk	of	undesirable	reaction	outcomes.	This	
allows	one	not	just	to	distinguish	good	catalysts	from	poor	
ones	but	also	to	provide	an	indication	of	the	level	of	risk	that	
can	be	placed	in	its	application.	As	a	result,	this	metric	can	
be	used	to	answer	different	questions	to	the	catalyst	gener-
ality	measures	and	will	provide	a	more	comprehensive	eval-
uation	 of	 catalyst	 performance,	 in	 scenarios	where	 result	
disparities	between	easy	and	difficult	reactions	are	substan-
tial.	To	comprehensively	assess	the	newly	devised	metrics,	
in	this	work	we	will	challenge	the	measures	against	two	dif-
ferent	types	of	Brønsted	acid	structures	(Figure	2C).	
 
General	Approach	
A	typical	process	for	assessing	catalyst	performance	starts	
with	literature	data	collection,	which	frequently	includes	an	
unequal	 distribution	 of	 tested	 reactions	 across	 catalyst	
types.	Owing	to	the	influence	that	imbalanced	datasets	will	
have	on	the	final	result,	a	critical	next	step	is	to	augment	lit-
erature	 data	 sets	with	 virtual	 data	 (i.e.,	 predicted	 values)	
gathered	from	well	validated	regression	models.	This	work-
flow	 component	 ensures	 that	 each	 catalyst's	 usage	 fre-
quency	 is	consistent	and	substantial	coverage	of	 the	reac-
tion	space	is	attained.	Consequently,	throughout	our	analy-
sis,	we	 evaluate	 several	 regression	models	 for	 correlating	
the	enantioselectivity	outcomes	represented	as	DDG‡	to	the	
structure	of	the	reaction	components.	In	principle,	this	step	
can	 be	 implemented	with	 different	 numerical	 descriptors	
and	 machine	 learning	 algorithms,	 with	 the	 ideal	 choice	
likely	dependent	on	the	problem	at	hand.	In	this	study,	we	
mostly	utilized	either	RDKit,	quantum	mechanical,	and	ste-
ric	descriptors	to	efficiently	transform	the	reaction	compo-
nents	into	numerical	descriptors.15-17	For	reasons	explained	
below,	 we	 also	 introduce	 a	 new	 descriptor	 set	 based	 on	
chemical	 space	networks	 (CSN).	The	 resulting	models	are	
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then	deployed	to	create	a	virtual	dataset	by	predicting	the	
enantioselectivity	for	reported	and	new	combinations	of	re-
actants	 and	 catalysts	 contained	 in	 the	 experimental	 data-
base.	Using	this	data,	the	metrics	are	computed,	and	the	re-
sults	 ranked	 to	 determine	well-performing	 catalyst	 struc-
tures.		

Generality	and	relative	generality	achieves	this	by	
first	revealing	distinct	reaction	types	within	the	virtual	da-
taset	using	non-linear	dimensionality	reduction	and	unsu-
pervised	clustering.	More	specifically,	each	individual	reac-
tion	 is	determined	by	a	 linear	combination	of	nucleophile	
and	electrophile	properties.	The	reaction	space	expressed	
by	 these	descriptors	 is	 first	 reduced	by	Uniform	Manifold	
Approximation	 and	 Projection	 (UMAP)18	 followed	 by	 k-
means	clustering.	Our	motivation	for	including	these	tech-
niques	 is	 demonstrated	 by	 the	 superior	 performance	 of	
UMAP	as	compared	to	PCA	and	the	noted	challenges	in	clus-
tering	 high-dimensional	 data.19-20	While	 UMAP	will	 inher-
ently	group	similar	reactions	together,	the	precise	reaction	
boundaries	can	be	difficult	to	define.	Consequently,	k-means	
is	 applied	 as	 a	 decisive	 clustering	method,	where	 the	 hy-
perparameter	k	is	determined	by	the	elbow	and	silhouette	
methods.	Taking	these	steps	together,	the	generality	of	a	cat-
alyst	is	described	as	the	proportion	of	clusters	with	an	aver-
age	performance	higher	 than	 the	 user	 set	 threshold.	 This	
can	be	formulated	as:		
(1)	

𝑔𝑒𝑛𝑒𝑟𝑎𝑙𝑖𝑡𝑦 =
1
𝐾	B

(𝑠𝑢𝑐𝑐𝑒𝑠𝑠)F

G

FHI

	

where	K	is	the	total	number	of	clusters,	and	successes	are	
defined	 as	 clusters	 wherein	 the	 average	 performance	 is	
higher	than	the	set	threshold.	Relative	catalyst	generality	re-
moves	the	need	for	a	user	set	threshold	by	considering	the	
average	 enantioselectivity	 across	 all	 clusters,	 followed	 by	
normalization.	This	can	be	expressed	as:	
	
(2)		

𝑟𝑒𝑙𝑎𝑡𝑖𝑣𝑒	𝑔𝑒𝑛𝑒𝑟𝑎𝑙𝑖𝑡𝑦 =
1
𝐾	B

(𝑁𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑_𝑣𝑎𝑙𝑢𝑒)F

G

FHI

	

  
In	contrast,	VaR	is	calculated	by	determining	the	loss	value	
at	a	specified	percentile	of	the	predicted	enantioselectivity	
distribution	(shown	as	X)	at	a	given	significance	level	a.	This	
feature	removes	the	need	for	explicit	reaction	clusters	to	be	
defined	and	is	calculated	according	to	equation	3:	
	
(3)		

𝑉𝑎𝑅U(𝑋) = 𝑝𝑒𝑟𝑐𝑒𝑛𝑡𝑖𝑙𝑒X(𝑋)	
ES	is	then	computed	to	calculate	the	average	value	of	losses	
exceeding	the	VaR	over	the	specified	range	of	significance	
levels	using	the	following	equation:	
	
(4)		

𝐸𝑆U(𝑋) =
1

1 − 𝛼^ 𝑉𝑎𝑅_(𝑋)𝑑𝑢
U

`
 

	
Therefore,	ES	takes	into	account	values	lower	than	the	VaR,	
potentially	 offering	 additional	 insight	 into	 poor	 perfor-
mances.	

	
Results	and	Discussion	
	
Retrospective	analyses.	Our	goal	of	improving	the	catalyst	
generality	measurement	by	eliminating	the	dependence	on	
user	set	thresholds	and	accounting	for	reaction	complexity	
was	inspired	by	recent	results	collected	in	our	lab.	Basically,	
as	part	of	our	experimental	efforts	in	assessing	general	cat-
alyst	 screening	 sets	 for	 retrospective	 optimization	we	 at-
tempted	to	improve	upon	an	early	reaction	result	(Scheme	
1).21	 Despite	 applying	 catalyst	 structures	 now	 considered	
broadly	 applicable,	 subsequent	 rounds	 of	 evaluations	 re-
vealed	persistently	 low	enantioselectivities,	 indicating	po-
tential	limitations	inherent	to	the	substrate	under	the	reac-
tion	 conditions.	 This	 observation	 raised	 questions	 about	
our	ability	to	account	for	variations	in	catalyst	performance	
with	different	substrate	types	and	prompted	us	to	re-evalu-
ate	the	chiral	phosphoric	acid	(CPA)	catalyzed	nucleophilic	
additions	to	imines	as	a	first	case	study.	We	posited	this	ef-
fort	would	deepen	our	mechanistic	understanding	of	cata-
lyst	applicability	across	diverse	reactions	and	enable	the	de-
velopment	of	robust	evaluation	criteria.		
	
Scheme	1.	Attempted	use	of	the	catalyst	generality	scores	
to	improve	upon	a	previously	reported	reaction.a	
	

	
	
aReactions	were	 run	with	 the	 following	 conditions:	 Imine	
substrate	(0.1	mmol),	diisopropyl	phosphonate	(0.2	mmol),	
(R)-chiral	phosphoric	acid	(10	mol%),	anhydrous	m-xylene	
(1	mL),	rt,	24	h.	b	Catalyst	generality	predicted	by	the	previ-
ously	reported	MLR	model.11	cIsolated	yields	given.	dEnanti-
oselectivities	(ee)	were	measured	by	SFC.	See	the	Support-
ing	Information	for	further	details.		
	
	
Our	previous	work	 established	 that	 the	 enantioselectivity	
afforded	 by	 distinct	 reaction	 types	 can	 be	 connected	
through	 a	 XGBoost	 regression	 model	 that	 describes	 the	
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structure	of	the	imine,	nucleophile,	and	catalyst	through	a	
range	of	molecular	features.11	These	encompassed	DFT	ac-
quired	structural	descriptors	that	serve	to	describe	the	size	
and	electronic	 features	of	 the	molecules	 through	Sterimol	
values,	IR	vibrations,	NBO	charges,	energies	of	molecular	or-
bitals	and	polarizability.		The	experimental	data	set	included	
a	total	of	364	reactions	that	proceed	through	an	E(+ee)	or	a	
Z(-ee)	imine	transition	state.22	Differentiating	between	the	
two	imine	forms	is	important	in	understanding	the	enanti-
oselectivity	 outcome,	 as	 nucleophile	 addition	 to	 the	 same	
face	will	lead	to	different	enantiomers.	Thus,	the	sign	of	the	
enantioselectivity	value	aligns	with	a	certain	imine	geome-
try	and	this	information	can	be	used	to	predict	the	absolute	
product	 stereochemistry.	 To	 assemble	 the	 virtual	 dataset,	
the	model	 was	 applied	 to	 predict	 the	 enantioselectivities	
arising	 from	 each	 permutation	 of	 imine,	 nucleophile,	 and	
catalyst	 contained	 in	 the	 experimentally	 curated	 data	 set	
(125460	 reactions	 consisting	 of	 15	 catalysts×8,364	 reac-
tants).	 Following	 UMAP	 reduction	 to	 10	 dimensions,	 the	
substrate	space	was	clustered	with	the	k	means	algorithm	
(k	=	50)	and	the	relative	generality	values	were	determined	
from	the	virtual	data	for	the	15	CPA	catalysts	(Figure	3A).	As		
	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
 
 
 
 
Figure 3. Obtained catalyst scores for the CPA catalyzed nu-
cleophilic addition to imines. (A) Relative generality and (B) 
VaR and ES (known collectively as risk metrics). 
	
	

compared	to	generality,	relative	generality	displayed	mini-
mal	differences	in	catalyst	ordering.	TRIP	is	assigned	as	the	
most	 general	 catalyst,	 while	 9-phenanthryl	 and	 9-anthryl	
derived	 chiral	 phosphoric	 acids	 were	 predicted	 to	 be	
slightly	 less	 applicable.	 However,	 relative	 generality	 re-
vealed	 more	 pronounced	 distinctions	 between	 high-per-
forming	catalysts	and	others	by	adjusting	for	variations	in	
individual	reaction	performances.	Catalysts	typically	rank-
ing	at	the	top	received	scores	close	to	one,	while	those	rank-
ing	lower	scored	closer	to	zero.	To	further	interrogate	the	
impact	 of	 reaction	 difficulty	 on	 broad	 catalyst	 perfor-
mances,	we	also	computed	the	risk	metrics	(Figure	3B).	In-
spection	of	this	data	shows	one	significant	difference	to	be	
in	 the	 case	 of	 9-anthryl,	which	 ranks	much	 lower	 on	 this	
scale	 than	 the	previous.	 Interestingly,	 several	 less	 general	
catalyst	structures	were	measured	to	be	highly	versatile,	in-
cluding	 those	 containing	3,5-Ph	 substituents.	As	 such,	we	
were	motivated	 to	understand	 these	 results	better	by	de-
composing	the	contributions	of	chemical	space	and	enanti-
oselectivity	values	to	the	catalyst	scores.	Figure	4	shows	this	
data	simultaneously	in	a	line	diagram,	where	each	peak	or	
valley	represents	a	cluster	of	unique	reaction	space	branded	
by	the	two	catalysts:	9-anthryl	(black	line)	and	3,5-Ph	(blue	
line).	While	there	are	some	substrates	where	3,5-Ph	is	the	
more	selective	catalyst,	it	is	clear	that	9-anthryl	is	better	for	
a	 larger	range	of	substrates	(i.e.	more	yellow	between	the	
two	 lines	 than	grey),	explaining	 the	higher	generality	and	
relative	generality	scores.	In	a	separate	diagram	we	elected	
to	present	information	gained	from	the	risk	metric,	along-
side	the	chemical	space.	This	visualization	scheme	displays	
some	of	the	same	information	contained	in	Figure	4,	but	in	
a	manner	that	better	facilitates	the	identification	of	relative	
catalyst	performance	differences	as	measured	by	risk.	As	a	
demonstration	 of	 this	 visualization	 technique,	 the	 enanti-
oselectivities	for	the	two	catalysts	was	plotted	relative	to	the	
least	ranked	catalyst	as	determined	by	the	risk	metrics,	in	
this	case,	the	catalyst	including	4-NO2C6H4	groups.	This	al-
lows	 for	 any	 relative	 performance	 gains	 (or	 losses)	 to	 be	
linked	 to	 certain	 reaction	 types.	 We	 reasoned	 that	 in	
straightforward		
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
Figure	4.	Predicted	average	performance	within	each	clus-
ter.	9-anthryl	performances	displayed	by	the	blue	line	while	
3,5-Ph	shown	in	black.	When	the	space	between	blue	and	
black	 lines	 is	 grey,	 3,5-Ph	 is	 more	 selective.	 In	 contrast,	
when	the	space	is	yellow,	9-anthryl	is	better.		

A. Calculated generality and relative generality values

B. Calculated risk metrics
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Figure	5.	UMAP	visualization	of	some	of	the	reactions	present	(i.e.,	filtered	for	ee	<50%	measured	by	catalyst	ranked	lowest	
by	risk).	The	colors	indicate	relative	performance	of	3,5-Ph	and	9-anthryl	compared	to	the	baseline	catalyst	containing	4-
NO2C6H4	groups.							
	
	
reactions	the	baseline	catalyst	will	also	show	high	enanti-
oselectivities,	 thus,	 to	make	meaningful	 comparisons	 it	 is	
important	to	filter	for	difficult	reactions	i.e.	where	baseline	
catalyst	had	ee	<50%.	In	other	words,	if	the	baseline	catalyst	
was	 achieving	 90%	 ee,	 the	 differences	 in	 catalyst	 perfor-
mance	could	never	be	high.	The	results	of	this	visualization	
approach	are	shown	in	Figure	5.	Because	both	catalysts	are	
ranked	higher	than	a	catalyst	containing	4-NO2C6H4	groups,	
there	are	more	yellow/green	dots	(higher	enantioselectiv-
ity)	than	red	(lower	enantioselectivity)	on	the	UMAP	plot.	
Further	 inspection	of	 this	data	 shows	 significant	 catalyst-
substrate	 matching	 effects;	 however,	 9-anthryl	 provides	
high	enantioselectivities	in	reactions	that	can	also	be	facili-
tated	with	other	catalysts.	This	illustrates	a	powerful	behav-
ior	of	the	risk	metrics:	if	a	catalyst	excels	in	reaction	space	
where	numerous	other	catalysts	also	perform	well,	that	cat-
alyst	will	be	penalized.	These	behaviors,	as	displayed	in	Fig-
ure	4	and	Figure	5,	clearly	reflect	the	different	questions	risk	
and	relative	catalyst	generality	have	been	designed	 to	an-
swer.			
	
Emerging	Catalyst	Classes.	After	evaluating	our	new	met-
rics	for	assessing	selectivity	performance	of	a	well-studied	
catalyst	chemotype,	we	sought	to	test	whether	they	can	also	
be	applied	to	a	catalyst	system	for	which	general	models	for	
selectivity	have	not	yet	been	developed.	Hence,	as	a	second	
case	study,	we	evaluated	this	general	workflow	with	another	
important	 class	 of	 Brønsted	 acids,	 namely,	 imidodiphos-
phorimidates	(IDPis).23-24	As	compared	to	that	of	earlier	cat-
alyst	designs	like	BINOL-derived	phosphoric	acids,	the	sub-
stituents	at	 the	3,3’	positions	are	usually	distinctive.	They	
display	fewer	similarities	with	previous	designs,	such	as	the	
absence	of	equivalents	to	TRIP	or	9-anthryl,	and	vary	struc-
turally	from	one	another.25,26	These	factors,	combined	with	
the	current	lack	of	in-depth	understanding	required	for	ra-
tional	 optimization	 through	 local	 structure	 searches,	 are	
some	of	the	underlying	reasons	for	why	the	diversity	of	well-
performing	structures	reported	in	this	area	of	organocatal-
ysis	is	significant.	Indeed,	these	intriguing	mechanistic	fea-
tures	are	further	highlighted	by	the	observation	that	several	
structures	 have	 seen	 extensive	 use,	 suggesting	 substrate-

catalyst	matching.	Recent	reports	of	machine	 learning	ap-
plied	to	this	arena	demonstrate	that	there	are	correlations	
to	be	 found;	however,	 a	 comprehensive	model	 connecting	
multiple	 reaction	 types	 has	 yet	 to	 be	 established.27	 These	
multi-reaction	models	are	useful	for	predicting	the	impact	
of	new	components	on	the	enantioselectivity	outcome	and	
necessary	 for	performing	 the	aforementioned	analysis.28-31	
Clearly,	this	assessment	is	significantly	different	from	those	
previously	presented,	as	it	involves	applying	our	developed	
metrics	to	an	emerging	catalyst	system	lacking	established	
models	 for	 selectivity.	 Additionally,	 given	 the	 incomplete	
data	sets,	it	remains	uncertain	whether	broadly	applicable	
catalyst	structures	exist	yet.	In	the	previous	examples,	mul-
tiple	catalyst	structures	are	analyzed	under	the	assumption	
that	one	of	these	structures	is	the	most	general.	This	is	the	
situation	for	which	our	metrics	were	designed;	however,	our	
measures	could	still	prove	useful	in	the	event	that	all	the	cat-
alysts	display	narrow	applicability	or	 several	 catalysts	ex-
hibit	wide	reaction	scope.		

To	initiate	this	portion	of	 the	study,	we	curated	a	
total	data	set	of	323	reactions	from	13	literature	reports	for	
parameter	collection	and	analysis.	The	spread	of	enantiose-
lectivity	measurements	 is	 broad,	 comprising	 a	ΔΔG‡	win-
dow	of	2.85	kcal/mol.	The	 training	set	 included	combina-
tions	of	37	catalysts	(25	3,	3’-groups	and	5	electron	with-
drawing	groups	on	the	nitrogen),	155	electrophiles,	49	nu-
cleophiles,	and	16	solvents.	This	dataset	represents	an	intri-
guing	body	of	literature	and	include	excellent	catalysts	for	
Mukaiyama	 aldol,32-33	Michael	 additions,34	 Diels-Alder,8,35-38	
Nazarov,39	Prins,40	and	Hosomi-Sakurai41	reactions.	Although	
the	general	selectivity	determining	steps	of	these	transfor-
mations	 are	 thought	 to	 be	 fundamentally	 similar	 these	
transformations	 do	 include	 structurally	 diverse	 reactants.	
Thus,	 the	most	 significant	 challenge	 in	 the	early	 stages	of	
model	building	was	defining	suitable	parameters	to	appro-
priately	capture	subtle	differences	between	reaction	com-
ponents	with	limited	structural	overlap.	The	most	common	
types	of	statistical	modeling	approaches	typically	utilize	a	
breadth	of	structural/molecular	descriptors	gathered	from	
density	functional	theory	(DFT),	quantitative	structure–ac-
tivity	relationships	(QSAR),	and	molecular	mechanics	(MM),	
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with	the	ideal	choice	dependent	on	the	structures	and	pro-
cesses	being	 interrogated.	At	 first,	we	 implemented	RDKit	
descriptors	because	 these	 feature	 sets	do	not	 require	any	
calculation.	These	2D-descriptors	 are	 then	 complemented	
by	additional	features	that	we	suspect	may	be	absent	from	
the	 simpler	 representation.	 Given	 the	 success	 in	 applying	
truncated	 molecules	 and	 DFT	 descriptors	 to	 define	 the	
structurally	 similar	 chiral	 phosphoric	 acid	 catalysts,	 we	
adopted	similar	techniques	to	build	the	catalyst	parameter	
set.42	 This	 included	 computation	 optimizations	 on	 a	 trun-
cated	molecule	 featuring	 one	 of	 the	 3-substituents	 at	 the	
M06-2X/def2-TZVP	level	of	theory	followed	by	collection	of	
HOMO/LUMO,	 Sterimol	 values,	 %Vbur,43	 and	 various	
size/shape	descriptors	(see	SI).44	These	types	of	calculations	
can	 be	 computationally	 expensive,	 complicated	 to	 set	 up,	
and	 the	results	are	often	 logged	manually.	 In	cases	where	
100s	of	molecules	(and	their	conformers)	are	required	to	be	
analyzed,	 implementing	 this	 approach	 would	 be	 prohibi-
tively	time-consuming.	To	streamline	descriptor	collection	
for	the	starting	materials	(i.e.	electrophile	and	nucleophile),	
we	utilized	molecular	mechanics	minimized	geometries	as	
the	 parameter	 acquisition	 platform.	 Electrophiles	 encom-
pass	 aldehydes,	 ketones,	 esters,	 and	 various	 unsaturated	
compounds	 like	 enones.	 Likewise,	 nucleophile	 structures	
incorporate	a	large	range	of	reactive	structures	including	si-
lyl	enol	ethers,	alkenes,	and	allyl	silanes.	Because	the	elec-
trophile	and	nucleophile	compounds	contain	the	same	core	
functionality	embedded	within	different	compound	classes,	
we	suspected	that	an	algorithm	could	be	developed	to	aid	in	
feature	extraction.	Success	in	this	effort	would	require	for-
malization	of	reactive	atoms	in	great	detail	such	that	a	set	of	
predefined	expert-based	rules	could	be	developed.	Our	py-
thon	application	takes	the	SMILES	strings	of	the	candidate	
structures	 and	 performs	 a	 conformational	 search	 using	
RDKit.	 Upon	 completion,	 low-energy	 conformers	 are	 se-
lected,	and	the	program	applies	the	series	of	carefully	con-
sidered,	 coded	rules	 to	determine	 the	 reactive	atoms	pre-
sent,	 making	 decisions	 on	 the	 important	 aspects	 of	 the	
structures.	The	program	first	matches	the	supplied	2D	in-
puts	against	a	series	of	rules	that	searches	for	specific	atom	
types	(C=0	and	C=C	bonds).	Each	rule	encodes	a	structural	
pattern	matching	a	certain	class	of	electrophile	or	nucleo-
phile.	Based	on	which	rule	return	a	positive	match,	electro-
phile	 and	 nucleophile	 type	 can	 be	 determined.	 The	 rules	
have	been	coded	to	recognize	the	following	variables:	elec-
trophile	type	(CHO	or	RCO)	and	nucleophile	type	depending	
on	 the	 location	of	 the	C=C	double	bond	(see	SI).	Once	as-
signed,	it	extracts	the	Sterimol	and	%Vbur	values,	performs	
Boltzmann	weighting	and	finally	stores	the	data	for	regres-
sion	analysis.		

Considering	 the	proximity	of	 the	reactive	centers	
to	 the	 catalyst	 structure,	 it	 is	 reasonable	 to	 assume	 these	
features	will	have	a	great	effect	on	enantioselectivity	out-
come.	However,	the	large	size	of	this	catalyst	may	allow	for	
additional	 contact	 points	 further	 away	 from	 the	 reaction	
sites.	With	this	 in	mind,	we	also	 included	descriptors	that	
represent	the	whole	molecule	structure.	These	include	the	
size	of	the	bounding	box	needed	to	encapsulate	the	mole-
cule,	a	different	type	of	multidimensional	measure	that	in-
corporates	total	volume,	height,		and	width.	Likewise,	infor-
mation	 of	 this	 type	 could	 	 be	 included	 in	 a	 different	

measurement	such	as	the	distance	of	reacting	atoms	from	
the	center	of	mass.	

Indeed,	most	of	 the	parameters	 surveyed	are	de-
signed	to	distinguish	one	molecule	from	another	whilst	also	
attempting	 to	 identify	 appropriate	 parameters	 to	 connect	
changes	 in	 structure	with	 enantioselectivity.	 The	 implica-
tion	of	these	parameter	types	is	that	if	similar	molecules,	as	
defined	by	a	descriptor,	all	provide	comparable	levels	of	en-
antioselectivity,	that	parameter	is	deemed	an	important	fea-
ture.	However,	a	product	of	this	approach	is	that	local	chem-
ical	neighborhoods	(i.e.	a	measure	of	structural	similarity)	
of	molecules	can	perform	similarly	 in	many	cases.	On	this	
basis	and	to	complement	these	existing	parameter	sets,	we	
sought	to	implement	a	descriptor	set	that		incorporates	in-
formation	 about	 the	 performance	 and	 characteristics	 of	
neighboring	molecules	into	our	model.	To	build	local	neigh-
borhoods	 of	 molecules	 we	 deployed	 chemical	 space	 net-
works	(CSN),	a	method	that	constructs	a	network	consisting	
of	nodes	that	correspond	to	molecules	and	edges	typically	
representing	 some	 form	 of	 similarity	 index.45-47	 Crucially,	
networks	 provide	 an	 inherent	 representation	 of	 chemical	
spaces	by	encapsulating	the	discrete	structure	and	similar-
ity	 relationships	 among	 molecules	 without	 necessitating	
the	creation	of	a	coordinate	system	or	dimensionality	reduc-
tion.	Given	that	similarity	metrics	like	Tanimoto48	and	maxi-
mum	 common	 substructure	 (MCS),49	 	 can	 be	 calculated	
solely	based	on	molecular	structure	(obtained	from	SMILES	
strings),	 they	 circumvent	 the	 challenges	 associated	 with	
high	dimensionality	observed	in	coordinate-	and	cell-based	
representations.	Since	every	molecule	exhibits	some	degree	
of	similarity	to	others,	a	threshold	must	be	applied	to	avoid	
a	 fully	 connected	 graph,	 making	 all	 network	 properties	
somewhat	dependent	on	the	chosen	threshold.	This	enables	
the	 collection	 of	 experimental	 and	 local	 structural	 infor-
mation	that	encompass	the	average	historical	performance	
of	all	neighbors	of	a	given	molecule,	or	the	maximum	and	
minimum	average	values	among	its	neighbors.	As	an	alter-
native	method	to	capture	similar	behaviors	across	compa-
rable	 structures,	 we	 incorporate	 one-hot	 encoded	 de-
scriptors	to	differentiate	between	Diels-Alder	reactions,	ad-
dition	reactions	of	silyl-based	nucleophiles,	and	intermolec-
ular	transformations.	Incorporating	parameters	to	describe	
the	 solvent	 structure	here	would	 require	 significant	 addi-
tional	descriptors	and	 this	may	 lead	 to	diminished	model	
performance	 (i.e.,	 overfit).	 We	 posit	 that	 any	 subsequent	
losses	 in	 accuracy	 in	 correlating	 and	 predicting	 the	DDG‡	
values	will	affect	both	the	training	and	test	fits	equally,	and	
thus	 will	 not	 change	 the	 final	 conclusions	 sufficiently	 to	
warrant	 their	 inclusion.	 Finally,	 temperature	 differences	
were	 included	 in	 the	Gibb’s	 free	energy	equation	(ΔΔG‡	=	
−RT ln|er|)	and	as	an	independent	descriptor.	

With	 the	 descriptor	 set	 assembled,	 a	 machine	
learning	model	was	subsequently	pursued	to	develop	a	vir-
tual	 data	 set	 for	 catalyst	 performance	 analysis	 and	 reveal	
the	key	features	impacting	the	enantioselectivity	outcome.	
To	establish	a	statistically	robust	model,	we	adopted	a	Re-
cursive	Feature	Elimination	(RFE)	method,	which	works	to	
limit	the	number	of	variables	and	minimize	overfitting.	The	
algorithm	works	by	recursively	training	a	model	on	subsets	
of	 features,	 ranking	 the	 importance	 of	 each	 feature,	 and	
eliminating	 the	 least	 important	 ones.	 This	 process	 is	 re-
peated	until	a	specified	number	of	features	remains	or	until	
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a	 predetermined	 performance	 metric	 is	 optimized.	 Hy-
perparameters	 for	 each	model	were	 tuned	 using	 random	
search	 algorithms	 with	 10-fold	 cross-validation	 and	 LOO	
cross-validation	 on	 the	 optimized	 model.	 While	 several	
models	 were	 assessed	 in	 this	 process	 including	 Random	
Forest,	Extra	Trees,	KNN	Regressor,	Gradient	Boosting	Re-
gressor,	 and	multivariate	 regression,	 we	 ultimately	 opted	
for	XGBoost.	This	choice	was	motivated	by	its	strong	perfor-
mance	in	handling	complex	datasets	with	high-dimensional	
features	and	its	capacity	to	alleviate	the	problem	with	over-
fitting	through	regularization	techniques	(Figure	6).	Beyond	
its	high	cross-validation	and	test	set	statistics,	the	model	is	
also	reasonably	chemically	interpretable.	Specifically,	the	fi-
nal	model	relies	on	a	 total	of	28	descriptors,	 including	10	
RDKit	based	across	the	three	components.	While	these	de-
scriptors	are	 intrinsically	 less	 information-rich	than	steric	
and	neighborhood	parameters	they	do	capture	the	general	
effects	 that	 impact	 the	 reaction	 outcome.	 	 Selected	RDKit	
features	that	are	selected	for	the	final	model	include,	mini-
mum	and	maximum	partial	 charges,	offering	 insights	 into	
the	polarity	of	the	molecules,		along	with	kappa1,	which	in-
dicates	a	degree	of	branching	or	chain-likeness.	Notably,	the	
primary	catalyst	features	highlighted	by	the	model	pertain	
to	the	shape	and	size	of	the	groups	involved.	This	is	unsur-
prising	 given	 their	 crucial	 role	 in	 establishing	 geometries	
conducive	 to	 asymmetric	 catalysis.	 Important	 descriptors	
include	 Sterimol	 size	 descriptors,	 min	 and	 max	 partial	
charge	(RDKit),	polarity,	biggest	distance	between	any	two	
atoms,	and	volume	of	a	box	needed	to	encapsulate	substitu-
ent	group.	The	catalyst	N-substituent	 is	described	only	by	
two	parameters	which	essentially	are	used	to	capture	differ-
ences	in	chain	length	and	aromaticity.	Incorporating	neigh-
borhood	 parameters	 to	 represent	 the	 reactant	 structures	
was	demonstrated	to	markedly	enhance	the	accuracy	of	the	
model.	Further	analysis	reveals	a	greater	number	of	mean-
ingful	 features	 linked	 to	 the	 performance	 of	 electrophiles	
compared	to	nucleophiles.	This	disparity	may	stem	
	

Figure	6.	XGBoost	model	predicting	the	ΔΔG‡	of	the	IDPi	cat-
alyzed	addition	of	silyl	nucleophiles	to	carbonyls,	Diels-Al-
der,	and	intermolecular	reactions	(See	SI	for	list).		
	

from	the	higher	variability	among	electrophiles	(155	mole-
cules)	relative	to	nucleophiles	(49	molecules),	or	potentially	
indicates	the	predominant	role	of	electrophiles	in	these	re-
actions.		

The	 high	R2pred	 and	 low	 test	MAE	demonstrate	
model	 robustness	 and	 considering	 that	 every	 component	
included	in	the	virtual	data	set	has	in	some	way	been	repre-
sented	in	model	training,	the		errors	in	predicting	the	virtual	
data	can	be	expected	to	be	similar	to	the	training	set.	After	
careful	 consideration,	 we	 envisioned	 the	 safest	 and	most	
meaningful	virtual	predictions	would	focus	on	reaction	ex-
tension	to	include	additional	substrates	and	the	screening	
of	additional	catalyst	structures.	To	this	end,	the	virtual	da-
taset	would	be	 restricted	 to	make	predictions	 about	 each	
permutation	of	electrophile,	nucleophile,	and	catalyst	con-
tained	in	the	experimentally	curated	data	set	for	particular	
reaction	classes.	In	other	words,	all	the	reactants	reported	
within	Diels	-Alder	publications	would	be	varied	separately	
from	published	reactions	involving	the	addition	of	silyl	nu-
cleophiles.	 Further	 constraints	 were	 placed	 on	 reactions	
that	occurred	 intramolecularly	(e.g.,	Nazarov)	by	 forecast-
ing	 the	 impact	 of	 including	 a	 new	 catalyst	 structure	 only.	
Lastly,	we	only	considered	experimentally	reported	catalyst	
structures	where	the	N-substituent	is	CF3.	This	was	a	strate-
gic	choice,	to	simplify	the	analysis	and	improve	the	accuracy	
of	predictions	by	focusing	only	on	the	3,3’-substituents.	

With	the	virtual	dataset	in	hand,	we	subsequently	
focused	on	deriving	the	generality,	relative	generality,	and	
risk	 metrics.	 However,	 in	 questioning	 the	 proper	 deploy-
ment	of	 the	algorithms	we	were	 initially	met	with	several	
challenges.	Of	these,	perhaps	the	most	important	concerned	
the	determination	of	the	optimal	threshold	value,	a	critical	
parameter	for	computing	catalyst	generality.	Reasoning	that	
in	an	ideal	ranking	each	catalyst	should	be	distinguishable	
from	another,	we	decided	to	maximize	the	standard	devia-
tion	between	catalyst	performances.	This	feature	is	graph-
ically	represented	in	SI	and	allows	for	determining	a	point	
where	 increasing	 or	 decreasing	 the	 enantioselectivity	
threshold	does	not	 improve	 the	variance,	 in	 this	example,	
90%	ee.	 Likewise,	 to	determine	 the	optimal	 catalysts	 and	
probe	the	different	algorithm	behavior	a	new	type	of	com-
municative	visualization	of	 the	results	was	required	given	
the	larger	number	of	structures	and	high	enantioselectivi-
ties	predicted	for	many	diverse	catalyst	systems.	Ultimately,	
we	reasoned	that	in	this	case,	the	specific	analysis	of	indi-
vidual	evaluation	metrics	are	 less	 important	 than	 insights	
gathered	for	broad	substituent	types.	Therefore,	the	goal	of	
the	prediction	analysis	 is	 to	 identify	 catalyst	performance	
trends	across	groups	of	similar	structures	rather	than	dis-
tinguish	 between	 subtleties	 of	 catalyst-dependent	 enanti-
oselectivity.	 As	 such,	 we	 aimed	 to	 compute	 each	 catalyst	
score	across	all	metrics	and	summarize	the	data	in	broader	
catalyst	bins	as	determined	by	CSN.	The	CSN	computation	
essentially	returned	4	catalyst	groupings	suggesting	higher	
homogeneity	within	the	catalyst	structures	than	what	was	
initially	perceived.	Structural	analysis	of	the	substituents	re-
veals	several	classes	of	catalyst	structures,	varying	in	size.	
Some	bins	contained	only	2	or	3	structures,	while	the	two	
larger	bins	incorporated	10	or	11	catalysts.	The	cluster	la-
bels	depended	on	the	type	of	aromatic	ring	attached	to	the	
chiral	framework	(i.e.,	large	or	small)	and	the	size	and	type	
of	substituents	(i.e.,	alkyl	or	perfluoroalkyl,	 long	or	short).	
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For	 example,	 one	 of	 these	 groupings	 contained	 aromatic	
rings	with	no	or	small	substituents	(i.e.,	Me,	Et,	etc.).	These	
were	 grouped	 separately	 from	 catalysts	 with	 larger	 SF5	
groups	 and	 unconnected	 from	 another	 cluster	 containing	
structures	with	perfluoroalkyl	chains.	The	final	group	con-
sisted	of	structures	with	larger	aromatic	groups,	often	flat,	
such	as	pyrene-like	substituents.	With	the	structure	group-
ings	in	hand	for	downstream	analysis,	we	subsequently	re-
duced	the	reaction	space	to	10	dimensions	with	UMAP	and	
clustered	with	the	k	means	algorithm	(k	=	24).	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
Figure	7.	Summary	of	IDPi	catalyst	performances	demon-
strate	that	structures	occurring	in	groups	4	and	1	are	most	
useful.	(A)	Generality	(Gen)	and	relative	generality	(RGen)	
values.	%	refers	to	portion	of	structures	included	in	top-10.	
(B)	Risk	metrics,	VaR	and	ES.	%	refers	to	portion	of	struc-
tures	 included	 in	 top-10.	 (C)	 Select	 examples	 of	 catalyst	
structures	appearing	in	top-10.	

The	generality,	relative	generality,	and	risk	values	were	de-
termined	from	the	virtual	data	for	the	25	IDPi	catalysts	and	
the	data	was	summarized	in	Figure	7.	In	Figure	7A	and	B,	
both	the	height	and	shading	of	the	bars	correspond	to	their	
utility.	As	with	the	previous	example,	larger	scores	indicates	
better	catalyst	performances	but	given	how	the	data	is	sum-
marized	this	can	be	less	helpful	than	knowing	how	many	of	
the	catalyst	structures	are	ranked	within	the	top	10	struc-
tures.	Indeed,	a	catalyst	class	that	includes	70%	of	the	top-
10	structures	is	a	better	result	than	a	catalyst	class	that	in-
corporates	 only	 30%	 of	 the	 structures.	 Figure	 7A	 and	 B	
shows	 that	 while	 catalyst	 groups	 2	 and	 3	 generally	 have	
higher	average	scores	for	several	metrics	compared	to	cata-
lyst	group	1,	the	latter	still	contains	several	well-performing	
structures.	 Inspection	 of	 the	 individual	 scores	 (see	 SI),	
demonstrate	the	generality	metric	only	identifies	variance	
among	groups	of	highly	performing	catalysts,	as	better	cat-
alysts	tend	to	have	a	generality	score	close	to	1,	while	poorer	
performers	approach	0.	In	addition,	several	catalysts	are	as-
signed	the	same	score	resulting	in	a	draw	between	different	
variants.	Relative	 generality	 is	more	 sensitive	 resulting	 in	
greater	differences.	This	difference	arises	from	the	arbitrary	
threshold	used	in	generality	calculations,	as	the	leading	cat-
alyst's	 score	 sharply	 declines	 for	 higher	 thresholds.	 Ulti-
mately,	suggesting	that	the	newly	reported	metric	can	detect	
subtle	differences	in	selectivity,	potentially	aiding	decision-
making,	although	the	performance	differences	 in	this	case	
are	marginal	enough	to	be	misleading.	Conversely,	risk	met-
rics	produce	only	a	slightly	varied	ranking	of	the	top-10	cat-
alysts	due	to	their	consideration	of	different	parts	of	the	en-
antiomeric	excess	distribution,	suggesting	fewer	poorly	per-
forming	 reactions	 among	 these	 catalysts.	 Analyzing	 the	
structures	of	leading	catalysts	can	also	provide	insights	into	
the	 reasons	 behind	 the	 superior	 performance	 of	 certain	
IDPis.	Among	 the	 top-10	 returned	 structures	 of	 the	 three	
metrics,		most	appear	to	be	relatively	flat	and	feature	large	
polarizable	surface	areas.	Their	large	size	suggests	their	ca-
pacity	to	impose	strong	constraints	on	the	catalyst	site,	with	
the	 potential	 to	 engage	 in	 attractive	 noncovalent	 interac-
tions.	These	features	contribute	to	their	high	selectivity	and	
are	consistent	with	the	findings	from	our	statistical	model.	
Like	the	earlier	CPA	catalyst	designs,	smaller	groups	like	Ph	
and	2-naphthyl	were	poorly	ranked	by	all	metrics.			
	
Reaction	application.	If	we	know	the	subsets	of	IDPi	cata-
lyst	space	that	are	both	broadly	applicability	and	can	be	ap-
plied	to	challenging	reactions,	what	is	the	best	starting	point	
for	 catalyst	 selection?	 In	 our	 previous	 work,	 we	 demon-
strated	 that	 the	 reaction	 optimization	 process	 could	 be	
streamlined	 by	 prioritizing	 the	 testing	 of	 general	 catalyst	
structures.	This	approach	works	well	for	examples	where	all	
of	the	best	performing	structures	have	been	more	or	less	re-
ported,	which	 is	not	 the	 case	 for	 emerging	 catalyst	 struc-
tures	like	IDPi.	However,	it	might	be	possible	to	leverage	the	
information	from	the	computations	to	focus	local	structural	
searches	on	well	performing	catalysts.	From	the	standpoint	
of	systematic	exploration,	the	fluorene	structures	are	ideal	
in	that	the	synthesis	allows	for	the	facile	preparation	of	po-
tentially	numerous	sterically	and	electronically	diverse	de-
rivatives	from	a	common	intermediate.	In	addition	to	syn-
thetic	accessibility	and	structural	modularity,	 the	fluorene	
catalyst	substituents	display	molecular	features	important	

B. Calculated risk metrics

A. Calculated relative generality values

Pr PrHex Hex

C. Examples of structures appearing in Top-10

Me Me
Me

catalyst grouping 4 catalyst grouping 1
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for	 enantioinduction,	 as	 exemplified	 by	 their	 high	 perfor-
mance	 metrics.	 Indeed,	 all	 several	 metrics	 ranked	 these	
structures	 all	within	 the	 top-10,	 and	 two	out	of	 the	 three	
structures	 in	 the	 top-5	(Figure	8A).	On	this	basis,	we	sus-
pected	 that	 reaction	 development	 efforts	 would	 benefit	
from	the	deliberate	application	of	these	catalysts	followed	
by	precise	 structure	 tuning	of	 the	 catalyst	 substituent.	To	
test	our	ideas,	we	explored	newly	reported	reactions	where	
fluorene	catalysts	were	screened	(Figure	8B).2,50-54	These	re-
actions	are	not	included	in	the	model	training	but	proceed	
through	a	mechanism	similar	to	reactions	that	were	used	to	
derive	the	catalyst	performance	metrics.	As	such,	we	would	
also	expect	the	catalyst	trends	to	translate	well	to	this	sys-
tem.	 We	 find	 that	 for	 many	 reported	 reactions	 fluorene-
based	 catalysts	 are	 high	 performing	when	 used,	 counting	
those	structures	included	in	our	original	analysis.	In	some	
cases	modifications	appear	to	be	required	with	most	focus-
ing	on	altering	the	methylene	substituents	to	include	larger	
cycloalkyl	groups	or	replacing	a	distal	hydrogen	for	a	larger	
substituent.	However,	 the	subtle	changes	often	resulted	in	
minor	enantioselectivity	improvements,	indicating	this	op-
timization	tactic	requires	an	initial	platform	from	which		
	
	

 
	
Figure	8.	Leveraging	generality	and	risk	findings	for	cata-
lyst	application.	(A)	IDPis	containing	fluorene	substituents	
work	 broadly	 and	 in	 challenging	 cases.	 (B)	 Literature	 re-
ported	IDPi	reactions	demonstrate	local	structure	searches	
in	fluorene	substituent	space	to	lead	to	well	performing	cat-
alyst	structures.		
	
	

moderate	to	good	selectivities	can	be	achieved.	These	find-
ings	are	encouraging	and	demonstrate	how	the	catalyst	in-
sights	could	be	applied	to	locate	broadly	applicable	substit-
uent	platforms	ripe	for	structure	feature	tuning.	
	
Conclusion	
The	need	for	new	tools	to	identify	and	quantify	broadly	ap-
plicable	catalyst	structures	prompted	us	to	develop	two	new	
measures	 of	 catalyst	 success,	 relative	 generality	 and	 risk.	
This	work	represents	a	significant	step	forward	in	catalyst	
performance	assessment	by	correcting	for	variations	in	re-
action	 difficulty.	 Our	 metrics	 include	 new	 techniques	 for	
distinguishing	between	straightforward	and	difficult	 reac-
tions,	 allowing	 researchers	 to	 differentiate	 between	 cata-
lysts	 that	 truly	 demonstrate	 superior	 performance	 and	
those	 that	may	seem	 favorable	due	 to	 their	application	 in	
less	 demanding	 transformations.	 These	 easily	 calculated	
metrics	were	rigorously	evaluated	in	several	case	studies	in-
volving	Brønsted	acids.	In	each	example,	comparing	and	de-
constructing	the	values	reveals	several	interesting	features	
about	 the	 basis	 for	 catalyst	 performance.	 This	 work	 also	
suggests	how	generality	and	risk	metrics	may	be	applied	to	
help	 further	 guide	 the	 development	 of	 emerging	 catalyst	
classes	like	IDPi.	Indeed,	in	evaluating	this	catalyst	chemo-
type	a	multi-reaction	model	was	pursued	using	traditional	
parameter	acquisition	platforms	and	descriptors.	Here	we	
have	shown	that	this	portion	of	the	workflow	can	be	accel-
erated	by	automatically	extracting	structural	features	from	
the	text	files	of	energy	minimized	structures.		This	data	can	
be	directly	used	as	 input	 for	a	machine	 learning	model	 to	
predict	enantioselectivities	of	reactions	involving	carbonyl-
based	 electrophiles	 and	 structurally	 diverse	 nucleophiles.	
The	mechanistic	 fidelity	of	 the	correlations	was	 improved	
by	 incorporating	 information	 from	 local	 neighborhoods	
identified	by	CSN.	Finally,	we	are	currently	integrating	these	
approaches	in	ongoing	projects	as	well	as	exploring	the	ap-
plication	of	these	metrics	to	reaction	development.	
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