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ABSTRACT: In electrochemical analysis, mechanism assignment is fundamental to understanding the chemistry of a system. The 
detection and classification of electrochemical mechanisms in cyclic voltammetry set the foundation for subsequent quantitative 
evaluation and practical application, but are often based on relatively subjective visual analyses. Deep-learning (DL) techniques 
provide an alternative, automated means that can support experimentalists in mechanism assignment. Herein, we present a custom 
DL architecture dubbed as EchemNet, capable of assigning both voltage windows and mechanism classes to electrochemical events 
within multi-redox cyclic voltammograms. The developed technique 
detects over 96% of all electrochemical events in simulated test data and 
shows a classification accuracy of up to 97.2% on redox events with 8 
known mechanisms. This newly developed DL model, the first of its kind, 
proves the feasibility of redox-event detection and electrochemical 
mechanism classification with minimal a priori knowledge. The DL 
model will augment human researchers’ productivity and constitute a 
critical component in a general-purpose autonomous electrochemistry 
laboratory. 

INTRODUCTION 
Cyclic voltammetry is one of the most popular analytical 

electrochemical techniques. 1-4 In fact, there is no need to look 
beyond the cover of many electrochemistry textbooks to see the 
famous “duck-shaped” plots of cyclic voltammograms. 2-5 The 
relationship between current density (i) and applied potential (E) 
as a function of multiple, n-numbered scan rates (v), represented 
as {v, i(E)}n, is necessary for an identification of reaction 
mechanisms with z-numbered redox events, in which each 
includes the combinations of electrochemical (Estep) and 
possibly chemical (Cstep) reaction steps. 2, 3, 6 The mechanistic 
identification starts with visual inspections that not only 
descriptively inquire the voltammogram’s shape but also 
quantitatively extract valuable mechanistic information 
including but not limited to the redox peak potential/current, 
half-wave width and/or plateau potential/current. Those 
quantitative visual inspection is a prerequisite to formulate the 
partial differential equations (PDEs) and boundary/initial 
conditions for the downstream numerical simulations that 
extract quantitative thermodynamic and kinetic information.7 

Such hypothesized mechanism obtained from finite 
electrochemical data is also instructive towards the design of 
other non-electrochemical experiments, which collectively 
constitute a comprehensive mechanistic study that integrates all 
channels of experimental results.  

Despite voltammetry’s foundational place in the pantheon of 
electroanalytical tools, there is no consistent heuristic of visual 
inspection for voltammograms’ use in mechanism assignment 
– perhaps the most common use of cyclic voltammetry. 8 
Manual visual inspection of the scan rate’s influence on 
voltammetric responses under different chemical 
concentrations remains the primary means of mechanism 
assignment. Reliance on manual inspection precludes any 
application in high-throughput systems, limits its utility for both 
experts and non-experts, and renders analysis intractable when 
cyclic voltammograms increase in complexity and noise. 8-10 

Recent advances in machine learning and artificial 
intelligence offer a new perspective on voltammogram 
inspection and mechanism assignment. 8-10 Machine-learning 
techniques have been applied to mechanistic classification of
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Figure 1. A, the comparison of different approaches to the analysis of cyclic voltammograms (CVs), including the deep-learning (DL) 
architecture based on Faster R-CNN (Regional Convolutional Neural Network) dubbed as EchemNet. B, the classes of electrochemical 
mechanisms included in EchemNet. C, exemplary illustration of simulated multi-redox CVs used as training set in this study. Each data point 
in the training set contains a set of multi-redox CVs with n-numbered scan rates and z-numbered redox events ({v, i(E)}n, n = 1 to 6; z = 1 to 
4). The color of the voltammogram traces illustrates the scan rate v: the darker the color, the larger the value of v. ResNet, Residual neural 
network. 

single-redox voltammograms, 11-13 and numerical fitting of 
voltammogram data under a pre-determined mechanistic 
assignment. 14-16 It is proposed that machine learning’s expertise 
in pattern recognition and feature extraction17 is complementary 
if not substitutive to manual inspection of electrochemical data. 
11, 12, 18 For example, our recent work reported a deep-learning 
(DL) model based on the architecture of ResNet (Residual 
Neural Network) 19 that automatically analyzes cyclic 
voltammograms (Fig. 1A), assuming the presence of only one 
redox event, and designates the probable mechanism among 
five of the most common ones in homogeneous molecular 
electrochemistry. 12 The ResNet model yields a probability 
distribution for five mechanisms, represented as a vector y = {yi} 
(i = 1 to 5) in which yi refers to the mechanistic propensity of 
the i-th mechanism. Such a probability-driven analysis provides 
a more satisfying accommodation given the finite amount of 
available electrochemical data and the finite measurement 
resolutions of instrumentations. We envision that the 
deployment of a DL-based analysis algorithm not only heralds 
automated electrochemical analysis with high data throughput, 
but also opens the opportunities of simultaneous data analysis 
for multiple electrochemical techniques, a feast untenable by 
humans owing to the data’s nature of high dimensionality. 8 

However, to date, the developed machine-learning models all 
require one piece of important a priori information, namely that 

the number of redox event z is presumably known (z = 1 in 
previous reports11-13), which renders the DL models not entirely 
on par with manual inspection. In a typical manual inspection 
of voltammograms without any a priori information, human 
researchers first identify and locate any redox events in the 
voltammogram, i.e. a task of object detection, then determine 
the mechanism type for each redox event, i.e. a task of 
classification, before potentially establishing any correlation 
among redox events in search of causality. While reported 
algorithms are capable of mechanistic classification for single-
redox events in voltammograms, 11-13 a DL algorithm, tasked 
with both object detection and classification, remains to be 
developed for automated analysis of cyclic voltammetry. As DL 
architecture such as Faster R-CNN (Regional Convolutional 
Neural Network) 20 has been widely used for the recognition and 
classification of two-dimensional images in a wide range of 
applications, we envision using Faster R-CNN architecture to 
develop a voltammogram-reading DL model with the 
functionalities of both redox-event detection and mechanism 
classification.  

Here we report a custom-designed DL architecture based on 
Faster R-CNN, the first of its kind and dubbed as EchemNet, 
capable of both redox-event detection and mechanism 
classification for multi-redox cyclic voltammograms with 
minimal a priori information (Fig. 1A). As voltammetry data 
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{v, i(E)}n  are intrinsically sets of one-dimensional (1D) vectors 
instead of two-dimensional images, a custom-designed model 
of 1D Faster R-CNN architecture is developed to locate the 
potential window for up to 4 redox events (z ≤ 4) and designate 
the probable mechanism in a probabilistic manner (Fig. 1A). 
The EchemNet is trained by simulated multi-redox 
voltammograms of up to 6 scan rates and up to 4 independent 
redox events ({v, i(E)}n, n = 1 to 6; z = 1 to 4), categorized in 8 
different reaction mechanisms spanning homogeneous, 
heterogeneous, and surface electrochemistry (Fig. 1B). The DL 
model exhibits an overall F1 score, a statistical combined 
measure of binary classification in accuracy and sensitivity, 21 
of up to 0.937 towards redox-event detection and mechanism 
classification among simulated voltammograms, while 
preliminary testing with experimental data are satisfactory as 
well. Our work showcases the feasibility of a DL algorithm for 
voltammogram analysis without the need for any a priori 
knowledge, hence the genesis of a general-purpose autonomous 
platform of electrochemical research that augments the 
productivity of human researchers. 

 
RESULTS & DISCUSSIONS 

A training set of simulated multi-redox voltammograms. 
The dataset that yields EchemNet includes simulated multi-
redox voltammograms, conducted via finite-element methods 
using COMSOL Multiphysics v5.5 (Supplementary Note 1). 
What we sought is to establish a dataset of simulated 
voltammograms that sample the majority of if not the whole 
numerical parameter space for each mechanism as defined in 
textbooks2, 3 (Supplementary Note 2). Each data point in the 
dataset includes voltammograms of up to 6 scan rates and up to 
4 redox events ({v, i(E)}n, n = 1 to 6; z = 1 to 4).  

8 common mechanisms in electrochemistry (Fig. 1B) have 
been included following the textbook definitions 
(Supplementary Note 3): 2, 3 (1) the single-electron quasi-
reversible homogeneous electron transfer (E); (2) a single-
electron quasi-reversible homogeneous oxidative electron 
transfer followed by a chemical reaction of the oxidant in the 
solution (anodic EC); (3) a single-electron quasi-reversible 
oxidative electron transfer preceded by a chemical reaction of 
the reductant in the solution (anodic CE); (4) the single-electron 
heterogeneous electron transfer following the Tafel kinetics (T); 
(5) the two-electron homogeneous electron transfer, in which a 
single-electron transfer is followed by an irreversible, rate-
determining chemical step and a disproportionation step (DISP-
1); (6) a similar two-electron homogeneous electron transfer, in 
which a single-electron transfer is followed by an irreversible 
chemical step and a thermodynamically less demanding single-
electron transfer (ECE); (7) the homogeneous electrocatalysis, 
in which a single-electron transfer is followed by a chemical 
step that regenerates the redox-active catalyst (ECcat or EC’); (8) 
the interfacial single-electron transfer when the redox species 
follows the Butler-Volmer kinetics and is bound on the 
electrode surface (SR). Here we emphasize that the 
categorization of EC and CE mechanisms are defined as the 
anodic scan of voltammogram is considered the “forward” 
direction, because an anodic/cathodic EC mechanism is 
mathematically equivalent to a cathodic/anodic CE one, 
respectively, following the textbook definitions. 2, 3  

A multi-step process is developed to establish the dataset of 
simulated multi-redox voltammograms. First, the parameter 
space of each mechanism, for example the value ranges for scan 
rate (v), exchange current density (i0), equilibrium constant (K), 

and forward kinetic rate constant (kf) in the EC mechanism, is 
carefully defined following textbooks and prior literature2, 3 
(Table S1, Supplementary Note 3). Second, we randomly 
sampled about 3,000 parameter combinations following the 
constraints defined in Table S1, for each mechanism type with 
up to 6 different scan rates (n = 1 to 6). Third, from the available 
8 mechanisms and about 24,000 (= 8 × 3000) parameter 
combinations, we randomly selected no more than 4 parameter 
combinations (z = 1 to 4) and deployed finite-element 
simulations to yield simulated multi-redox voltammograms, 
with randomized redox sequences, voltage spacings among 
every redox event, and relative concentrations of redox species 
that dictate the current densities i among different redox 
features (Fig. 1C).  

About 80,000 data points of simulated multi-redox 6-scan 
voltammograms ({v, i(E)}n, n = 6; z = 1 to 4), about 480,000 (= 
6 × 80,000) voltammograms in total, were generated. The 
number of generated voltammograms is much smaller than the 
theoretical value of about 1017 different combinations of 
parameters for simulated multi-redox voltammograms based on 
the above protocol (mathematically calculated based on the 
permutation expression 𝑃!

"!,$$$ = 24,000!/(24,000 − 4)!). As 
shown below, such a relatively small amount of data is 
sufficient for the DL model’s establishment, among which 90% 
of these data points are the training data and the rest 10% are 
the test data (Supplementary Note 1).  

Some additional assumptions are made when establishing the 
data set of simulated multi-redox voltammograms. As we aim 
to demonstrate the DL’s feasibility in analyzing multi-redox 
voltammograms first, the voltammograms in the proof-of-
concept training set assume that each redox event is 
independent to each other (Supplementary Note 2). We also 
ensure that the training set includes well-separated redox peaks, 
and the current densities of redox peaks are on the same order 
of magnitudes among all redox events (Supplementary Note 4). 

Definition of model’s input, outputs, and ground truth. 
The establishment of DL model requires explicit definitions 
about the model’s input, outputs, and the corresponding “ground 
truths” for the outputs. Below we discuss these items based on 
the dataset of 480,000-large simulated multi-redox 
voltammograms established in the previous section.  

The DL model’s input is the multi-redox 6-scan 
voltammograms ({v, i(E)}n, n = 1 to 6; z = 1 to 4). More 
specifically, a data structure of three-dimensional tensor with a 
size of (6 × 3 × 1000) was deployed following our previous 
work. 12 Each input tensor records the normalized voltages 
Enormalized, normalized current densities inormalized of both forward 
and backward scan, as well as the absolute values of scan rate 
vn, for one set of multi-redox 6-scan voltammograms 
(Supplementary Note 5).  

To increase the robustness of the developed DL model (see  
below), a certain extent of Gaussian noise was applied to the 
normalized current density inormalized (Supplementary Note 5)  
following the same protocol as our previous work. 12 When 
adding the Gaussian noise, each data point of normalized  
current inormalized is added with a random value of noise, whose 
probability follows a normal distribution with a dimensionless  
standard deviation σ. We denote σtrain when this noise is added 
to the simulated voltammograms during the training process of 
DL model, while σtest is denoted when the noise is added during 
to the simulated voltammograms during the testing for the 
trained DL model. σtrain = σtest = 0.01 unless otherwise noted. 
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Figure 2. A, The input, outputs, and general architecture of the deep-learning (DL) model, “EchemNet”, tailored to the analysis of multi-
redox cyclic voltammograms (CVs). B, Highlights in the custom-designed model that includes one-dimensional (1D) regions of interest 
(RoIs) and the calculation of Intersection over Union (IoU), in comparison to the default two-dimensional (2D) one used in image recognition. 
The use of 1D RoI, a certain voltage range in the voltammogram generated by the DL model for a proposed detection of redox events, ensures 
that object detection will not be inadvertently affected by the magnitude of current density i and will not lose sensitivity towards small redox 
features. In our 1D redox-detection model, the IoU is calculated as the ratio of the voltage-range overlap between the RoI and ground truth 
of Elow and Ehigh (“Intersection”) to the combined voltage range between the RoI and ground truth (“Union”). 
Mathematically, a Gaussian noise can be Fourier transformed 
in the frequency domain with equal weights for all possible 
sequences. Hence the added noises contain frequency 
components both higher and lower than the sampling frequency 
of our simulated voltammograms. Thanks to its stochastic 
nature, Gaussian noise is a good representation for thermal 
fluctuations during experimental electric measurement. 22 
However, we acknowledge that it may not represent noises 
from other origins, for example from the intrinsic properties of 
the operational amplifiers (op-amps) and high/low-pass filters. 

One type of outputs from the DL model is the voltage 
window, presented as the cathodic and anodic voltage bounds, 
for each redox event in voltammograms. As there are at most 
four redox events in the simulated voltammogram training set, 
one to four pairs of the cathodic and anodic voltage bounds, 
denoted as Elow and Ehigh, respectively, are expected to be 
determined by the DL model from the input tensor of 6-scan 
voltammograms. The Elow and Ehigh outputs are normalized 
voltage values, as the DL model receives normalized voltages 
Enormalized as inputs. The use of Elow and Ehigh to represent the 
voltage window without the information of current density i is 
consistent with our design of one-dimensional (1D) object-
detection model (see below). 

The other type of outputs from the DL model is the 
propensity distribution of probable mechanisms for each 

detected redox event. Here we define the one-dimensional 
vector yz = {yz,i} (i = 1 to 9) as the mechanistic propensity 
distribution for the z-th detected redox event. In this 9-
component vector yz, yz,i (i = 1 to 8) denotes the predicted 
probability for the aforementioned 8 mechanisms in their 
discussed order. A 9th component yz,9 is added to denote the 
residual predicted probability of the background double-layer 
charging, noted as φ class, whose voltammetric feature is also 
displayed in Fig. 1B. Not only will the inclusion of φ class 
offers a semi-quantitative evaluation of the redox feature’s 
prominence amid the background of double-layer charging, the 
inclusion of φ class is indeed consistent with the architecture of 
DL algorithm in which there is always a “null” category whose 
probability indicates the extent of inability in classification. 19, 

20 

The ”ground truth” of the DL-based analysis is also 
established. In statistics and machine learning, the term “ground 
truth” is defined as the knowledge of the truth concerning a 
specific question. Specific in our works, the ground truth of 
specific multi-redox 6-scan voltammograms corresponds to the 
known values of redox features’ voltage positions and their 
corresponding underlying mechanism The ground truth of 
redox features’ voltage positions are represented by the known
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Figure 3. A, Explanations to the true positives, false positives, and false negatives in the established EchemNet model for both redox-event 
detection and mechanism classification, along with the definitions of metrics for performance evaluation. B, The assay of test-set 
voltammograms and the DL model’s performance. The test set is roughly 10% of the whole dataset of simulated voltammograms 
(Supplementary Note 1). C, Confusion matrix, a commonly deployed performance evaluation tool that represents the accuracy of a 
classification model, from the test-set assay for the whole test set (left) and within the cases of true positive 1 (tp1) after redox-event detection 
(right). Row count, the number of encounters when the corresponding mechanism on the row of “True label” were analyzed in the test set. 

values of Elow and Ehigh, which were calculated following a 
uniform protocol for each redox event in the simulated 
voltammogram (Supplementary Note 4). The ground truth of 
redox’s underlying mechanism is presented by designating the 
corresponding yz,i = 1 for the mechanism under which the 
voltammograms were simulated, and yz,i = 0 for all the other 
ones. The voltammogram data {v, i(E)}n and the corresponding 
ground truth Elow and Ehigh were normalized before being 
deployed for the model’s training, validation, and testing 
(Supplementary Note 5).  

Design of deep-learning (DL) architecture. A custom-
designed Faster R-CNN architecture was needed to establish 
the EchemNet model. The presence of multiple electrochemical 
events/mechanisms within a single cyclic voltammogram 
precludes the use of image classification algorithms such as 
ResNet19 alone. Alternatively, convolutional layer-based 
algorithms, specifically object detection algorithms, can be 
considered as a mature technology for the elucidation of 
electrochemical mechanisms contributing to a convoluted {v, 
i(E)}n output. One such architecture, Faster R-CNN, 20 is 
selected. In such a DL architecture, an online region proposal 
network (RPN) is trained end-to-end to perform the tasks of 
both redox detection and mechanistic classification (Fig. 2A), 
with the deployment of feature pyramid networks23 that 
promote multi-scale detections.  

However, the intrinsic feature of voltammograms, and more 
broadly electrochemical data in general, calls for a 1D 
adaptation of the DL architecture. Although typical algorithms 
of Faster R-CNN are developed for the analysis of two-
dimensional (2D) images, 20 object detection in voltammograms 
is intrinsically a one-dimensional (1D) task, because from a 
chemistry perspective the location of every redox event should 

only be E-dependent in voltammograms. A deployment of 2D 
object detection in voltammograms will explicitly introduce the 
magnitude of current density i as a criterion of redox-event 
detection, inadvertently position a bias towards large redox 
events and significantly decrease the detection sensitivity 
towards small ones.  

Hence, we employed the tools in Faster R-CNN with 1D 
custom implementation. A custom-designed 1D RPN generates 
a region of interest (RoI), defined as a certain voltage range 
(Elow and Ehigh) proposed by the DL model, for possible 
detection of a redox event (Fig. 2A). During the training and 
validation of DL model, the RoIs generated from RPN are then 
compared with the ground truths of Elow and Ehigh defined in the 
earlier section, to evaluate the model’s accuracy of redox 
detection. In typical 2D image recognition, the algorithm 
evaluates the performance of object detection with the term 
named as Intersection over Union (IoU), which is calculated as 
the ratio of the overlap area (“Intersection”) to the combined 
area (“Union”) between an algorithm-detected object and the 
corresponding ground truth in a 2D image (hence IoU ∈ [0,1]) 
(Fig. 2B). In accordance with the 1D adaptation of RPN and 
RoI, to assess the quality of object detection, 1D IoU was 
calculated as the ratio of the overlap voltage range to the 
combined one between algorithm-yielded voltage window (Elow 
and Ehigh) and the corresponding ground truth (IoU ∈ [0,1] as 
well) (Fig. 2B). As shown later, a value of IoU ≥ 0.75 is 
considered a satisfactory detection of the redox feature by the 
DL algorithm. The deployment of 1D RoI and IoU provides 
high fidelity between the bounds of known and predicted redox 
events in voltammograms, leading to an algorithm with a highly 
effective means of mechanism enumeration from complex 
voltammogram data (Fig. 2A and S1, Supplementary Note 5).  
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The algorithm also deploys ResNet, as reported in our 
previous work12, for the classification in each RoI among the 
aforementioned 8 mechanisms and the null class (φ) that 
indicates the voltammogram background without any 
designated redox events (Fig. 1A). As exemplified in Fig. 2A, 
the developed EchemNet after satisfactory training (Fig. S2) is 
designed to discern multi-redox voltammograms and enumerate 
the voltage window of the z-th detected redox event (RoIz) 
represented as normalized voltage values (Elow and Ehigh), the 
corresponding mechanistic propensity distribution yz = {yz,i} (i 
= 1 to 9) towards the trained 8 redox mechanisms plus φ class, 
and the assignment of the most probable mechanism.  

Performance evaluation. There are two separate yet related 
metrics for the evaluation of a DL model for both object 
detection and classification: Metric I, the effectiveness of the 
RPN to detect events independent of their mechanism, i.e. 
performance in redox detection alone; Metric II, the overall 
inference performance which is the combination of redox 
detection (matching of predicted voltage windows with the 
ground truth) and classification (matching of the predicted most 
probable mechanism with the ground truth) of the RoIs 
provided by the RPN (Fig. S1).  

In the evaluation of object detection alone (Metric I, Fig. 3A), 
3 different outcomes are possible through the course of region 
proposal and object detection: RoIs represented as Elow and Ehigh 
predicted by the RPN could ultimately align with ground truth 
of redox bounds (object detection true positive, tp1; when IoU 
≥ 0.75 between the algorithm-yielded proposed redox voltage 
window and the corresponding ground truth) or not (object 
detection false positive, fp1), and regions where known true 
redox bounds were not detected were assigned as false 
negatives (fn).  

In the evaluation of overall inference performance (Metric II, 
Fig. 3A), a true positive (tp2) is logged when the ground truth 
mechanism i for the z-th detected redox is confidently denoted 
as the most probable mechanistic propensity in yz vector (yz,i ≥ 
0.7) with good overlap with the redox’s voltage bounds (IoU ≥ 
0.75); while the false positives are further categorized based on 
whether the model-yielded RoIs detect a real redox event (fp2) 
or merely detect φ background (fp3) (Fig. 2A). There is no 
delineation between the false negatives (fn) between object 
detection (Metric I) and overall inference (Metric II), hence the 
fn sub-population remains the same to the evaluation of object 
detection and overall inference metrics. 

The developed DL model was evaluated for its performance, 
in a protocol similar to our previous report, 12 after being trained 
by simulated multi-redox voltammograms ({v, i(E)}n, n = 6; z 
= 1 to 4; σtrain = 0.01). The test set for the DL model includes 
about 8,000 points of 6-scan voltammograms, 10% of the whole 
dataset that were not exposed to the developed DL model 
during the training process. The DL model exhibits an average 
IoU of 0.966 among the test set, where unity constituted a 
perfect overlap of predicted bounds with ground truth voltage 
windows (Fig. 3B). This is remarkable since within the DL 
algorithm a threshold value of IoU for a satisfactory redox 
detection is only 0.75.  

Following the protocol of statistical analysis in image 
recognition and more generally binary classification, 21 the 
precision (P) and recall (R) of both metrics are calculated to 
evaluate the predictability and sensitivity, respectively, of the 
DL model (Fig. 3A). Here P is calculated as the percentage of 
true positives (tp) among the sum of tp and false positives (fp), 
which represents the accuracy of detecting correct redox 

features among all the detected ones; R is calculated the the 
percentage of true positives (tp) among the sum of tp and false 
negatives (fn), which represents the sensitivity of not missing 
any detections of real redox features. Calculating the harmonic 
means of P and R in both metrics lead to the F1 scores, an 
overall measure of a model’s performance whose calculation is 
shown in Fig. 3A21. A DL model of high F1 score is not only 
accurate in detecting redox features without much incorrect 
ones, but also sensitive enough to not miss any real redox 
features. As shown in Fig. 3B, the F1 scores in Metrics I and II 
reach 0.952 and 0.937, respectively, illustrating strong 
performance by the RPN (Metric I) and overall balanced 
performance with high values of both precision and recall 
(Metric II). Such a performance is satisfactory to say the least, 
based on the standard of image recognition, 21 within our 
aforementioned assumptions and our dataset of simulated 
voltammograms.  

We also evaluated the class-by-class accuracies from the 
developed EchemNet model. As the developed ResNet 
classifies RoI into not only the 8 designated electrochemical 
mechanisms but also the null class (φ), i.e. the background 
without any redox events, we first established a confusion 
matrix that includes 8 mechanisms and the φ events with tp1, fn, 
fp1, and fp3 events highlighted (left in Fig. 3C). In machine 
learning, a confusion matrix is a commonly deployed 
performance evaluation tool that represents the accuracy of a 
classification model. Each row in the plots of Fig. 3C enlists the 
percentage of redox features, simulated based on a designated 
mechanism (“true label” in Fig. 3C), that are classified into a 
specific mechanism (“predicted label” in Fig. 3C). The number 
of encounters for each mechanism in the test set (“Row counts” 
in Fig. 3C) is relatively homogenous among all mechanisms, 
illustrating a fair and balanced test to the DL model. As shown 
in the left plot of Fig. 3C, accurate mechanistic classification is 
achieved among mechanisms.  

We further revised the “confusion matrix”, shown as the right 
plot of Fig. 3C, to better reflect the accuracy of the DL model 
in practical applications. Practically, the DL’s functionality in 
the context of mechanism classification will not be affected by 
the presence of fp1 cases with φ prediction (hence fp3), 
contributing to 39% of total fp1 cases, when the DL algorithm 
unnecessarily yet correctly identifies a voltage window in the 
voltammogram that does not have any redox events and can be 
easily dropped in our model. Therefore, we plotted a revised 
confusion matrix among all tp1 cases, with a tp2 accuracy of 
97.2%, presumably better reflecting the model’s utility in 
mechanistic analysis (right in Fig. 3C). Our results suggest that 
DISP-1 mechanism is the most confused one, evident from non-
negligible probabilities of mis-assigning a DISP-1 mechanism 
as EC/CE one, or vice versa. Such phenomenon is similar to the 
one observed in our previous report of ResNet architecture for 
mechanism classification when only one redox event is known 
to exist. 12 The results reflect the similarity in voltammograms 
among DISP-1 and EC/CE mechanisms, as depicted in the 
textbooks, 2, 3 when the single-electron (EC/CE) and two-
electron processes (DISP-1) are both under pure kinetic 
conditions.  

While not detailed here, there are two more important metrics 
for the developed DL model: the robustness towards noises and 
the sensitivity of detecting small redox features. We analyzed 
those two metrics (Fig. S3 and S4) and provided our insights 
towards those two features can be found in Supplementary Note 
7. In short, we consider the developed model robust and 
sensitive for data taken under good experimental practices. 
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Figure 4. A to D, simulated voltammograms of 6 different scan rates (v = 6) with 1, 2, 3, and 4 redox events (z = 1, 2, 3, and 4), respectively. 
The most probable mechanisms from the DL model, also the ground truths, are labelled with corresponding propensity values. The solid 
dark-red rectangles denote the ground truths of redox’s voltage windows (Elow and Ehigh in Supplementary Note 4), and the dashed ones of 
bright-red color denotes the DL-generated RoIs. E to G, experimental voltammograms of 1 mM cobalt(II) tetraphenylporphyrin (CoIITPP) 
alone (E), and with 0.1 mM and 0.5 mM chloroacetonitrile (ClCH2CN) (F and G, respectively). 0.1 M tetrabutylammonium 
hexafluorophosphate (NBu4PF6) in dimethylformamide (DMF); Ar glove box; 3 mm glassy carbon disk working electrode; –1.5 V to –0.9 
V vs. Ag/Ag+ (10 mM AgNO3 in acetonitrile) reference electrode; Pt wire counter electrode; 10, 20, 30, 50, 70, and 100 mV/s; 3rd cycle; iR-
compensated; The formal potential for the CoII/ITPP redox was determined as –1.278 V versus ferrocene/ferrocenium (Fc/Fc+). H to K, 
experimental voltammograms of 1 mM 1-methyl-2-azaadamantane-N-oxyl (1-Me-AZADO) alone (H), 1 mM 4-methoxy-2,2,6,6-
tetramethylpiperidine-1-oxyl (4-MeO-TEMPO) alone (I), 1 mM 1-Me-AZADO with 50 mM benzyl alcohol (PhCH2OH) (J), and 0.5 mM 
1-Me-AZADO and 0.5 mM 4-MeO-TEMPO with 50 mM PhCH2OH. 0.15 M NaHCO3/Na2CO3 buffer (pH 9.14); Ambient conditions in N2; 
3 mm glassy carbon disk working electrode; 0.05 to 0.85 V vs. Saturated Calomel Electrode (SCE); Pt wire counter electrode; 50 mV/s; 3rd 
cycle; iR-compensated. The RoIs from EchemNet and the corresponding propensity distribution vectors yz towards 8 mechanisms plus 
background (φ) are all labelled in E to K. The voltammograms plotted in E to K have been normalized in both axes so that the exact E and 
i values are not displayed. More information about experimental methods is available in Supplementary Note 6.  

Deployment examples. We first illustrate the utility of the 
developed EchemNet model via analyzing simulated 
voltammograms. Fig. 4A to 4D display the simulated 
voltammograms ({v, i(E)}n, n = 6, σtest = 0.01) with the 
numberof redox events z = 1, 2, 3, and 4, respectively, which 
was new to the trained DL model. The solid dark-red rectangles 
denote the redox events’ voltage windows (Elow and Ehigh), 
derived based on our protocol and designated as the ground 
truth (Supplementary Note 4), while the dashed ones of bright-

red color denote the RoIs generated from EchemNet’s analysis. 
The close match between the designated ground truths and the 
analyzed RoIs suggest satisfactory performance of object 
detection with a IoU threshold value of 0.75 (tp1 in Fig. 3A). 
Moreover, each detected redox event is subject to mechanistic 
classification via the ResNet architecture. The most probable 
mechanism for each redox z (RoIz) is labelled on the 
voltammograms along with the corresponding propensity yz,i, 
while the DL model outputs the whole yz vector of mechanistic 
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propensities. The high yz,i values for the correctly predicted 
mechanisms illustrate the model’s high analytic fidelity. 
Statistically, our testing of about 8,000 points of simulated 6-
scan voltammograms report the tp2 accuracies of 98.2%, 97.8%, 
97.2%, and 96.6%, when z = 1, 2, 3, and 4, respectively. Such 
results indicate that despite slight decay the tp2 accuracy is 
relatively insensitive against the number of redox events (z) and 
the developed DL model is robust against the increasing 
complexity in the voltammograms. 

We deployed the EchemNet to analyze experimental data in 
exemplary chemical systems. Cobalt(II) tetraphenylporphyrin 
(CoIITPP) is known to undergo a quasi-reversible one-electron 
charge transfer (E step) between formally Co(II) and Co(I) 
redox states (~ −0.785 V vs. Saturated Calomel Electrode, 
SCE24) in dimethylformamide (DMF) (Supplementary Note 6). 
From experimental voltammograms (n = 6), such an E step was 
correctly detected and classified by the DL model based on both 
RoI alignment and the corresponding yz vector that includes 
mechanistic propensities of 8 mechanisms plus background (φ) 
(Fig. 4E).  

When chloroacetonitrile (ClCH2CN) was added to the 
solution of CoIITPP, the electrogenerated Co(I) species 
nucleophilically attacked ClCH2CN electrophile and yielded 
Co(III)−CH2CN, rendering the Co(II)/Co(I) redox irreversible 
(predicted by the model as CE mechanism due to its cathodic 
nature). At a more cathodic potential (< ~ −1.0 V vs. SCE24), 
the yielded Co(III)−CH2CN species is reported to undergo 
multiple steps in a catalytic fashion, yielding voltammogram 
responses resembling either a T or ECcat mechanism. 24 At a 
small equivalent of ClCH2CN (Fig. 4F), the DL model correctly 
detects and classifies the catalytic process at more cathodic 
potentials (RoI1), while detecting the Co(II)/Co(I) redox and 
classifies it as an E mechanism (RoI2), albeit with a much lower 
propensity (yE = 60.4 % in Fig. 4F against 79.1% in Fig. 4E), 
consistent with the increase of irreversibility owing to the 
reaction between Co(I) and ClCH2CN. 24 At a larger equivalent 
of ClCH2CN (Fig. 4G), similar catalytic (RoI1) and Co(II)/Co(I) 
(RoI2) features are detected from the voltammograms, yet now 
the Co(II)/Co(I) redox is so irreversible that the most probable 
mechanism is assigned as CE (71.8%), indicative a greater 
extent of the reaction between Co(I) and ClCH2CN. The DL 
analysis of the electrochemical data for CoIITPP in the presence 
of ClCH2CN is satisfactory. 

We further challenged the DL model to analyze the redox and 
catalysis of nitroxyl derivatives in aqueous solutions, 25, 26 but 
now with only a single voltammogram curve (n = 1) instead of 
the default value of 6 (Supplementary Note 6). This is intended 
to test whether the DL model, while trained by {v, i(E)}n (n = 
6), is applicable towards electrochemical datasets with a smaller 
number of scan rates. As implemented in our prior work, 12 we 
populated the 3D input tensor with 6 identical voltammograms 
and scan rates and fed the tensor into the DL model for analysis 
(Supplementary Note 5).  

Quasi-reversible redox features of an E mechanism were 
successfully detected and classified by the DL model for 1-
methyl-2-azaadamantane-N-oxyl (1-Me-AZADO) (Fig. 4H) 
and 4-methoxy-2,2,6,6-tetramethylpiperidine-1-oxyl (4-MeO-
TEMPO) (Fig. 4I). When benzyl alcohol (PhCH2OH) substrate 
is added to the solution of 1-Me-AZADO, two-electron 
electrocatalytic oxidation of PhCH2OH via the ECcat (or EC’) 
mechanism emerges (Fig. 4J). 3, 25, 26 Such voltammetric 
response is correctly detected and identified (RoI2), yet a false 
positive (fp3) is also yielded with a 78.0% of φ propensity (RoI1).  

When PhCH2OH is added to a mixture of 1-Me-AZADO and 
4-MeO-TEMPO, both 1-Me-AZADO and 4-MeO-TEMPO 
serve as ECcat electrocatalysts in parallel, albeit at different 
catalytic onset potentials (Fig. 4K). 25 The resultant 
voltammogram display a two-step staircase shape, which was 
not close to any of the scenarios by which the DL model was 
trained. Surprisingly, the DL model correctly detects and 
classifies the general trend of the ECcat mechanism (RoI4), amid 
one fp3 (RoI1) and two fp2 (RoI2 and RoI3) cases with high φ 
propensities (> 75%) (Fig. 4K). It is interesting that both fp2 
cases correctly detect redox events beyond the background and 
the second most likely mechanism is ECcat for both (6.13% and 
16.3%, respectively). Our results suggest that the EchemNet 
may still be used for voltammograms with fewer scan rates (n 
< 6), yet prone to false-positive outputs. Practically, the issue of 
false-positives can be addressed in post-analysis by removing 
any detections whose φ propensity is larger than a threshold 
(say, 60% based on Fig. 4J and 4K). Our results hint that the 
EchemNet could be “stretched” a bit for the analysis of 
scenarios new to the model (more discussion in Supplementary 
Note 8), but a more systematic evaluation ought to be conducted 
in the future. 

 
CONCLUSION 

In this work, we demonstrated the feasibility of a DL model 
to detect and analyze redox features in multi-redox 
voltammograms. We developed a custom-designed Faster R-
CNN architecture that tailors to the 1D data format in 
electrochemical characterizations. Furthermore, we evaluated 
the DL model’s performance against simulated and some 
exemplary experimental voltammograms. Such an EchemNet 
model aligns well with the need for high-throughput data 
analysis in a general-purpose autonomous electrochemistry 
platform, which is expected to automatically analyze 
experimentally measured data on-the-fly with little if any a 
priori knowledge of the chemical system and transduce the 
available finite information from the analytical results into a 
decision-making process for the next robotic experiment 
execution. The EchemNet model’s capability of detecting an 
arbitrary number of redox events is commensurate with a data 
analysis process that accommodates a wide range of redox 
events, expected or unexpected, with little if any a priori 
chemistry knowledge.  

The inner working of our DL model resembles if not repeats 
the numerical simulation/fitting procedures classically applied 
in quantitative mechanistic analysis of voltammograms (Fig. 
S5). As commonly quipped as a fancy fitting program, a DL 
model conducts classification tasks by numerically fitting 
through neural networks of various architectures. Therefore, 
when a DL model is asked to analyze a new voltammogram, 
effectively the model numerically “fits” the voltammogram in 
a single-pass against all the PDEs defined by their 
corresponding mechanisms in a parallel manner, instead of the 
iterative manner in the classic approach (Fig. S5). Although 
numerical simulation/fitting remains needed in the DL-based 
analysis to extract quantitative thermodynamic/kinetic 
information, the probabilistic manner of DL analysis differs 
from the classic one that relies heavily on the manual selection 
of mechanism formalism and the resultant PDEs.  

The DL model’s probabilistic approach of mechanistic 
classification avoids deterministic mechanistic assignments, 
undesired when only finite information is available during the 
experimental exploration, and allows for a decision-making 
process based on the analyzed propensity distribution. As 
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showcased in our recent experimental demonstration, 27 our 
EchemNet model will augment the productivity of human 
researchers (more discussion in Supplementary Note 9).  

Additional research of the DL model is needed in order to 
achieve the aforementioned functionality in an autonomous 
electrochemistry platform (more discussion in Supplementary 
Note 10). In particular, additional deployment of the DL model 
towards a large dataset of experimental voltammograms with 
diverse mechanisms is desired to further evaluate if not validate 
the model’s utility in real-life applications. Noting the 
tremendous benefits of public datasets in the field of image 
recognition, 28, 29 we call for the establishment of a public 
database of curated experimental voltammograms with a wide 
range of mechanisms. Such a public database will not only help 
benchmark future models’ performance but also provide the 
training set for additional model refinement. A synergistic 
combination of simulated voltammograms that numerically 
exhaust all possible mechanistic variations and experimental 
ones that offer the taste of real-life scenarios is hypothesized to 
yield an artificial intelligence of electrochemical mechanistic 
deciphering that rivals if not surpass human intelligence.  
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