
Communication: Efficient Approximate

Screening Techniques for Integrals over

London Atomic Orbitals

Simon Blaschke,†,‡ Stella Stopkowicz,‡,¶ and Ansgar Pausch∗,§

†Department Chemie, Johannes Gutenberg-Universität Mainz, Duesbergweg 10–14, D-55128

Mainz, Germany

‡Fachrichtung Chemie, Universität des Saarlandes, D-66123 Saarbrücken, Germany

¶Hylleraas Centre for Quantum Molecular Sciences, Department of Chemistry, University of

Oslo, P.O. Box 1033, N-0315 Oslo, Norway

§Theoretical Chemistry, Vrije Universiteit, 1081HV Amsterdam, The Netherlands

E-mail: a.i.pausch@vu.nl

May 1, 2024

Abstract

Efficient integral screening techniques are essential for the investigation of extended molec-

ular structures. This work presents a critical assessment of well-established approximate

screening techniques and extends them for integrals over London atomic orbitals, which are

required in the presence of strong, external magnetic fields. Through the examination of he-

lium clusters in such extreme environments, we demonstrate that seemingly straightforward

extensions of field-free screening techniques as proposed in recent literature can lead to sig-

nificant errors. To rectify this, we propose an enhanced screening technique that leads to the

desired speedups while still displaying a well-contained error control.
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1 Introduction

Recent years have seen a rapidly increasing amount of investigations on atoms and molecules in

strong magnetic fields, such as those found in the vicinity of interstellar objects like magnetic white

dwarfs.1–3 Field strengths of up to 105 T may be found under these conditions, while the strongest

non-destructive fields currently obtainable in laboratories are small in comparison (150T).4–7 As

such, quantum chemical calculations are needed in order to interpret astrophysical data for these

systems. This requires the inclusion of a finite magnetic field into the molecular Hamiltonian and

the subsequent use of complex-valued London atomic orbitals (LAOs) in order to ensure gauge

origin invariance of all observable properties.8,9 A wide variety of quantum chemical methods has

thus been adapted for the finite magnetic field approach together with the use of non-perturbative

London orbitals, including Hartree-Fock (HF),10–15 density functional theory (DFT),16–25 coupled

cluster (CC),26–32 full configuration interaction (FCI),1 and GW/BSE.33–35

Of particular interest is the determination of the molecular structure for systems in these extreme

environments.36 Recently, several studies concerned with the determination of molecular struc-

tures in strong magnetic fields have been put forward.32,37–41 This includes investigations on ex-

otic structures such as helium dimers or clusters bound via a novel perpendicular paramagnetic

bonding mechanism that may be found in these extreme environments.1,36,38,41,42

The computational investigation of extended molecular systems necessitates efficient integral screen-

ing techniques, particularly for two-electron integrals over LAOs.37,43,44 For calculations in the

absence of magnetic fields, several approximate screening techniques are well-established.45–48 In

this work, we critically assess how to adapt such techniques for calculations in strong magnetic

fields. Here, the mixed plane-wave / Gaussian-type orbital (PW/GTO) character of London or-

bitals leads to some intricacies that need to be taken into account when introducing approximate

integral screening techniques. We demonstrate that seemingly straightforward approaches can lead

to significant errors.37,43 Finally, we present some approximate integral screening techniques that

fulfill all requirements of their field-free counterparts and critically assess their implementations in

development versions of CFOUR49,50 and the TURBOMOLE 51–53 program suite.
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2 Screening Techniques

For self-consistent field calculations such as HF or DFT, the evaluation of two-electron integrals,

(µν |κλ ) =
∫∫

ω∗
µ(r)ων(r)ω∗

κ(r′)ωλ (r′)
|r− r′| drdr′ , (1)

is generally the most time-consuming step. As previously mentioned, a LAO,8,9

|µ) := ωµ(r) = e−
i
2 B×(Rµ−O)·r

χµ(r) , (2)

has a mixed PW/GTO character, with χµ being a Cartesian GTO of the form

χµ(r) =
Ncontr

∑
j=1

Nµ j(x−Rµ
x )

aµ
x (y−Rµ

y )
aµ

y (z−Rµ
z )

aµ
z e−αµ j(r−Rµ )2

(3)

or, alternatively, a spherical GTO of the form

χµ(r) =
Ncontr

∑
j=1

Ñµ jYl,m(θ ,φ)(r−Rµ)le−αµ j(r−Rµ )2
, (4)

where µ,ν ,κ,λ are referring to basis set indices. The GTO shown in eq. (3) or (4) is constructed

as linear combination of Ncontr primitive functions. It is centered at Rµ , the static, homogeneous

magnetic field is given by B and O refers to the system’s arbitrarily chosen gauge origin. The

radial part is described by the exponential while the angular part is described by the spherical har-

monics Yl,m(θ ,φ) and a radial factor with quantum numbers l,m for spherical GTOs and described

by a polynomial of cartesian coordinates for cartesian GTOs. Additional quantities used in eq. (3)

and (4) include the contraction coefficients Nµ j and Ñµ j which also contain the normalization of

the entire contracted GTO as well as the fixed exponents αµ j. The angular momentum quantum

number of the spherical basis Lµ = aµ
x +aµ

y +aµ
z represents the type of atomic orbital (AO), with

Lµ = 0 for s-type orbitals, Lµ = 1 for p-type orbitals, and so forth. There exist a variety of meth-

ods capable of efficiently calculating two-electron integrals over LAOs and the interested reader is
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referred to the extensive literature on this subject.10,37,43,44

Integrals over spherical GTOs can be represented through Cartesian GTOs via a linear transforma-

tion.54 Since the general concepts concerning approximate screening techniques discussed in this

work are not dependent on whether or not these transformation coefficients are taken into account,

we limit the following discussion on the screening of integrals over Cartesian GTOs.

2.1 Cauchy-Schwarz Screening

In the following, we introduce and compare different types of integral screening techniques for

four-center integrals over complex LAOs. We start this discussion with the commonly employed

Cauchy–Schwarz screening. In contrast to the other methods described in this work, it is rigorous

and follows directly from the Cauchy–Schwarz inequality:44

|(µν |κλ )| ≤
√
|(µν |νµ)|

√
|(κλ |λκ)| . (5)

An entire batch of integrals can be screened by evaluating the largest integrals contained therein.

The real-valued quantity TP = max(Tµν) = max(
√
|(µν |νµ)|) is evaluated once at the beginning

of a quantum chemical calculation and stored in memory, with P := µν referring to a shell-pair. If

we similarly define Q := κλ and TQ = max(Tκλ ), we can rewrite the Cauchy–Schwarz inequality

as

|(µν |κλ )| ≤ TPTQ . (6)

By evaluating Tmax = max(TP), we can deduce that

|(µν |κλ )| ≤ TPTmax (7)

and as such, no information about shell-pair Q is required for the screening if TP is sufficiently

small. Here, the Cauchy–Schwarz screening demonstrates the important properties that we require

of any (approximate) screening technique.
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• Separability. All screening quantities must belong to either shell-pair P or Q, allowing us

to screen shell-pairs independently of one another.

• Boundedness. All screening quantities must be bounded to prevent integral estimates from

diverging. Thereby introducing tight bounds is especially crucial for maintaining screening

efficiency.

Both criteria are fulfilled by eq. (6) and (7), respectively.

2.2 Overlap Screening

In order to further reduce the computational effort of quantum chemical calculations, approximate

screening techniques can be applied in addition, particularly for highly contracted basis sets. There,

Cauchy–Schwarz often does not screen an entire batch of (contracted) integrals, in which only a

few of the primitive basis functions provide meaningful contributions.

Explicit dependence on magnetic field

Not all quantities are strictly bounded

Overlap Screening

<latexit sha1_base64="QVkXh6Fn3RA9pojWQJB6Cl08sQQ="></latexit>

|ŨP|  ⌧

Figure 1: Overview over the approximate Overlap Screening variant.

The most commonly used types of approximate integral screening for four-center two-electron

integrals rely on an evaluation of the two-center overlap integrals over s-type functions.45–48 The

idea behind such an approach is fairly simple. A two-electron integral is used to describe the

interaction between the two shell-pairs P and Q. If the overlap of shell-pair P is sufficiently small,

then there can be no relevant interaction between the charge density distributions of P and Q.

Hence, the corresponding integral can be screened. For LAOs, the overlap between two primitive
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s-type functions is defined as37,43

ŨP =UPKP = ⟨0|0⟩ , (8)

where UP is the overlap of two real-valued GTOs and KP corresponds to a field-dependent part:

UP = NµNνe−ηP(Rν−Rµ )2
(

π

ζP

)3/2

; (9)

KP = e−ζP(χ
2
P+2iP·χP) . (10)

For this definition, a variety of primitive shell-pair quantities has been introduced,37,43

ζP = αµ +αν , (11)

ηP = ζ
−1
P αµαν , (12)

P = ζ
−1
P (αµRµ +ανRν) , (13)

χP = (4ζP)
−1B× (Rν −Rµ) , (14)

where we have omitted the contraction index j for the sake of brevity. Similar definitions to those

in eqs. (11) – (14) can be derived for shell-pair Q. A four-center integral is proportional to the

product of (complex) overlaps between two s-type functions,40,41,43

(µν |κλ ) ∝ ŨPŨQ , (15)

which suggests that these can be used for an approximate integral screening. This idea was re-

cently introduced in Refs. 37 and 43. In the context of this work, we refer to it as Overlap

Screening (Fig. 1). If the absolute value of either of the s-type overlaps is below a certain thresh-

old,
∣∣ŨP
∣∣,
∣∣ŨQ
∣∣≤ τ , the integral is neglected.

There are several advantages connected to such an approach. For contracted basis sets in particular,

individual pairs of primitive functions may be screened within a contracted shell. Furthermore, an
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explicit dependence on the external magnetic field is introduced through the dependence on KP and

KQ, see also eq. (10). With an increasing magnetic field strength, more integrals are screened. This

corresponds to the well-known pressure-like effects of strong external magnetic fields induced by

the confining potential in the diamagnetic term of the Hamiltonian.1,10,11

However, a close examination of this approach reveals that it can lead to significant errors. In prac-

tice, we have observed problems for systems where either very strong magnetic fields were applied

or which had extended molecular geometries or basis sets with diffuse functions. In order to illus-

trate these effects, we have constructed a model system consisting of a linear chain of six equidis-

tant helium atoms. Due to their astrophysical relevance, helium clusters are of particular interest

in the context of quantum chemical investigations in the strong magnetic field regime.1,26,38,42 For

our model system, a finite magnetic field is applied in perpendicular direction to the chain. An

uncontracted augmented Dunning basis set, here denoted as unc-aug-cc-pVTZ,55,56 was used for

each helium atom. In addition, a primitive s-type basis function with a variable exponent αµ is

added for each atom. The model system is illustrated in fig. 2.

B

d

αμ

He

Figure 2: Model system consisting of six equidistant helium atoms in an external magnetic field
B (red). The distance between two neighboring atoms is denoted as d (green). An additional
primitive s-type function with exponent αµ is added for each atom.

As starting conditions, we choose a magnetic field strength of |B|= 0.3B0, a distance of d = 3a0

between neighboring atoms and an exponent of αµ = 0 for the additional function. Then, we vary

these three parameters individually while keeping the other two parameters fixed. The maximum

error introduced for four-center integrals as well as the amount of screened integrals is depicted in

fig. 3 (red curve). Please note that the other curves (blue and green) represent other approximate

screening techniques introduced at a later point in this work. As a reference, the results from using
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Cauchy-Schwarz screening (orange curve) are also depicted.

As expected, the Overlap Screening introduces significant errors which become apparent with in-

creasing magnetic field strength, bond distance and a more diffuse nature of the basis set. The

error of the integral can be quite large without affecting the Hartree-Fock energy significantly. For

the He6 model system, we observe errors in the order of up to 1µEh. Since most of the falsely

screened integrals are associated with longer interatomic distances, the corresponding density ma-

trix elements will have a small contribution, which attenuate the error in the energy. The impact on

properties however is far more significant. If we assume that the property is evaluated by numeric

differentiation via finite differences with a step size of 10−3, then for a first-order property the error

of one µEh in the energy corresponds to an error in the third significant decimal. For a second-order

property this results in an intolerable error, reinforcing the necessity of a stable screening approach.

In the following we examine the reasons for this behaviour and introduce approximate screening

techniques that are not plagued by these problems.

2.3 Harmonic Screening

For the Overlap Screening, it was exploited that four-center integrals are proportional to the s-

type overlaps. They can be constructed as linear combinations of auxiliary integrals over s-type

functions using these overlaps,41

(00|00)(m) = 2ŨPŨQ

√
ϑ

π
Fm(z) . (16)

Here, Fm(z) is the m-th order molecular Boys function.57 We shall return to its proper definitions,

as well as the definition of its argument z momentarily. First, we examine the reduced exponent of

the shell-quartet

ϑ =
ζPζQ

ζP +ζQ
. (17)
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Figure 3: Maximum error of the screened integrals and percentage of screened integrals of an
equidistant He6 linear chain in a perpendicular magnetic field. Therein, the magnetic field strength
B= |B|, the distance between helium atoms d and the exponent αµ of an additional s-function were
individually varied. (A) He6 at R = 3a0 and a varying magnetic field B using the unc-aug-cc-pVTZ
basis set. (B) He6 at B = 0.3B0 and a varying magnetic field B using the unc-aug-cc-pVTZ basis
set. (C) He6 at R = 3a0 and B = 0.3B0 and a varying exponent α of an addition s-function added
to the unc-aug-cc-pVTZ basis set. The screening threshold was set to τ = 10−12.
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Harmonic Screening

All quantities are strictly bounded

No dependence on magnetic field

<latexit sha1_base64="xH7YAxzYCcdVYCxdcdBR7Gm5FsM="></latexit>

UP
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2⇣P
⇡

◆1/4

 ⌧

Figure 4: Overview over the approximate Harmonic Screening variant.

We immediately notice that due to its presence, the expression in eq. (16) is generally not sep-

arable. This problem was pointed out by Häser and Ahlrichs in Ref. 45 where they present an

approximate screening technique based on the harmonic mean, which is always greater or equal

than the geometric mean contained in ϑ :45,46

2

√
ϑ

π
≤
(

2ζP

π

)1/4(2ζQ

π

)1/4

. (18)

Häser and Ahlrichs used this relation to argue that the auxiliary integrals can be screened according

to this relation since the molecular Boys function,

Fm(z) =
∫ 1

0
t2me−zt2

dt ,

z = ϑ(P̃− Q̃)2 ,

P̃ = P− iχP ,

(19)

is bounded for real-valued positive arguments, i.e., |Fm(z)| ≤ 1 ∀z ∈ R+. Evidently, this is always

the case for real-valued GTOs. For complex-valued LAOs, however, this is no longer the case.57

Here, the complex argument of the Boys function has a real part of

Re(z) = ϑ

(
(P −Q)2 − (χP −χQ)

2
)
, (20)
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Figure 5: Boys function Fm(z) and auxiliary boys function Gm(z) for real arguments z.

which can become negative if (P −Q)2 < (χP −χQ)
2. This is the case for systems with

• strong magnetic fields B;

• extended molecules where the distance between two atoms (Rν −Rµ) becomes large;

• basis sets that contain diffuse functions, αµ ≪ 1.

Under these conditions, the Boys function is no longer bounded and is diverging with an increas-

ingly negative real part of z. It should be stressed that this is the reason for the problems associated

with the Overlap Screening.

In order to ensure numerical stability, Ishida58 has argued that in these cases, the auxiliary Boys

function

Gm(z) =
∫ 1

0
t2me−z(1−t2)dt (21)

should be used in combination with the following definition of the auxiliary integral:

(00|00)(m) = ŨPŨQ

√
ϑ

π
e−zGm(−z) . (22)

As depicted in fig. 5, the Boys function Fm(z) is strictly bounded for Re(z) ≥ 0 and the auxiliary

Boys Gm(z) function is strictly bounded for Re(z)< 0.
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An approximate integral screening in the spirit of Refs. 45 and 48 can therefore be introduced for

complex-valued LAOs:

(00|00)(m) ≤UPKP

(
2ζP

π

)1/4

UQKQ

(
2ζQ

π

)1/4

, Re(z)≥ 0 , (23)

(00|00)(m) ≤UPKP

(
2ζP

π

)1/4

UQKQ

(
2ζQ

π

)1/4

e−z , Re(z)< 0 . (24)

However, while eq. (23) is separable, eq. (24) is not. Separability can be restored by realizing that

∣∣KPKQe−z∣∣≤ 1 , (25)

which enables us to combine eqs. 23 and 24 into the following inequality:

(00|00)(m) ≤UP

(
2ζP

π

)1/4

UQ

(
2ζQ

π

)1/4

. (26)

It should be noted that this condition is not dependent on the external magnetic field in any capac-

ity. In fact, it is equivalent to the field-free approaches that have been established for decades.45,48

We refer to this type of screening as harmonic screening (fig. 4) due to the use of the harmonic

mean for the separability criterion.

The results of this type of approximate screening on our model system are depicted in fig. 3 (blue

curve). Overall, the quality of this approach is very consistent. The error is approximately one or-

der of magnitude larger than the threshold but overall stable with respect to the varied parameters.

Due to its field-independent nature, the same amount of integrals is screened regardless of the field

strength (A.2). The decrease in the maximum error of an integral visible in (A.1) can be attributed

to the aforementioned pressure-like effects of strong magnetic fields that are not taken into account

here. It should thus be interpreted not as an increase in quality, but rather as a missed potential to

screen integrals that have also become negligible due to the presence of the magnetic field.
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2.4 Enhanced Screening

While the Harmonic Screening is an overall improvement upon the Overlap Screening due to

its bounded nature, it lacks the magnetic field dependency which incorporates the field-induced

pressure-like effects into the screening technique. We therefore propose a new approximate screen-

ing technique that is both bounded in all quantities as well as field-dependent. This Enhanced

Screening (fig. 6) is a straightforward extension of an idea originally proposed by Cremer and

Gauss in Ref. 47, which is functionally equivalent to the approach of Häser and Ahlrichs for real-

valued GTOs.45,46 They recognized that the auxiliary integral over s-type functions 22 can be

readily approximated using a Cauchy-Schwarz estimate. This bound is rigorous only for integrals

over s-type functions and becomes a good approximation when considering integrals over func-

tions of higher angular momentum.

Enhanced Screening

Explicit dependence on magnetic field

All quantities are strictly bounded

<latexit sha1_base64="OpnVqDLrd7tnpZPs/cetYaFMcKM="></latexit>
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Figure 6: Overview over the approximate Enhanced Screening variant.

For integrals over LAOs the diagonal elements of the auxiliary integrals can be approximated via

diag((00|00)(m))≤ diag((00|00)(0)) =

(
UP

(
2ζP

π

)1/4
)2

G0(2ζPχ
2
P) . (27)

Here, one has P = Q and χP = −χQ. As such, the argument of the Boys function becomes z =

−2ζPχ2
P , while the remaining product reduces to KPKQe−z = 1. Thus, a Cauchy-Schwarz-type
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approximate screening for s-functions can make use of this expression to yield the estimate

(00|00)(m) ≤
[

UP

(
2ζP

π

)1/4√
G0(2ζPχ2

P)

][
UQ

(
2ζQ

π

)1/4√
G0(2ζQχ2

Q)

]
, (28)

which includes the magnetic field dependence in the auxiliary Boys function and converges into

the Harmonic Screening in the limit of a vanishing field.

While this approach combines all of the aspects that we wanted to incorporate into an approximate

screening technique for integrals over LAOs, it may not be the most practical approach. The

evaluation of the auxiliary Boys function, even for real-valued arguments such as those in eq. (28) is

rather expensive, and we would thus like to replace it with a more cost-efficient alternative. A better

enhancement may be found by analyzing the asymptotic limit of the auxiliary Boys function:57,58

G0(z)≈
N

∑
k=0

(2k−1)!!
(2z)k+1 , z ∈ R+ . (29)

Upon closer examination of this series, we derive the following bound:

G0(z)≤
1
z
, (30)

which is rigorous for all z ∈ R+. However, this bound is divergent for z → 0, while the auxiliary

Boys function is bounded by 0 ≤ Gm(z)≤ 1. Estimating G0(z) through the bound in eq. (30) thus

only leads to an improvement for z ≥ 1. We may combine these findings in the following bound

√
G0(2ζPχ2

P)≤
(
2ζPχ

2
P
)−1/2

; 2ζPχ
2
P ≥ 1 (31)

to approximate the Boys function for larger arguments in order to enhance the screening.

This screening approach performs well on the He6-model system in fig. 3 (green curve). The En-

hanced Screening exhibits a stable error control, comparable to the Harmonic Screening, for the

varied parameters, i.e. magnetic field, distance and diffuse exponent. Note that the screening effi-
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ciency of all screening variants with respect to the interatomic distance and the exponent is quite

similar. This is the case as each variant considers the real-valued overlap UP, which decays ex-

ponentially with the distance of the nuclei. Furthermore, Cauchy-Schwarz screening is implicitly

dependent on the external magnetic field, while the Enhanced Screening considers the magnetic

field through the bound of the auxiliary boys function. Both approaches exhibit a visible increase

of screening efficiency with the magnetic field strength. As expected, while varying the distance

and the exponent the Enhanced and Harmonic screening show the same overall screening effi-

ciency as they converge in the zero field limit.

2.5 Efficiency evaluation for contracted basis sets

Now that we have established four different screening techniques for four-center integrals over

LAOs, we will discuss how well they perform on different systems depending on whether a con-

tracted or an uncontracted basis set was used. To ensure reliable results, the anisotropy induced

by the magnetic field has to be correctly covered by the basis set.26,59 As such, calculations in

strong magnetic fields predominantly employ uncontracted basis sets. In the context of this work,

however, we shall consider the implications of approximate integral screening technique on both

contracted and uncontracted basis sets, as future developments may introduce (anisotropic) basis

sets parameterized for strong magnetic fields.60–62

A basis set can be distinguished by two contraction schemes, i.e., the segmented contraction

scheme and the general contraction scheme.63 In the first scheme, each primitive contributes to

exactly one basis function, while the second scheme allows for a primitive to contribute to mul-

tiple basis functions of the same angular momentum. While most quantum chemical program

packages can handle both variants, the underlying integral algorithms are mainly tailored to a spe-

cific contraction scheme, which in turn is reflected in their efficiency in handling the respective

basis sets. In our case the integral algorithm of TURBOMOLE is based on the segmented contrac-

tion scheme, while CFOUR is based on the general contraction scheme. For the latter, one wants to
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treat all basis functions of same angular momentum in one shell to maximize the efficiency of the

underlying integral algorithm, even if an uncontracted basis set is used. In this case, all arguments

for contracted basis functions also hold for the grouped uncontracted basis set. To emphasize, the

efficiency gain by grouping an uncontracted basis set can be seen on the model He6 system. Here

we perform a calculation using an uncontracted aug-cc-pVTZ basis with either one basis function

per shell compared to a calculation where all basis functions of the same angular momentum are

grouped into one shell each. The aug-cc-pVTZ (7s3p2d) basis consists of 12 primitives with func-

tions of three different angular momenta. Thus, in the first case we have for our six atom model a

total of 72 shells, while in the second case we have a total of 18 shells. With no screening at all,

the grouped approach takes 58s, while the approach with one basis function per shell takes 178s;

calculated using CFOUR on a Intel® Xeon® Broadwell E5-2643 v4, 3.40 GHz. This underlines

the need for efficient screening variants not only for contracted basis sets but also for integral al-

gorithms employing the general contraction scheme even when uncontracted basis sets are used.

Within the model system we have previously discussed (see figs. 2 and 3), Cauchy–Schwarz

screening outperformed all approximate screening techniques with respect to both error control

and screening efficiency. However, this is not generally the case for contracted basis sets. Cauchy-

Schwarz screening takes into account entire shell batches of integrals, while the approximate

screening techniques presented in this work are generally applied for individual contributions of

primitive functions.

Let us consider an integral over four contracted LAOs, each consisting of ten primitive s-type func-

tions. If the entire integral batch has at least one contribution that is above the screening threshold

τ , it cannot be discarded. However, out of the 104 integrals over primitive LAOs, only a small

number has a significant contribution as functions with large exponents drop off sharply and have

a negligible overlap. As such, only a small fraction has to be computed.

In fig. 7, we have plotted the number of screened integrals for the He6-model system if the aug-cc-

pVTZ is used instead of its uncontracted counterpart. Due to the significant errors that potentially

accompany the Overlap Screening, we are discarding this method from the discussion. While the
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overall trends are similar to those presented in fig. 3, the Harmonic and Enhanced screenings per-

form significantly better than Cauchy–Schwarz screening if a contracted basis set is employed.
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Figure 7: Percentage of screened integrals of a He6 linear chain in a perpendicular magnetic field.
Here, the system of fig. 3 was studied using a contracted basis set.

Finally, we investigate some larger systems to see how well these screening techniques perform.

For this, we have performed benchmark calculations on the C6h-symmetric helium clusters He7,

He19, and He37. The molecular structures are depicted in fig. 8, with neighboring atoms having a

bond distance of 2 a0. As the symmetry suggests,64 we have applied the external field in a perpen-

dicular direction to the planar clusters.

In order to compare the efficiency of the screening techniques, we have measured the computation

time of one iteration of restricted Hartree-Fock (RHF) using the unc-ano-pVTZ65 basis set. Cal-

culations were performed on a single CPU of type Intel® Xeon® E5-2687W v4 @ 3.00GHz. Here,

we used an implementation in a developer’s version of TURBOMOLE based on version V7.7.1.51–53

We compare timings for the three clusters in an external magnetic field of B= 0.5B0 and B= 2.5B0

(table 1), respectively. We selected the latter field strength because the perpendicular paramagnetic

bonding mechanism was first described for helium in such conditions.1 As a reference, we have

performed calculations without any screening. The percentage given in parentheses is the fraction

of computation time needed in comparison to a calculation in which no screening was used.

As expected, all screening techniques perform progressively better if the system size is increased.
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He7

He19

He37

Figure 8: Depiction of the helium clusters He7, He19 and He37 studied in table 1 to 2.

Table 1: Wall clock timings of one restricted Hartree-Fock (RHF) iteration using an uncontracted
ano-pVTZ basis set on the planar helium clusters He7, He19 and He37 in a magnetic field of 0.5 B0
and 2.5 B0 for the introduced screening approaches. Timings relative to a calculation employing
no screening are given in parentheses.

Screening variant He7 He19 He37

B
=0

.5
B

0 No screening 24 s (100%) 1337 s (100%) 19955 s (100%)
Cauchy-Schwarz 16 s (66.7%) 543 s (40.6%) 4837 s (24.2%)
Harmonic Screening 20 s (83.3%) 816 s (61.0%) 8953 s (44.9%)
Enhanced Screening 20 s (83.3%) 818 s (61.2%) 8985 s (45.0%)

B
=2

.5
B

0 No screening 62 s (100%) 4032 s (100%) 62353 s (100%)
Cauchy-Schwarz 62 s (100%) 4026 s (99.9%) 62202 s (99.8%)
Harmonic Screening 32 s (51.6%) 1324 s (32.8%) 13419 s (21.5%)
Enhanced Screening 32 s (51.6%) 1324 s (32.8%) 13431 s (21.5%)

Cauchy-Schwarz screening in particular yields a significant improvement in all cases, leading to

a speed-up of more than 75% for He37. Overall, the approximate screening techniques perform

worse than Cauchy-Schwarz screening in accordance with the results from the He6 model sys-

tem. Here, the Harmonic and Enhanced Screenings take approximately the same time, with the

Enhanced Screening being slightly less efficient. This is reversed for a field strength of B = 2.5B0,

where the Enhanced Screening performs slightly better. In order to get further insight on how seg-

18

https://doi.org/10.26434/chemrxiv-2024-4zgnh ORCID: https://orcid.org/0000-0003-1895-2037 Content not peer-reviewed by ChemRxiv. License: CC BY-NC-ND 4.0

https://doi.org/10.26434/chemrxiv-2024-4zgnh
https://orcid.org/0000-0003-1895-2037
https://creativecommons.org/licenses/by-nc-nd/4.0/


mented contractions affect the screening, we perform benchmark calculations on the same systems,

using the highly contracted ano-pVTZ basis set. The timings are given in table 2 for B = 0.5B0 and

B = 2.5B0, respectively. Here, the approximate screening techniques outperform Cauchy-Schwarz

screening by a large margin. While Cauchy-Schwarz hardly improves upon the timings of a cal-

culation without any screening, both the Harmonic and Enhanced Screenings lead to significant

speedups. For He37, almost 80% of the computation time can be saved by employing either of

these approximate screening techniques.

Table 2: Wall clock timings of one restricted Hartree-Fock (RHF) iteration using a contracted
ano-pVTZ basis set on the planar helium clusters He7, He19 and He37 in a magnetic field of 0.5 B0
and 2.5 B0 for the introduced screening approaches. Timings relative to a calculation employing
no screening are given in parentheses.

Screening variant He7 He19 He37

B
=0

.5
B

0 No screening 62 s (100%) 4032 s (100%) 62353 s (100%)
Cauchy-Schwarz 62 s (100%) 4026 s (99.9%) 62202 s (99.8%)
Harmonic Screening 32 s (51.6%) 1324 s (32.8%) 13419 s (21.5%)
Enhanced Screening 32 s (51.6%) 1324 s (32.8%) 13431 s (21.5%)

B
=2

.5
B

0 No screening 62 s (100%) 4032 s (100%) 62353 s (100%)
Cauchy-Schwarz 62 s (100%) 4026 s (99.9%) 62202 s (99.8%)
Harmonic Screening 32 s (51.6%) 1353 s (33.3%) 13712 s (21.8%)
Enhanced Screening 32 s (51.6%) 1351 s (33.2%) 13564 s (21.6%)

Similar to the calculations performed with the uncontracted basis sets, the Enhanced Screening

only really improves upon the Harmonic Screening in a very strong magnetic field. Even then,

the speedup is only about 0.2%. These findings demonstrate very clearly that for an efficient

implementation of four-center integrals over LAOs, both Cauchy-Schwarz screening as well as an

approximate screening technique should be used. While the former is a rigorous bound that outper-

forms any approximate screening technique for uncontracted basis sets (see also the discussion in

Ref. 45), approximate screening techniques can lead to a significant efficiency increase for highly

contracted basis sets such as the ano-pVTZ basis set used for this investigation. Combining both

approaches is therefore recommended.
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3 Conclusion

Recent years have seen an ever-increasing amount of quantum chemical investigations on extended

molecular structures in strong magnetic fields. For field-free calculations, efficient integral screen-

ing techniques have been used for decades in order to drastically decrease the cost associated with

quantum chemical computations. In this work, we critically assessed how to adapt well-established

approximate screening techniques to calculations in the strong magnetic field regime.

First, we examined the two criteria any suitable (approximate) screening technique should meet:

separability and boundedness. Then, we investigated how well four different types of integral

screening performed on a variety of model systems consisting of helium atoms. In addition to

Cauchy–Schwarz screening, we assessed the performance of three approximate screening tech-

niques, introduced as Overlap, Harmonic, and Enhanced screening in the context of this work.

While the Overlap screening led to significant errors, especially for the determination of prop-

erties, both the Harmonic and Enhanced screenings performed well for all investigated systems.

Particularly in combination with Cauchy–Schwarz screening, significant reductions in the com-

putation time could be measured for a variety of helium clusters. For contracted basis sets or

for uncontracted basis sets treated in shells within a general contraction scheme, the use of either

the Harmonic or Enhanced screening are thus strongly recommended, as they combine a well-

controlled error with a drastic increase in computational efficiency.
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Krstić, M.; Mack, F.; Majumdar, S.; Nguyen, B. D.; Parker, S. M.; Pauly, F.; Pausch, A.;

Perlt, E.; Phun, G. S.; Rajabi, A.; Rappoport, D.; Samal, B.; Schrader, T.; Sharma, M.;

Tapavicza, E.; Treß, R. S.; Voora, V.; Wodyński, A.; Yu, J. M.; Zerulla, B.; Furche, F.;
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