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Abstract

Precise thermodynamic calculations are essential for understanding the dynamics of

cluster systems and new particle formation. However, the widely employed harmonic

statistical mechanical approach often falls short in terms of accuracy. In this study, we

present an improved statistical model that incorporates vibrational anharmonicity via a

novel partition function that requires only one additional system-specific input param-

eter. In addition to considering vibrational aspects, we also account for anharmonicity

related to the configurational space. The role of anharmonicities is thoroughly exam-

ined in the case of general clusters, where the complete sets of conformers, mechanically

stable spatial arrangements, are known up to clusters composed of 14 monomers. By

performing consistent Monte Carlo simulations on these systems, we benchmark the

statistical model’s efficacy in reproducing key thermodynamic properties (formation

free energy and potential energy) in the classical limit. The model exhibits exceptional

alignment with simulations, accurately reproducing free energies within a precision of
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2kBT and reliably capturing cluster melting temperatures. Furthermore, we demon-

strate the significance and applicability of the model by reproducing thermodynamic

barriers in homogeneous gas-phase nucleation of larger clusters. The transferability of

our developed approach extends to more complex molecular systems and bears rele-

vance for atmospheric multicomponent clusters, in particular.

1 Introduction

Undoubtedly, the key quantity in thermodynamic calculations is the partition function, serv-

ing as the foundational basis for deriving virtually every thermodynamic function. When

computing a system’s thermochemistry through ab initio molecular methods, accurate direct

approaches for obtaining partition functions are lacking. Consequently, resorting to approx-

imations based on basic statistical mechanical principles becomes necessary.1,2 In essence,

this statistical approach assumes the uncoupling of translational, rotational, vibrational mo-

tions, and electronic excitation, facilitating the separability of the partition function into

distinct factors. Importantly, the use of this approach extends beyond quantum chemistry

and single molecule computations, finding application in diverse domains such as studies

involving atomic and molecular clusters,3–5 colloidal microcrystals,6,7 biomolecules,3,8 and

supercooled liquids.9

The possible shortcomings of the statistical approach can be addressed through com-

puter simulations, including methods like Monte Carlo or molecular dynamics, providing a

convenient and accurate means to obtain thermodynamic properties. Nevertheless, these

methods come with their own set of limitations. Firstly, even with the computation of inter-

atomic forces through electronic structure calculations, the system’s dynamics are treated

classically.10 As a consequence, the simulated vibrational properties do not precisely reflect

those of a system in the quantum regime. Secondly, although simulations provide valuable

quantitative data, they offer limited physicochemical insight into thermodynamic properties

and dynamic processes.9,11 This underscores the continued relevance of the statistical model
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for both quantum and classical systems, thereby warranting further development.

For calculations using this model, the initial step involves characterizing the multidimen-

sional energy landscape, which represents the energetic dependencies of the system based

on the positions of the considered atoms. While creating an accurate map of the entire

topography of this landscape, complete with mountain ranges, valleys, and passes, is often

challenging for chemically complex species, available techniques allow for the identification of

the most crucial areas. This mapping primarily focuses on local minima and their adjacent

saddle points, which serve as the main sources of structural and thermodynamic information.

Each minimum, usually referred to as a conformer or an “inherent structure”,9 resides in a

basin of attraction, confining the system’s thermally agitated vibrational motion within this

specific region. Assumed under the ergodicity principle, each basin must be connected to

at least one other basin via a finite-height saddle point. Leveraging information about the

landscape, the statistical model evaluates the partition function for the system by summing

up contributions from microstates related to individual minima and the basins surrounding

them.

For large systems, numerous conformers with distinct structures and energies exist, typi-

cally representing various states and forms of matter (e.g., crystal, liquid, amorphous glass).

Despite the multitude of conformers, it is sometimes assumed that the global minimum

energy conformer sufficiently represents all inherent structures. This assumption becomes

problematic at elevated temperatures, where close-packed crystal-like structures become en-

tropically unfavorable. Another frequently employed approximation involves treating intra-

basin vibrational motion as harmonic oscillation. However, as temperature rises, vibrational

excursions away from the minimum intensify, leading to increasingly anharmonic motion.

Together, these two assumptions constitute the harmonic approximation.

Following the terminology from gas-phase cluster chemistry,12–14 the limitations of the

harmonic approximation can be mitigated by incorporating global and local anharmonic

corrections. The former involves properly accounting for the presence of different conform-
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ers,13,15–18 while the latter entails adjusting the conformer’s vibrational frequencies14,19–21 or

the applied partition function.11,22–25

In this study, our objective is to shed light on the anharmonic behavior within cluster

systems. To achieve this, we first develop a vibrational partition function using minimal

amount of information, namely, the interconformer transition state energies in addition to

vibrational frequencies. In the realm of local anharmonicity, our model represents a gener-

alization, employing Morse potentials as approximations for vibrational motion. However,

it is important to recognize that anharmonic effects extend beyond these approximations,

requiring detailed modeling for comprehensive understanding.11,12,21,26 Within cluster ther-

modynamics, the substitution of harmonic oscillators with Morse oscillators already yields

significant implications. In this study, we focus on simple clusters composed of point-like

particles due to their relatively weak intermolecular interactions and a high number of known

conformers. For instance, considering a cluster of 14 sticky-hard spheres (SHS), there are

895,478 unique arrangements,27 implicating substantial global anharmonicity at elevated

temperatures within this size range of clusters. By confining our analysis to chemically

coarse-grained systems in the classical limit, we are able to rigorously validate and bench-

mark the developed anharmonic statistical model against Monte Carlo simulations.

Our arguments are related to nucleation phenomena and cluster free energies in partic-

ular, reminiscent of early elementary cluster studies,4,15–18 while also remaining relevant to

present-day theoretical investigations into atmospheric new particle formation.5,13,20

2 Statistical Cluster Thermodynamics

The standard statistical approach centers around individual cluster configurations which

correspond to mechanical equilibria on the potential energy landscape. These conformers

are indexed by k = 0, 1, 2, . . ., with k = 0 representing the conformer with the lowest known

binding energy. In this study, we only consider clusters comprising N identical monomers
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and their respective conformers, and thus, the relevant partition function is written as zN,k.

In the following, we introduce classical statistical models tailored for harmonic, globally

anharmonic, and locally anharmonic cluster formation free energies. It is worth noting that

the presented models do not account for certain potential factors, such as intramolecular

anharmonicities, vibration-rotation coupling and cluster-cluster interactions. However, ex-

isting evidence suggests that their impact is likely minor15 or can be mitigated through

careful analysis.28–30

2.1 Harmonic Formation Free Energy of a Conformer

Pioneering work by McGinty established a comprehensive expression for the formation free

energy related to the kth conformer of an N -cluster, WN,k, considering an ideal gas environ-

ment with a specific monomer density, N1. The formulation is given by

WN,k

kBT
= N ln z1 − ln zN,k − (N − 1) lnN1, (1)

where T is temperature and kB the Boltzmann constant. While this expression can be

extended to multicomponent systems,31 our focus here remains on one-component systems.

For point-like monomers, such as atoms, exhibiting only translational motion, the par-

tition function z1 = ztr1 . And consequently, the formation free energy of a single monomer,

W1, is inherently zero. The total partition function of a cluster, N ≥ 2, involves contri-

butions from different modes of motion and the binding energy, Eb,k, of the equilibrium

configuration:

zN,k = exp

(
−Eb,k

kBT

)
ztrNz

rot
N,k

Ndof∏
i

zvibN,k,i, (2)

where the product is over all vibrational degrees of freedom (for linear and nonlinear systems

Ndof = 3N − 5 and 3N − 6, respectively).

Motion within a vibrational degree of freedom, denoted by index i, is characterized by its

normal-mode frequency ωi. This frequency is linked to a positive eigenvalue λi derived from
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the diagonalization of the Hessian matrix: ωi =
√
λi/µ, where µ is the monomer mass. Since

our analysis focuses solely on systems exhibiting classical behavior, the system’s thermal

energy significantly surpasses the energy associated with a single phonon, i.e., kBT ≫ ℏωi

(ℏ being the Planck constant). The classical partition function for a harmonically oscillating

mode is

zvibk,i = zhrmk,i =
kBT

ℏωk,i

. (3)

Utilizing also standard partition functions for translational and rotational motion,1,32 the

formation free energy of a non-linear one-component conformer k within the harmonic model

can be conveniently expressed as:

W hrm
N,k

kBT
=

Eb,k

kBT
−(N−1) lnN1−

3

2
lnN+

1

2

Ndof∑
i=1

ln

(
λk,i

2πkBT

)
−ln

(
8π2

sk

√
Ixx,kIyy,kIzz,k

µ3

)
. (4)

Notably, the Planck constant’s contribution cancels out in this formulation. Here Ixx, Iyy

and Izz represent the three principal moments of inertia, and sk is the symmetry number of

the conformer. For a linear dimer (N = 2, s = 2), the final term in eq 4 is − ln(πr2e), where

re signifies the equilibrium distance between the two monomers. The parameters involved in

eq 4 are routinely obtainable from optimization calculations.

It is essential to highlight that eq 4 is formulated for clusters in an ideal gas, thus

disregarding potential interactions with surrounding monomers or other clusters that could

influence WN . In high-density systems, however, the work imposed upon the cluster by

neighboring particles can have an impact.29,30,33

In the context of this study, the specific term harmonic cluster formation free energy,

denoted as W hrm
N , is attributed to the free energy of the global minimum energy conformer,

k = 0, i.e., W hrm
N = W hrm

N,k=0. Consequently, when exploring conformers k > 0, we delve into

the realm of global anharmonicity.
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2.2 Global Anharmonicity

Global anharmonicity stems from the comprehensive consideration of all conformers within

a system. According to the principles of statistical mechanics, the partition function of an

N -cluster system, covering various distinct regions of the energy landscape represented by

different conformers, is zN =
∑

k zN,k.
3,11,13,34

The collective influence of different conformers of the same cluster size manifests in

an additive manner when determining free energies. Despite their relatively low stability

at T = 0 K, higher energy conformers can contribute significantly to the overall entropy

production of the system. And, the free energy consistently decreases with the inclusion of

more conformers. The globally anharmonic cluster formation free energy is expressed as

WGahrm
N

kBT
= − ln

[∑
k

exp

(
−WN,k

kBT

)]
. (5)

Importantly, this expression holds true irrespective of the barrier heights separating the

conformers on the energy landscape.13

Given its theoretical unambiguousness, the recognition of the significance of eq 5 dates

back to the early stages of computational cluster studies.18,34,35 However, as pointed out by

Partanen et al., a notable number of more recent studies have overlooked proper considera-

tions for global anharmonicity.

2.3 Local Anharmonicity in Classical Systems

Incorporating global anharmonicity into systems with multiple conformers is a straightfor-

ward task. However, due to the nontrivial landscape features associated with vibrational

degrees of freedom, estimating the true impact of local anharmonicity is a more challenging

endeavor. Particularly significant is the possible undercounting of the vibrational density

of states in the harmonic approximation, where the assumption that all energy levels are

equally spaced leads to insufficient entropy production. This becomes a concern for clus-
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ters at relatively high temperatures, posing a substantial issue in accurately capturing their

thermodynamic behavior.

In a straightforward statistical-mechanics model, incorporating an accurate local an-

harmonic correction for vibrational motion is challenging due to the inherent difficulty in

precisely mapping out the basin surrounding a local minimum using only basic knowledge

about the sampled stationary points (minima and saddle points). In practice, such mapping

is achievable for the simplest classical systems through direct phase-space sampling, provided

the computational cost is reasonable, and sufficient ergodicity is attained.

Thus a convenient and more realistic analytical alternative to the harmonic approxima-

tion is to model the potential wells as the Morse oscillators (MOs).11,23–25 In principle, while

MOs often fall short of being optimal, they still offer a much more accurate representation

of the flat, high-energy regions of the energy landscape compared to harmonic oscillators.

The energy of MO’s jth energy level is given by

εi = ℏωi

(
j +

1

2

)[
1−

(
j +

1

2

)
ℏωi

4∆k

]
, (6)

where ∆k is the oscillator’s characteristic dissociation energy. For small clusters, it is reason-

able to assume that ∆k remains equal across all vibrational modes of a given k-conformer.

However, it is worth noting that localized mode-specific dissociation energies can also be

applied (see Section 3.2). By taking the Laplace transform of the classical level density,

ρ(ε) = dj/dε, the anharmonic correction on the vibrational partition function can be ex-

pressed as

zMO
k

zhrmk

=

∫ ∆k

0
dεi ρ(εi) exp

(
− εi

kBT

)
kBT/ℏωi

= 2

√
∆k

kBT
D

(√
∆k

kBT

)
, (7)

with D(x) representing the Dawson integral.36 Notably, contrary to the general convention,32

the integration in eq 7 spans only up to ∆k rather than infinity to confine the energy levels

within the well. The locally anharmonic formation free energy of a conformer is thus given
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Figure 1: Anharmonic correction on vibrational partition function, as described by eq 7,
as a function of dissociation energy ∆k (black solid line). The dashed black line represents
the high-barrier estimate from prior studies.11,37 The red dash-dotted line illustrates the
predicted ratio between anharmonic and harmonic thermal energy, derived from eqs 11 and
10, respectively. Dotted vertical lines mark the positions of maximum corrections within
the anharmonic model. The effective corrections, as determined by the maximum entropy
scheme, eq 9, are visually emphasized through thick blue and red lines.

by
W Lahrm

N,k

kBT
=

W hrm
N,k

kBT
−Ndof ln

zMO
k

zhrmk

. (8)

As demonstrated in Figure 1, the adjustment provided by eq 7 peaks at approximately 1.28

for ∆peak ≈ 2.26kBT . This translates into a maximum additional entropy of about kB/4 per

vibrational degree of freedom.

In a prior study, Doye and Wales (and subsequently Ball and Berry) employed a similar

approach to analyze the thermodynamics of various atomic and molecular clusters. They

replaced harmonic oscillators with MOs in their framework, focusing specifically on deriving

the anharmonic partition function for cases where ∆k ≫ kBT . Similarily, D(x) can be

approximated as D(x) ≈ x−1/2 + x−3/4 in this high-barrier limit, and the introduced eq 7

simplifies to zMO
k /zhrmk = 1 + kBT/2∆k used in refs. 11 and 37. As illustrated in Figure 1,

the high-barrier approximation exhibits a monotonic decrease with ∆k, emphasizing the

necessity for ∆k to be several times higher than kBT to achieve satisfactory agreement with

the exact expression provided by eq 7.

The crucial question then arises: what should be considered as the value for ∆k? Funda-
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mentally, ∆k signifies a point situated on the surfaces that separates a basin from its adjacent

basins. The lower bound of ∆k is determined by the smallest transition state barrier separat-

ing conformer k from its nearby conformers {l}: ∆k ≥ ∆E‡min
k = min(E‡

k,{l} − Eb,k). Given

the assumed ergodicity of the system, nonstationary states above this minimum saddle point

are equally accessible and able to carry statistical weight. Consequently, while the minimum

energy path follows through the saddle point, the entropy-favored trajectory might intersect

the dividing surface elsewhere.

We conjecture that, among all accessible states, the considered dissociation state maxi-

mizes vibrational entropy designated by eq 7. Thus, the chosen ∆k in our model is determined

as follows:

∆k = max
(
∆peak,∆E‡min

k

)
. (9)

Effectively, this rule prevents zMO
k from being smaller than zhrmk . Conceptually, adopting

the maximum entropy scheme results in eq 3 when applied to harmonic potential. If the

harmonic partition function is derived with an energy-level limitation, the obtained function,

integrated from 0 to ∆k, monotonically approaches kBT/ℏω from below, leading to ∆k = ∞.

Beyond free energies, the vibrational thermal energy can be directly derived from the

partition function, and in a relaxed system this energy is evenly divided to potential and

kinetic energy. The thermal energy of a harmonically oscillating mode of motion is given by

Ehrm
th,k = kBT

2

(
∂ ln zhrmk

∂T

)
= kBT. (10)

Similarly, for the energy related to MOs given by eq 7, it is expressed as

EMO
th,k = kBT

(
1

2
+

∆k

kBT
−

√
∆k/kBT

2D(
√

∆k/kBT )

)
. (11)

The maximum value of EMO
th,k is about 1.18kBT at ∆k ≈ 4.39kBT , and beyond this point,

EMO
th,k correctly converges to Ehrm

th,k as ∆k increases. Additionally, at the limiting value of ∆peak,
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EMO
th,k = kBT . The ratio between anharmonic and harmonic energy is further illustrated in

Figure 1. Thus, within the proposed scheme for local anharmonicity, the internal thermal

energy is also consistently determined.

3 Test Systems and Computational Methods

3.1 Mie Fluids

To examine the distinct and combined influences of global and local anharmonicities on clus-

ter thermodynamics, our focus is directed towards the investigation of complexes featuring

diverse ranges of intermolecular interactions. Given their minimal impact on cluster thermo-

dynamics, intramolecular dynamics can be disregarded, reducing the involved monomers to

non-associative single-site species. The pairwise forces are characterized by the Mie potential,

a generalized form of the Lennard-Jones potential:

U(r) = Cϵ
[(σ

r

)n
−
(σ
r

)m]
, (12)

where r is the intermonomer distance. The prefactor, determined by

C =
n

n−m

( n

m

) m
n−m

, (13)

ensures that the pairwise minimum energy is −ϵ. For these potentials, the equilibrium

distance, denoted as the location of the minimum, is given by re/σ = (n/m)1/(n−m). The

parameters m and n (> m > 3) correspond to the attractive and repulsive ranges of the

potential, respectively. The condition m > 3 is set to prevent nonextensive energies near the

continuum limit.9 In this study, only potentials corresponding to systems with n = 2m are

considered, specifically for n = 8, 12, and 24. For such systems, the constants are C = 4

and re = 22/n. The respective shapes of the analyzed potentials are illustrated in Figure 2a.

As we exclusively consider classical systems where the Planck constant is inconsequential,
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Figure 2: (a) Mie potentials depicted for various systems under consideration (colored lines).
The black line corresponds to the sticky hard-sphere (SHS) system. (b) Number of distinct
local minima, M, determined through geometry optimization. The black bars signify the
results for the SHS clusters.27,38

Table 1: Characteristics of studied Mie systems (n = 2m) including critical temperature
(Tc), equilibrium pairwise distance (re), square-well equivalent range of attraction (L), and
enumeration constants (α and β). All values are presented in standard dimensionless units.

n m Tc re L α β
8 4 3.461a 1.189 2.178 0.49 1.33
12 6 1.316b 1.122 1.479 1.07 6.61
24 12 0.560b 1.059 1.150 1.66 12.05

a From ref. 40.; b From ref. 41.;

we adopt standard dimensionless units for Mie system parameters: ϵ = σ = µ = kB = 1.

Despite the uniformity in length and energy scales across various potentials, the thermo-

dynamic properties are not directly comparable. However, following the principle of cor-

responding states,39 the relationships between different thermodynamic properties remain

consistent among systems with apparent differences when normalized against their critical

points. Therefore, for a more robust physicochemical comparison, it is sometimes more

preferable to examine different Mie systems in terms of the temperature scale T/Tc, where

Tc is the critical temperature (provided in Table 1). In general, Tc exhibits a significant

decrease with an increase in n.

As depicted in Figure 2a, the width of the potential narrows with n. This range of

attraction, L, is a convenient parameter to generalize the phase behavior of simple fluids.39

It has been established39 that the width of the potential can be quantified by determining
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the square-well (SW) equivalent L (at Tc) for a Mie system using the second virial coefficients

BSW
2 and BMie

2 :

BMie
2 (Tc) ≡ BSW

2 (Tc) =
2π

3

[
exp

(
1

Tc

)
− L3

(
exp

(
1

Tc

)
− 1

)]
. (14)

While BMie
2 (Tc) ≈ −3.3 (in reduced units) remains consistent irrespective of the interac-

tion parameters,41 we precisely compute it using a closed-form expression.42 The examined

systems, along with their respective Tc, re, and L, are detailed in Table 1.

The Mie model offers a computational advantage due to its efficiency and capacity to

simplify and generalize realistic molecular systems.40,43 Particularly relevant to this study,

it allows for the optimization of the complete set of close-packed local minimum energy

structures and facilitates thorough phase-space sampling for clusters comprising more than a

mere handful of monomers, tasks often deemed too demanding for models of higher chemical

specificity.

In theoretical chemical physics and physical chemistry, the Lennard-Jones (LJ) fluid with

n = 12 and m = 6 stands out as perhaps the most extensively studied model system. In

practical chemical modeling, eq 12 has demonstrated its prowess as a potent functional for

parameterizing intermolecular interactions in various polyatomic compounds, relying on the

tunable parameters n and m.43 While the range of obtained n values can be considerable,

m ≈ 6 generally aligns with the decay of the dispersion interaction in non-polar systems,

corresponding to a r−6 decay pattern. For more cohesive systems, lower m parameters are

involved (e.g., for dipole-dipole interaction m = 3), prompting interest in exploring systems

at the limit of m = 4.40 Furthermore, mesoscale particles with a notably short attractive

range, such as colloidal spheres, find representation through the Mie potential,6,44,45 albeit

with a large m.

For conciseness, here we denote specific n = 2m Mie-systems and clusters as (n = X)

and (n = X)N=Y , respectively. As an example, a cluster of 10 monomers with interaction
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parameters n = 12 and m = 6 is represented as (n = 12)N=10.

3.2 Local Minimum and Transition State Structures

In this study, the primary set of optimized structures for Mie clusters is sourced from a

recent study by Trombach et al. 46 They successfully enumerated nearly every minimum for

(12 ≤ n ≤ 96)8≤N≤14 systems by applying a basin-hopping global optimization algorithm.3,47

Comprehensively enumerating local minima becomes practically infeasible for N > 14

due to the staggering number of distinct conformers, M, a challenge amplified, especially in

the case of short-range potentials. Despite the availability of the extensive database com-

piled by Trombach et al., our calculations are constrained to systems with n ≤ 24 due to

the computational demands associated with transition state sampling and the subsequent

evaluation of ∆E‡min
k . This limitation arises from the observation that the number of dis-

tinct transition states is roughly proportional to NM.3,48 As an alternative, we conducted

complementary sampling, incorporating a long-range system with n = 8 and cluster sizes

ranging from N = 2 to 7 into the set of optimized structures.

In this study, sampling of minima and connecting transition states was carried out using

the Pele package.49 This software was also employed to generate conformer-specific values

for Eb,k, E
‡
k,l, Ixx,k, Iyy,k, Izz,k, and λk,i. Throughout the transition state sampling process,

additional minima were discovered and subsequently included in the set of analyzed clusters

To address rare instances of mechanically stable yet physically unattached clusters, a

lenient acceptance criterion was introduced, stipulating that all 3N − 6 eigenvalues λ must

exceed 0.01. The total number of minima M in each studied system is depicted in Figure 2b,

along with the limiting values found for SHS clusters.27 For arrangements of fewer than 6

monomers, only a singular minimum energy configuration exists.

In our TS sampling protocol, we systematically explore pairs of minima, attempting

to locate saddle points between them using the Nudged Elastic Band (NEB) method im-

plemented in the Pele package. This search is specifically focused on interconfigurational
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connections, where conformational changes involve the majority of the monomers. However,

certain conformers exhibit transitions while maintaining their inherent geometry, with no-

table examples being the defected icosahedral clusters N = 12 and 14, featuring a surface

vacancy and an adatom, respectively. These icosahedral structures represent the minimum

energy conformers (k = 0) for the studied systems. To identify intraconfigurational TS of

these conformers and calculate ∆E‡min
ico , additional NEB molecular dynamics (MD) simula-

tions were conducted using the LAMMPS MD code.50 While interconfigurational transitions

are assumed to involve all monomers (meaning all vibrational modes of a conformer are

treated globally with the same ∆k) the intraconfigurational transitions of these icosahe-

dral structures are well-localized. Specifically, the N = 14 adatom transition involves only

one monomer (three vibrational modes), while the N = 12 vacancy transition involves five

monomers (15 modes). Consequently, in our locally anharmonic model, the remaining vi-

brational modes of these specific conformers are computed based on the interconfigurational

TS barriers instead of ∆E‡min
ico .

3.3 Monte Carlo Phase-Space Sampling

To establish a representative benchmark for the discussed statistical models, we conducted a

detailed exploration of the classical phase space for each studied system through Metropolis

Monte Carlo (MC) sampling. Specifically, we employed a semi-grand canonical simulation

scheme developed by Vehkamäki and collaborators.51–53 In these simulations, canonical en-

semble averages of the grand canonical growth and decay probabilities, GN and DN for each

cluster size, were calculated at some reference vapor monomer density N ′
1. Based on these

probabilities, the formation cluster free energy can be determined recursively and scaled to

any desired N1 according to the formula53

WMC
N (N1)

kBT
=

WMC
N−1(N1)

kBT
− ln

(
N1

N ′
1

GN−1

DN

)
. (15)
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Despite the broad applicability of these MC simulations, two fundamental challenges

persist:

Firstly, the Metropolis algorithm’s sufficiency diminishes at the lower end of the tempera-

ture range. In the presence of exceedingly high barriers (relative to the thermal energy kBT )

between different adjacent basins, certain states become inaccessible within a reasonable

sampling time, rendering proper ergodicity unattainable. Consequently, flawed sampling

leads to overestimated free energies. Rather than employing specialized techniques or al-

gorithm modifications to enhance ergodicity,54 we opt for the standard Metropolis scheme,

exercising caution when interpreting formation free energies at very low temperatures. In the

present analysis, this limitation bears minimal significance, particularly as the anharmonic

effects of interest become more prominent at higher temperatures.

The second notable issue in the simulations pertains to the definition of the phase bound-

ary, specifically, what criteria are used to identify a cluster. In the selected MC simula-

tion protocol, the conventional Stillinger connectivity distance rS is employed to determine

whether a monomer is part of the cluster.55 The selection of rS is crucial, as its value needs

to be tailored for each potential and simulated temperature to avoid a systematic misrepre-

sentation of the formation free energy. An excessively small rS results in an overestimation

of WMC
N (as attractive interactions are cut short), while an excessively large rS leads to the

formation of loosely connected, fluffy complexes with an unclear phase boundary, resulting

in an underestimated WMC
N .

Following the approach proposed by Merikanto et al., consistent values of rS are deter-

mined by comparing the obtained WMC
N with those derived from virial coefficients and the

Mayer cluster expansion.57 Given the computational simplicity of the second virial coeffi-

cients and the shared nature of rS among different cluster sizes (at least for (n = 12)N≤6
56),

we computed commensurate connectivity distances by conducting a series of MC simula-

tions for dimers with varying rS. For an appropriate rS, W
MC
2 (N1, rS) should align with

−kBT ln(−N1B
Mie
2 ). The obtained Mayer-equivalent rS values are presented in Figure 3 for
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Figure 3: Temperature dependence of Stillinger connectivity distances employed in our
Monte Carlo simulations, rS, illustrated for various systems (full dots). Dotted lines show
the linear interpolation from rS(T = 0.1) to the equilibrium distance re, marked by open
dots at T = 0. System-specific ranges of attraction, L, are indicated by horizontal dashed
lines.

all systems as a function of temperature.

Crucially, the thermodynamic reach offered by the Mayer expansion surpasses that of

the MC framework and eq 1. Mayer clusters existing in an imperfect vapor interact with

other clusters and unbound monomers. Consequently, the determined connectivity distance

is not a monotonic function of temperature: Overall, a system necessitates a larger rS as

thermal motion intensifies with increasing temperature. However, the vapor pressure around

the cluster also rises with T , counteracting this trend by imposing constraints on rS due to

the destabilizing influence from nearby particles.

As shown in Figure 3, the interplay between thermal motion and the effects arising

from vapor-cluster/cluster-cluster interactions are manifested through the appearance of

an inflection point on the (rS, T )-curve. Despite the possibility of analytically estimating

the contribution of surrounding particles to WN ,
30 we have made the deliberate choice to

exclusively incorporate the calculated rS in our free energy simulations below the inflection-

point temperature. Beyond this temperature threshold, we opt for the maximum value of

rS. This decision is further substantiated by the observation that these maxima align closely

with the system-specific ranges of attraction L provided in Table 1 (indicated by horizontal

dashed lines in Figure 3).
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4 Results

4.1 Conformers and Transition States Analysis

4.1.1 Cluster Minima and Binding Energies

Firstly, we conduct a concise analysis of the general trends in the number of distinct minima

identified for various systems, depicted earlier in Figure 2b. While this aspect is not directly

tied to free energy calculations, its findings will be useful, as demonstrated subsequently.

Additionally, we present the characteristics of cluster binding energy distributions for the

examined systems.

The analyzed conformer energies and their distributions are illustrated in Figure 4. The

energy data cover all three Mie interaction types (n = 8, 12, and 24) within the range of

N = 6 to 14 and are presented per vibrational degree of freedom, i.e., Eb/(3N − 6). This is

in accordance with Maxwell’s rule, which states that a rigid frame of N points necessitates

at least 3N − 6 connecting lines.27,58 Although the analyzed clusters systematically follows

this rule, systems with larger n (and consequently shorter L) may exhibit conformers with

more contacts (evident in the SHS system for N ≥ 10).

As observed from the distributions (depicted as discrete violin plots in Figure 4), despite

the abundance of conformers, a significant portion of short-range systems is concentrated on

narrow high-energy bands, primarily at −Eb = 3N − 6 or 3N − 5. In contrast, the binding

energy distributions of (n = 8) and (n = 12) systems are more dispersed and extend to

lower energies, reflecting contributions from remote monomers due to large L. The shapes

of the distributions from N = 6 to N = 14 roughly resembles types of cocktail glasses: from

old-fashioned tumblers to martini glasses and eventually to long-stem champagne flutes. The

latter typically refers to large clusters with a uniquely low-energy k = 0 conformer, resulting

in a significant energy gap between k = 0 and k = 1: ∆Eb = Eb,k=1 − Eb,k=0 ≳ 1 (values

indicated in Figure 4).

Apart from the smallest clusters, the number of minimaM shows an exponential increase
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Figure 4: (Main figure) Normalized binding energy distributions presented for clusters ex-
hibiting multiple conformers. The respective number of conformers, M, and the binding
energy gap between conformers k = 0 and k = 1, ∆Eb, are provided next to the correspond-
ing distribution curve. A dashed horizontal line represents the “Maxwell limit”. (Inset)
lnM is plotted against the cluster size N . Linear fits are applied to points with N ≥ 11,
and the resulting slopes (α) are given in the inset legend. The black markers correspond to
clusters within the sticky hard-sphere system.

with size N :59

lnM ≈ αN − β, (16)

where α and β are interaction-specific enumeration constants. In the inset of Figure 4, lnM

is presented as a function of N for the studied systems (and the SHS system as well) with

corresponding linear fits (for N ≥ 11). The obtained α and β are provided in Table 1. Since

each distinct equilibrium corresponds to a unique set of points in three-dimensional space,

M can be considered proportional to a volume associated with the width of the attraction

(L3). For example, a SHS system facilitates more minima (L = 1, α = αSHS = 2.10) than a

system interacting through a long-range Mie potential (e.g., n = 12, L = 1.479, α = 1.07).

Based on this rationale and the results presented in the inset of Figure 4, a straightforward

relationship emerges:

α ≈ αSHS − 3 lnL. (17)

This relation holds also well for the other (n = 2m > 24) systems studied by Trombach
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et al. Given that α > 0, the rule expressed by eq 17 is applicable to systems with L <

exp(αSHS/3) ≈ 2. Therefore, systems with an exceptionally long range, such as (n = 8), do

not conform to this relationship.

4.1.2 Minimum Transition State Barriers

While the number of unique minima becomes substantial as N surpasses a certain size and

L decreases, the count of transition states (TS) exhibits an even stronger dependence on

N . Consequently, a comprehensive exploration of transition states, crucial for determining

∆E‡min
k for each considered minimum, presents a challenge of its own right.

The search for interconfigurational connections is meticulously conducted for the fol-

lowing systems: Given the relatively small M across the size range, the TS sampling is

efficiently performed for the (n = 8) system without substantial computational effort. For

the (n = 12) system, we guide our sampling using previously obtained TS networks by Doye

et al.48,60,61.62 An extensive sampling of TS is also carried out for (n = 24)N<12 and it has

been ensured that at least one connection is found for each minimum. For (n = 24)N≥12,

the search focuses on TS connecting the minimum energy conformer to other minima. Ad-

ditionally, the search extends to some low-free-energy conformers, selected based on W hrm
N,k .

In the subsequent thermodynamic calculations, conformers without any assigned TS are set

to ∆E‡min
k = 1. This also applies to clusters with only one conformer (i.e., N < 6).

In Figure 5, both the average |∆E‡min| over all identified TS (squares, solid lines) and

∆E‡min
k=0 related to the minimum energy conformer (circles, dashed lines) are presented for the

systems with multiple conformers. Additionally, for the defected icosahedra N = 12 and 14,

the intraconfigurational ∆E‡min
ico obtained via the NEB-MD simulations are indicated with

large diamonds.

As shown in Figure 4, the global minimum energy conformer typically has a uniquely low

binding energy, and ∆E‡min
k=0 ≥ ∆Eb. It is thus expected that ∆E‡min

k=0 is higher than |∆E‡min|

given that k > 0 conformers generally possess energetically similar counterparts. However,
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Figure 5: Minimum transition state barrier height, ∆E‡min, as a function of cluster size N .
Solid lines with square markers show the averaged ∆E‡min across various conformers of a
given size. Dashed lines with open circles depict the barriers corresponding to the global
minimum energy conformer, k = 0. Additionally, open diamonds represent intraconfigura-
tional transition state energies obtained from NEB-MD simulations specifically conducted
for the icosahedral N = 12 and 14 cluster structures.

we observe exceptions to this trend at small N : for (n = 12)N=8, where ∆E‡min
k=0 < |∆E‡min|

due to ∆Eb ≈ 0.1, and this is manifested as a wide brim of the “cocktail glass” in Figure 4. As

systems approach the “champagne flute” configuration (N ≳ 12), ∆E‡min
k=0 tends to increase

alongside large ∆Eb values. However, in case of (n = 24)N=12, two low-lying conformers

are observed, with ∆Eb ≈ 0.2, reflecting relatively low ∆E‡min
k=0 . Overall, in an SHS system,

performing a transition between two conformers requires the breakage of at least one bond.

Thus, ∆E‡min ≳ 1 when n is large, a behavior rather rigorously followed by the (n = 24)

system.

The transition state sampling uncovered some anomalies in the conformer data, where

certain energetically adjacent conformers were connected by an extremely shallow barrier,

i.e., ∆E‡
k,l ≈ ∆E‡

l,k ≈ 0. A closer examination revealed that these instances were mere

duplicates of the same conformer but were erroneously identified as separate entities due

to limited numerical precision. Fortunately, after a thorough check of the data, we found

only a few occurrences of this issue: the original conformer sets of systems (n = 8)N=10,

(n = 8)N=12, (n = 24)N=13, and (n = 24)N=14 contained only 1, 1, 3, and 100 duplicates,

respectively. These false positives have been excluded from the conformer data presented in
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Figure 2b and Figure 4.

In the context of statistical thermodynamics and our model for local anharmonicity, the

relatively high ∆E‡min
k=0 holds significant implications. If the TS barriers are approximately

equal throughout k, the additional vibrational entropy gain is also equal amongst the con-

formers. Consequently, adjusting for local anharmonicity would not significantly influence

the relative population of various conformers within a specific cluster size. However, the

presence of distinctively high barriers favors specific conformers, thereby influencing the

abundance spectrum. This aspect will be briefly elaborated upon in Section 5.2.

4.2 Effect of Local and Global Anharmonicities on Cluster Ther-

modynamics

4.2.1 Magnitude of the Effect

Now that we have gathered the essential data on the minima, we can proceed to calculate

the formation free energies for each system. Our initial focus is on examining the relative

impact of both global (eq 5) and local (eq 8) anharmonicity on the thermodynamics of the

systems across different temperatures.

The impact of global anharmonicity is shown in Figure 6(a,c,e) through a comparison

of WGahrm
N with the harmonic cluster formation free energy W hrm

N . Also here, the resulting

differences, ∆W , are presented per Ndof to enhance the clarity of the comparison. The

temperature at which WGahrm
N begins to deviate from W hrm

N signifies the cluster’s “melting

point”, a temperature that varies with cluster size and among systems. Mainly due to their

high surface-to-volume ratio, finite-size particles experience melting at lower temperatures

than the bulk melting temperature.

In all systems, the hexamer (N = 6), characterized by two conformers, demonstrates

the most notable melting behavior. The impact of global anharmonicity on the hexamer

is pronounced already at very low temperatures; the transition is driven by differences in
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Figure 6: (Left-hand side column; (a), (c), (e)) Temperature-dependent difference between
globally anharmonic cluster formation free energies, WGahrm

N , and the corresponding har-
monic formation free energy, W hrm

N , for cluster sizes N ≥ 6. (Right-hand side column; (b),
(d), (f)) Differences between locally and globally anharmonic cluster formation free energies,
W LGahrm

N , and W hrm
N . The values are normalized with respect to the number of vibrational

degrees of freedom and presented in units of thermal energy (kBT ). Vertical dotted lines
mark system-specific critical temperatures, while horizontal dashed lines highlight the zero
level.

rotational symmetry (s = 24 for the octahedral k = 0 and 2 for the polytetrahedral k =

1 conformer) and small binding energy gaps (∆Eb ≈ 0.6, 0.4, and 0.1 for (n = 8)N=6,

(n = 12)N=6, and (n = 24)N=6, respectively). Another notable cluster size is N = 8,

where the effect of global anharmonicity is relatively small. Unlike the hexamer, the k =

0 conformer’s symmetry number is only 2, while some high-energy conformers are more

symmetrical, leading to a less significant entropic gain from transitioning between high and

low symmetry. Generally, for other cluster sizes, based on WGahrm
N , melting occurs around

T ≈ 0.3, irrespective of the system. Although similar on the absolute temperature scale, the

melting conditions vary significantly concerning the systems’ Tc.

Overall, the impact of global anharmonicity per vibrational degree of freedom remains

relatively uniform at very high temperatures, approximately (−0.3± 0.1)kBT/Ndof . At high

temperatures, global anharmonicity is primarily associated with the conformer space size

23

https://doi.org/10.26434/chemrxiv-2024-48m91-v2 ORCID: https://orcid.org/0000-0002-8537-1921 Content not peer-reviewed by ChemRxiv. License: CC BY-NC 4.0

https://doi.org/10.26434/chemrxiv-2024-48m91-v2
https://orcid.org/0000-0002-8537-1921
https://creativecommons.org/licenses/by-nc/4.0/


M. Equation 18 provides an approximation:

WGahrm
N

kBT
≈ W hrm

N

kBT
+

∆Eb

kBT
+Ndof ln

∣∣∣∣∣
√〈

λk

λk=0

〉∣∣∣∣∣− lnM− ln sk=0. (18)

Here, | . . . | and ⟨. . .⟩ denote the arithmetic mean over conformers and geometric mean over

conformer’s degrees of freedom, respectively. Equation 18 assumes that conformers k > 0

effectively lack notable rotational symmetry, i.e., sk>1 ≈ 1. For most clusters studied here,

the averaged eigenvalue ratio ⟨λk/λk=0⟩ is close to unity. According to eq 16, for large N ,

∆WN/kBT/Ndof ≈ −α/3. This behavior, requiring a small β, is rather evident in Figure 6

for (n = 8) and (n = 12), corresponding to α/3 = 0.16 and 0.36, respectively.

The results computed with both the global correction and the proposed correction for

local anharmonicity are presented in Figure 6b,d,f. We use notation W LGahrm for free ener-

gies calculated using eq 5 with anharmonic conformer formation energies from eq 8. Firstly,

the cluster-specific melting temperatures decrease due to anharmonic vibrational motion, at

T ≈ 0.15− 0.2. As indicated in Section 4.1.2 and in Figure 5, the k = 0 conformers are typ-

ically separated from other minima by high barriers, resulting in non-minimum conformers

generating more vibrational entropy than the global minimum. Interestingly, the melting

points of (n = 24)N>6 remain relatively constant, about T = 0.18, while other systems

exhibit more significant deviations. This consistency in (n = 24) is attributed to both the

uniform binding energy distributions and the consistent ∆E‡min per size.

Our locally anharmonic model results in a maximum additional vibrational entropy of

kB/4 per vibrational degree of freedom at high temperatures. Therefore, the approximation

given in eq 18 can be further expanded to

W LGahrm
N

kBT
≈ W hrm

N

kBT
+

∆Eb

kBT
− Ndof

4
− lnM− ln sk=0. (19)

For clusters containing only one conformer, here N < 6, the terms ∆Eb and sk=0 in eq 19 can

be disregarded, as the system retains its inherent structure. While the given relation is built
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on many assumptions and approximations, it holds significant potential. As mentioned, the

complete enumeration of conformers (not to mention the transition states) is only feasible

for the smallest cluster sizes. Therefore, meticulous anharmonic cluster thermodynamic

calculations, as presented here, are beyond reach in most circumstances related to e.g.,

nucleation. However, determining the system-specific M can be achieved by extrapolating

existing conformer data (as demonstrated in Section 4.1.1) or employing statistical methods

at the large-system limit.63–65 Thus, by only knowing the properties of the minimum energy

conformer, eq 19 enables us to at least estimate the magnitude of anharmonicity at high

temperatures. This will be demonstrated later in Section 5.1.

4.2.2 Comparing Anharmonic Model Predictions with Monte Carlo Simulations

The introduced local anharmonicity correction in Section 2.3 requires further scrutiny. The

validity of the global anharmonicity treatment in statistical thermodynamics is much less

ambiguous. Since we operate in the classical limit where the effects arising from discrete

states are absent, proper validation of the anharmonic correction can be established by

comparing the statistical model with direct phase-space sampling, i.e., the Monte Carlo

simulations discussed in Section 3.3. Assuming that the setup of the simulations is adequate,

i.e., ergodicity is achieved and the applied cluster criterion is satisfactory, the obtained WMC

should reflect the true thermodynamics of the studied clusters in a perfect gas. In our

simulations, we have probed a temperature range up to 0.6 or to Tc if Tc < 0.6.

Figure 7a–c show the comparison between the statistical models and the MC simulations

for each studied system, ranging from N = 2 to N = 14. The differences in free energies are

displayed for both the model with the local anharmonicity correction (∆W = W LGahrm −

WMC, solid lines) and the model without the local anharmonicity correction (WGahrm −

WMC, dashed lines). To account for potential uncertainties, we have considered an arbitrary

margin of 2kBT for the free energies, which corresponds to Pople’s chemical accuracy66

(approximately 1 kcal/mol at room temperature). This tolerance interval is represented by
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Figure 7: Comparison between WGahrm
N (dashed lines) and W LGahrm

N (solid lines) against the
Monte Carlo simulated formation free energies, WMC

N , for the studied systems of (a) (n = 8),
(b) (n = 12), and (c) (n = 24). The shaded gray area highlights the defined tolerance
interval set to ±2kBT .

the gray area in Figure 7.

Owing to the limitations of the standard Metropolis Monte Carlo approach at low tem-

peratures and the recursive nature of free energy computation (eq 15), Figure 7 presents

∆W only from a certain temperature onwards, and this cutoff temperature increases with

N . Nevertheless, the data unmistakably reveals the temperatures at which the MC sim-

ulations encounter challenges, leading to excessively elevated free energies. Despite these

inherent simulation issues, values from the simulations closely align with those predicted by

the statistical models at the lowest temperatures where ergodicity is maintained.

While the dimer (N = 2) and the trimer (N = 3) are represented fairly accurately in all

systems, the statistical models, on the whole, appear to overestimate the cluster formation

free energy. Specifically, the divergence from the MC simulated free energies begins at

relatively low temperatures, around T ≈ 0.15, when only global anharmonicity is considered,

and this discrepancy amplifies with increasing N . Some deviation from WMC persists even

when both local and global anharmonicities are taken into account, albeit occurring at higher

temperatures. Notably, the local anharmonicity correction rectifies the size-dependency issue

by bringing together the curves shown in Figure 7, particularly when T/Tc is low and N is

large. This consolidation is a significant outcome: the systematic errors associated with Ndof
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in the statistical model can be alleviated, and the obtained W LGahrm
N exhibit consistency

across different cluster sizes.

The results presented in Figure 7 reveal certain peculiarities, although the overall data

appears to be quite consistent. The statistical free energies of the icosahedral conformers

(N = 12, 13, 14) seem to be slightly elevated. However, beyond T ≈ 0.25, this erratic behav-

ior dissipates, and the values align with other sizes. Additionally, while W LGahrm−WMC ≈ 0

for all cluster sizes in systems (n = 8) and (n = 12) at the lowest simulatable temperatures,

the values corresponding to system (n = 24) show a shift of approximately 1kBT or 2kBT .

These peculiarities may stem from the applied statistical methods, input parameters (e.g.,

E‡
k), Monte Carlo simulations, or a combination of these factors. Nonetheless, given that

the size- or system-specific discrepancies are relatively small, within the range of ±2kBT ,

our focus will be on investigating the general temperature-related disagreement evident in

Figure 7.

The observation that WMC < W LGahrm at high temperatures suggests that the phase

boundary set in the MC simulations might be too loose. Previous investigations on atomic

clusters also support this notion.67–69 An elementary analysis of the studied conformers

indicates that each monomer has at least 3 neighbors (2 for N = 3, 1 for N = 2) within

the connectivity distance, while the Stillinger criterion in the MC simulation protocol is

satisfied with a single neighbor. Rather than modifying the MC algorithm and conducting

new simulations with an alternative cluster criterion, we opted to reevaluate the simulated

cluster configurations using the ten Wolde-Frenkel cluster definition.70 This involves selecting

configurations that meet the ten Wolde-Frenkel criterion (all monomers have 3 or more

neighbors within rs). The categorization into Stillinger (S-) and ten Wolde-Frenkel (tWF-)

cluster configurations, where all S-clusters are also tWF-clusters, across various temperatures

enables us to estimate the relative free energies through thermal integration from a given
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temperature T0 to T1:

WN(T1)

kBT1

− WN(T0)

kBT0

= −
∫ T1

T0

dT
UN(T )

kBT 2
. (20)

The cluster’s internal energy UN , comprising Eb,N and Eth,N , is not directly comparable with

the potential energy calculated from a simulated configuration. However, assuming that the

binding energies of both S and tWF-clusters are equal (i.e., the difference between these

clusters lies only in thermal motion) and that W
MC/tWF
N (T0) = W

MC/S
N (T0), the criterion-

adjusted formation free energy can be computed at T1 as follows

W
MC/tWF
N (T1)

kBT1

=
W

MC/S
N (T1)

kBT1

− 2

∫ T1

T0

dT
E

MC/tWF
pot,N − E

MC/S
pot,N

kBT 2
. (21)

The potential energy difference between the two cluster types, E
MC/tWF
pot,N −E

MC/S
pot,N , is shown

in Figure 8a. Given the extensive nature of the original MC data, even after excluding all

non-tWF configurations, the statistical uncertainties of E
MC/tWF
pot,N are deemed insignificant.

The difference between W LGahrm
N and W

MC/tWF
N for the (n = 12) system is presented in

Figure 8b. The reference temperature, T0, is set to 0.25. Following the criterion adjustment,

the temperature-related deviation diminished and fell within the assigned error margin. This

coarse analysis already elucidates that the ambiguity related to the cluster criterion induces

most of the discrepancy between the statistical model and the simulations explicitly probing

the phase space.

In Figure 8b, we also explore the impact of ∆E‡,min
k on W LGahrm

N . Assuming the anhar-

monic vibrational entropy is at its theoretical maximum (∆k = ∆peak), the estimated cluster

free energies are consistently underestimated until T ≈ 0.35. This outcome aligns with ex-

pectations: the threshold temperatures surpass the estimated cluster melting points and the

corresponding ∆peak ≈ 2.26kBT closely resembles |∆E‡,min| depicted in Figure 5. Further-

more, Figure 8c shows the predictive capability of the high-temperature approximation given

by eq 19. While the approximation tends to overestimate the configurational entropy at low
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Figure 8: (a) Comparative analysis of the Monte Carlo (MC) simulated potential energies
for ten Wolde-Frenkel (tWF) and Stillinger (S) clusters within the (n = 12) system. The
values are normalized per the number of degrees of freedom and presented in units of ϵ.
(b) Comparison of W LGahrm

N against the formation free energies obtained through thermal
integration for the analyzed tWF-clusters (solid lines). The dashed lines represent analogous
values for Stillinger clusters. (c) Approximate values calculated using eq 19 compared against
WMC/tWF (solid lines). In panels (b) and (c), the comparison betweenW LGahrm

N andWMC/tWF

is depicted, assuming a constant dissociation energy ∆k = ∆peak ≈ 2.26kBT , shown with
dotted lines.

temperatures and for large cluster sizes, above T ≈ 0.5, it exhibits satisfactory agreement

with the simulated free energies. Notably, this approximation relies solely on the properties

of the global minimum energy conformer in its calculation.

4.3 Cluster Potential Energies

Finally, we compare the statistical model predictions with the simulated potential energies

of the tWF-clusters. For the harmonic approximation, Ehrm
pot = Eb,k=0 +

Ndof

2
kBT . The glob-
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ally anharmonic potential energies (with or without the local anharmonicity) are obtained

through Boltzmann averaging:

E
(L)Gahrm
pot,N =

∑
k

(
Eb,k +

Ndof

2
E

(MO)
th,k

)
exp

(
−W

(La)hrm
N,k /kBT

)
exp

(
−W

(L)Gahrm
N /kBT

) . (22)

In Figure 9, we illustrate the impact of anharmonicity on potential energy in comparison

to the harmonic approximation for the (n = 12) system. Since M = 1 and ∆E‡min = 1,

for N < 6 global anharmonicity has no effect on potential energies, and the thermal energy

elevation due to local anharmonicity is size-independent with respect to Ndof . We have

presented these results separately in the inset of Figure 9a. While the statistical model

may not precisely capture the magnitude of the simulated anharmonic potential energy, it

effectively identifies the temperature at which the effect is maximized. According to eq 11,

the peak at ∼ 0.09kBT corresponds to T = ∆k/4.39 ≈ 0.23.

For clusters with multiple conformers, the departure from harmonic potential energies

becomes more pronounced, as both thermal energy and binding energy are influenced by

anharmonic corrections. The outset of the energy deviation in Figure 9 coincides with the

melting phenomenon in Figure 6. Overall, the simulated onset of anharmonicity aligns well

with the locally anharmonic model. In some cases, the effect is slightly overestimated at

very low temperatures, but the onset temperature is surprisingly accurately predicted by

the anharmonic model. At high temperatures, however, E
MC/tWF
pot is notably higher than the

values provided by the models. When approaching low-density systems with extreme thermal

agitation, statistical approaches based on equilibrium configurations are not expected to be

very accurate methods.9 Moreover, it is probable that the Morse oscillator fails to accurately

represent the true vibrational dynamics of systems under extreme temperatures. Achieving

absolute accuracy necessitates more sophisticated and system-specific analyses.
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Figure 9: (a)–(i) Deviation from the harmonic potential energy presented as a function of
temperature for N ≥ 6 within the (n = 12) system. Dashed lines represent the potential
energy differences calculated for locally and globally anharmonic systems, ELGahrm

pot − Ehrm
pot .

Dotted lines depict those without local anharmonicity, EGahrm
pot −Ehrm

pot . The thick colored lines
correspond to Monte Carlo simulated energies for the analyzed ten Wolde-Frenkel clusters.
The inset in panel (a) shows the comparison for clusters with only one conformer, where our
locally anharmonic model yields a uniform deviation for 2 ≤ N ≤ 5. The line colors follow
the size-specific color scheme used in Figures 6–8.

5 Discussion

In summarizing the comparisons drawn between potential and free energies, our presented

analyses and validations underscore the adequacy and predictive power of the proposed

anharmonic model. By exploring interaction-wise diverse systems and different properties,

we aimed to mitigate the possibility of the observed agreement between the statistical model

and direct phase-space sampling being merely coincidental. Although such an exhaustive

benchmarking is challenging and often implausible for more complex systems, particularly

those involving quantum aspects, our detailed analysis provides valuable insights for these

systems as well. In the following, we will briefly discuss the implications that this model

brings to the fields of cluster and nucleation science, spanning systems of various size scales

and chemical compositions.

31

https://doi.org/10.26434/chemrxiv-2024-48m91-v2 ORCID: https://orcid.org/0000-0002-8537-1921 Content not peer-reviewed by ChemRxiv. License: CC BY-NC 4.0

https://doi.org/10.26434/chemrxiv-2024-48m91-v2
https://orcid.org/0000-0002-8537-1921
https://creativecommons.org/licenses/by-nc/4.0/


5.1 Free Energy Barrier in Homogeneous Nucleation

Formation free energy is the crucial parameter that dictate the nucleation process, governing

cluster growth from a supersaturated vapor or solution.4,71 Due to supersaturation, WN has

a shape of a downward parabola: the transition of the unstable system to the respective

stable phase is thereby hindered by a nucleation barrier. Overcoming this barrier marks

the initiation of nucleation: the position of the barrier’s peak determines the critical cluster

size, and the free energy corresponding to this size enters the exponent in the nucleation

rate expression. As phenomenological theories are destined to fail at nanoscale,5,71 it is

preferable to employ atomistic modeling for cluster thermodynamics without reference to

macroscopically defined quantities.

As discussed in Section 4.2.2, without assessing local anharmonicity, the statistical model

suffers from size-dependent overestimation of WN . We have demonstrated this failure in a

heavily supersaturated (n = 12) system: T = 0.35 andN1 = 7×10−4. As shown in Figure 10,

the critical cluster size according to W hrm and WGahrm is 10, whereas both W LGahrm and

WMC/S render the critical size at N = 8. Moreover, if the MC-values are reestimated for the

tWF-clusters, W LGahrm and WMC/tWF align almost perfectly, the difference at N = 8 is only

1.2kBT . The peaks of W
hrm and WGahrm are 8.3kBT and 6.4kBT above WMC/tWF, translating

into about three orders of magnitude lower nucleation rate. Equation 19 accurately captures

the barrier height but slightly overestimates the critical size by one monomer. This minor

discrepancy primarily arises from the symmetry assumption that sk>0 = 1, which is not

suitable for 6 ≥ N ≤ 9. Additionally, for large clusters at T = 0.35, eq 19 underestimates

WN , as shown in Figure 8c.

Under typical nucleation conditions, especially at high temperatures, the anticipated crit-

ical cluster is composed of more than 8 monomers. Since global minimum energy structures

for (n = 12)N≤1000 are readily available46, W hrm
N can be easily computed for all relevant

cluster sizes. We thus test the validity of both the harmonic approximation and the approx-

imation given in eq 19 against molecular dynamics (MD) simulation results by Ayuba et al.,
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Figure 10: Illustration of nucleation barriers for (n = 12) clusters in a supersaturated vapor
at N1 = 7 × 10−4 and T = 0.35, derived from both harmonic and anharmonic statistical
models, as well as Monte Carlo (MC) simulations. Anharmonic results given by eq 19
are shown by the black solid line. The black dashed line corresponds to the MC values
recalculated for ten Wolde-Frenkel (tWF) clusters. Critical cluster sizes, i.e., the peaks of
the barriers, are highlighted with white dots.

Wedekind et al., Wedekind and Reguera, and Halonen carried out at T ≈ 0.6, . . . , 0.7. In

these direct nucleation simulation the cluster growth take place unrestricted by following the

time evolution of a gaseous system. Once a number of post-critical cluster formation events

have been recorded, the formation free energies can be retrieved from the cluster distribution

data. In Figure 11, the MD simulated critical cluster formation free energies are compared

against the corresponding W hrm
N and approximate WGLahrm

N . In case of N > 14, WGLahrm
N

is calculated using eq 16 and ∆Eb = 1, otherwise the exact values (given in Figure 4) are

applied. Throughout the critical cluster range, from N = 9 up to 72, the huge discrepancy

between the harmonic approximation and the simulations is almost completely amended by

the introduced high temperature expression, eq 19, using the system parameters α and β

(dashed line in Figure 11). The anharmonic approximation, of course, is coarse compared

to the model employing explicit k > 0 conformers and their properties, but statistically the

estimated values deviate only by ±4kBT from WMD.
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Figure 11: Comparison between molecular dynamics (MD) nucleation data72–75 for (n = 12)
and the statistical models. White symbols represent the difference between MD-simulated
critical cluster formation free energy, WMD

N , and the harmonic free energy, W hrm
N . Colored

symbols show the comparison against locally and globally anharmonic values, W LGahrm
N ,

estimated using eq 19 with parameters α = 1.07 and β = 6.61 for N > 14. The high-
temperature adjustment provided by eq 19 for large clusters is further depicted by the dashed
line.

5.2 Colloidal Cluster Populations

A very different class of clusters is colloidal clusters made of equal-size micrometer-scale

particles.7 Even here, at mesoscale, the globally anharmonic statistical model can be used to

interpret observed abundance spectra of colloidal conformers. Due to their characteristically

narrow range of attraction,6,7 the binding energies of colloidal clusters are rather close to the

number of close contacts with particles and the TS barriers are roughly equal to multiples

of the potential well depth (i.e., ∆E‡min = 1ϵ, 2ϵ, . . .). While vibrational anharmonicity has

relatively small effect on overall free energy of a colloidal cluster, due to the differences in

conformer-specific ∆E‡min
k one can expect that the local anharmonicity affects the conformer

populations and their distributions.

So, another possible classical-regime test for the theory is to reproduce experimentally

observed populations for colloidal clusters between sizes N = 6 and 10.6
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5.3 Atmospheric and Molecular Clusters

In Earth’s atmosphere, certain vapor molecules have the ability to forge sufficiently stable

intermolecular bonds, forming clusters that grow into larger particles and impact the planet’s

climate in various ways.76 Unlike the systems discussed in this paper, atmospheric clusters

comprise multiple distinct molecules and exhibit quantum mechanical properties. Neverthe-

less, the thermochemical quantities for these clusters are derived using an approach outlined

in Section 2.1, using conformer data obtained from quantum chemical calculations.5 Ensur-

ing the accuracy of free energy calculations is crucial, particularly given the high sensitivity

of climate models to the predicted stability of nanometer-sized particles.77 Moreover, atmo-

spheric clustering rates, also, are exponentially dependent on the free energy of a critical

cluster composition.31

If computational resources allow for high-level electronic structure calculations for multi-

ple conformers, global anharmonicity in atmospheric clusters can be and has been assessed.13

However, due to their inherent complexity, atmospheric systems are likely dominated by

the global minimum energy conformer, resulting in a global anharmonic effect of about 1

kcal/mol.13 The significance of local anharmonicity, on the other hand, is even more pro-

nounced for molecular clusters, given that the number of intermolecular degrees of freedom is

6N−6 instead of 3N−6. It is worth cautioning that some of these degrees of freedom might

be better treated as free rotors.78 While the model for local anharmonicity in this work is

limited to classical systems, the approach given in Section 2.3 is equally applicable to discrete

energy states (allowing determination of partition functions, e.g, through direct counting).

Yet, intermolecular interactions in atmospheric clusters are not as strong as chemical bonds,

and their frequencies are relatively low (ω ≲ 1000 cm−1). Consequently, vibrational motion

can be considered within the classical limit (kBT/ℏ ≈ 1300 cm−1 at room temperature), and

eq 7 most likely provides a good estimate for the anharmonic adjustment.

Obtaining precise conformer-wise transition state information for atmospheric clusters

requires specific calculations that may not always be readily available. Nevertheless, even in
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the absence of such detailed data, our suggested approach provides an upper limit for the

potential overestimation of cluster free energies. This knowledge is particularly relevant for

making predictions in environments with low partial vapor pressures, where critical clusters

are composed of multiple molecules (∼ 10). For high-level simulations of atmospheric new

particle formation to be viable, it is essential that the critical cluster can be identified within

the analyzed cluster configurations.5 Corrections that affect both the estimated formation

free energies and the composition of the critical cluster (as demonstrated in Figure 10) are

therefore crucial. And as the most recent quantum chemical calculations extend to even

larger and more complex cluster sizes – demonstrated by recent studies, such as those by

Engsvang et al.79–81 examining clusters up to 30 or 60 molecules – the question of the level

of local anharmonicity becomes increasingly pertinent.

5.4 Roadmap for Anharmonic Cluster Modeling

The sections above advocate a general emphasis on anharmonic behavior in computational

cluster studies. While our examples and test systems offer valuable insights, they inherently

represent only a subset of cluster types. Consequently, modeling approaches may require

tailored assumptions and methodologies to suit diverse chemical compositions and complex-

ities. As chemical specificity and system intricacy increase, meticulous attention must be

devoted to thermochemical calculations. Below, we offer a rudimentary roadmap for an-

harmonic cluster modeling within the framework of the current study, accounting for other

considerations as well:

1. Assessing local anharmonicity:

• Examination of interconfigurational transition states: identify key TS or approx-

imate the height of the TS barrier relative to the thermal energy kBT

• Determining between classical and quantum regime: The anharmonic partition

function can be determined analytically (as done here) or by direct counting,
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especially if vibrational energy levels are significantly distinct

• Recognizing influenced intermolecular vibrational modes: in some cases, replacing

low vibrational contributions to the entropy with internal rotational modes may

offer a more accurate approach5,78

• Adjusting normal-mode frequencies: apply scaling factors to correct normal-mode

frequencies for anharmonic effects

2. Assessing global anharmonicity:

• Enumeration of all possible cluster configurations; applicable for only the smallest

and the simplest clusters

• Approximating the maximum effect of global anharmonicity:

– For large clusters comprising simple, non-associative monomers, derive the

expected number of unique configurations (M) from the statistics of smaller

clusters

– In cases where little is known about the clusters, attempt to infer the size of

the configurational space from bulk properties

6 Conclusions

The influence of anharmonicity becomes particularly pronounced in large cluster systems,

where the exponential growth in the number of unique molecular arrangements amplifies

global anharmonicity. Additionally, the weak intermolecular bonds within these systems

may display notable local anharmonicity per vibrational mode. While one approach to ad-

dress the anharmonicity of individual vibrations involves adjusting frequencies using scaling

factors,14,19–21 it is crucial to recognize that, in the presence of significant thermal agitation

on relatively low-frequency modes, the thermodynamic contribution of vibrations must be

accurately assessed through the corresponding partition function.
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In this study, we systematically characterize the global and local anharmonicity of rel-

atively small clusters interacting via varying ranges of attraction. With our findings, we

introduce and validate a novel statistical mechanical approach for calculating the cluster par-

tition function, allowing us to accurately assess anharmonicities in the modes of vibrational

motion. Detailed, consistent tests reveal that our model outperforms, both qualitatively and

quantitatively, the harmonic approximation in predicting cluster free energies and potential

energy. Two gratifying results underscore the efficacy of our approach: The improvement is

achieved with the addition of only one input parameter, the interconfigurational transition

state barrier height, ∆E‡min. And, for systems with ∆E‡min ≲ 2kBT , our model predicts a

maximum entropy enhancement of approximately kB/4 per vibrational mode.

Here, to demonstrate the general applicability and effectiveness of the developed anhar-

monic approach, we have chosen test systems characterized by a degree of chemical and phys-

ical simplicity. This ensures precise benchmarking and facilitates analysis against explicit

phase-space sampling via atomistic simulations. As shown here, even seemingly straightfor-

ward Monte Carlo simulations pose their own challenges, such as setting the phase bound-

aries, and are subject to limitations, notably within the classical regime and at high tem-

peratures. Although the presented anharmonic approach is highly adaptable and suitable

for quantum thermochemical calculations as well, the necessary data is seldom readily ac-

cessible, particularly comprehensive sets of conformers and corresponding transition states.

Nonetheless, the model can rather effortlessly provide valuable estimates regarding the ex-

tent of the misprediction inherent in the harmonic approximation, under the assumption that

intermolecular vibrations can be described using Morse oscillators. Given the presence of

very low interconformer barriers and significant thermal agitation, the vibrational dynamics

warrant further scrutiny.

To achieve even closer agreement with cluster formation experiments, incorporating local

anharmonicity, as outlined here, is anticipated. The nucleation rate, like many other chemical

rate constants, is exponentially linked to the free energy of a specific critical cluster. Work
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in progress is investigating the impact of anharmonicity on the modeling of both simple

systems, such as homogeneous argon and water nucleation, which have abundant controlled

experimental data, and atmospheric systems with broader scientific significance.

Notes
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Leiminger, M.; Mathot, S.; Möhler, O.; Nieminen, T.; Onnela, A.; Petäjä, T.;
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