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Machine learning potentials have become an essential tool for atomistic simulations, yielding results close to
ab-initio simulations at a fraction of computational cost. With recent improvements on the achievable accu-
racies, the focus has now shifted on the dataset composition itself. The reliable identification of erroneously
predicted configurations to extend a given dataset is therefore of high priority. Yet, uncertainty estimation
techniques have largely failed for machine learning potentials. Consequently, a general and versatile method
to correlate energy or atomic force uncertainties with the model error has remained elusive to date. In the
current work, we show that epistemic uncertainty cannot correlate with model error by definition, but can
be aggregated over groups of atoms to yield a strong correlation. We demonstrate that our method correctly
estimates prediction errors both globally per structure, and locally resolved per atom. The direct correlation
of local uncertainty and local error is used to design an active learning framework based on identifying local
sub-regions of a large simulation cell, and performing ab-initio calculations only for the sub-region subse-
quently. We successfully utilize this method to perform active learning in the low-data regime for liquid
water.

I. INTRODUCTION

In recent years, machine learning potentials have
gained importance as data-driven energy and force pre-
dictors for atomistic simulations, achieving an accuracy
close to ab-initio results while offering a considerable
speedup. The underlying model architectures have im-
proved from neural networks built on simple invariant
encodings of the atom environment1–3 to elaborate equiv-
ariant, possibly multi-body interactions based on graph
neural networks4–7 or graph transformers8 allowing both
more precise and more data-efficient models.

With excellent models at hand, the focus has now
shifted to the quality and quantity of the underlying data.
New datasets such as the Open Catalyst 2020 and 2022
datasets9,10 for adsorbates on surfaces, ANI-1x11 for or-
ganic molecules, or Transition1x12 for simple organic re-
actions have emerged, and can be used to train a baseline
model, which can subsequently be fine-tuned to a system
of interest. Since ab-initio calculations are costly it is
nevertheless essential to develop clever data generation
strategies, i.e. to identify where a model fails so that
new ab-initio calculations can be issued and added to
the training data. The quantification of the estimated
error in a prediction is furthermore essential for decision-
making processes. For atomistic simulations, the force
uncertainty is key to determine whether the simulation
is exploring structures that the machine learning poten-
tial is confident about.13,14

The identification of high-error predictions is still an
open challenge in machine learning across many fields of
research, and viable approaches depend on the details of
the dataset, task, and model architecture. The error in
a model prediction can be dissected into aleatoric (irre-
ducible by addition of data) and epistemic (reducible by
addition of data) contributions.15–19 The aleatoric con-
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tribution stems from noise in the input data or miss-
ing input features, and can be learned by the model
itself using heteroscedastic loss models (mean variance
estimation) and variations thereof,20,21 or can be esti-
mated posthoc.22,23 The epistemic contribution is as-
sociated with a limited knowledge of the model which
can be further dissected into error from model variance
and model bias.19 It is usually approximated by train-
ing a committee of models, varying the model initial-
ization seed, hyperparameters, architecture, or training
data, and monitoring their disagreement on a prediction
to obtain a proxy for the error from model variance.24–26

Other techniques furthermore obtain a combined mea-
sure for aleatoric and epistemic error.27,28 Yet, especially
epistemic error is notoriously difficult to model, since the
above approaches only capture error from variance, but
not from model bias. Yet, model bias can be the major
source of error in a model especially for small datasets
and difficult-to-learn targets, so that the epistemic un-
certainty obtained from committees often underestimates
the model error.19,29

In the field of machine learning potentials, un-
certainty estimation techniques have achieved mixed
results.21,30–33 Here, aleatoric uncertainty is usually neg-
ligible, since there is a direct, learnable relation between
the input (the atomic numbers and coordinates) and the
target (the ab-initio energies and forces) if different spin
states and magnetic states are not taken into account.
However, there is no direct correlation between the epis-
temic uncertainty of a single data point obtained from the
standard deviation of committee predictions and the ab-
solute error. This behavior has been reported for a wide
variety of datasets and model architectures,30–32,34 but
its origin and possible remedies have not been identified
yet. Heuristic approaches to average force uncertainties
over structures as a proxy for model error have achieved
success in active learning settings,31,35 but are missing a
theoretical framework and explanation of why and when
such an approach is recommendable. Moreover, as sim-
ulations based on machine learning potentials are mov-

1

https://doi.org/10.26434/chemrxiv-2024-k27ps ORCID: https://orcid.org/0000-0002-8404-6596 Content not peer-reviewed by ChemRxiv. License: CC BY 4.0

mailto:esther.heid@tuwien.ac.at
https://doi.org/10.26434/chemrxiv-2024-k27ps
https://orcid.org/0000-0002-8404-6596
https://creativecommons.org/licenses/by/4.0/


ing towards trillions of atoms36 and ab-initio calculations
become infeasible for the full system, even a perfect esti-
mator of the overall error is insufficient. For active learn-
ing it is therefore essential to trace down the overall er-
ror and uncertainty to smaller regions within a system,
which can then be isolated. While recent approaches
to active learning have attributed the uncertainty on a
per atom basis34,37,38, there is no guarantee that the ob-
tained atomic uncertainties actually correlate with the
model error. In fact, a recent study reported that there
is no direct correlation between the uncertainty of atomic
forces and the actual error in the force prediction of that
atom.31

In summary, the unresolved challenges of accurate
global and local uncertainty estimates largely hinder the
development of efficient active learning cycles for machine
learning potentials. Yet, the field has a major advantage
over other prediction tasks: Instead of learning to predict
a single quantity (one target value per data point), a ma-
chine learning potential always predicts a molecular/full-
structure energy, as well as atomic forces for each atom in
each spatial direction. In the current study, we present a
model-agnostic, simple, and fast method to obtain accu-
rate uncertainties both for single data points, as well as
spatially resolved for all atoms within a data point. We
detail the theoretical basis of our approach and demon-
strate it on diverse systems, namely organic reactions in
gas phase, perovskite structures, and liquid water, where
we find that global and atomic model errors can be pre-
dicted quantitatively. We then show how our approach
enables a reliable identification of spatially resolved high-
error regions using simple committee standard deviations
and demonstrate the capabilities of these local uncertain-
ties for active learning.

II. RESULTS

A. Benchmark model

Due to the large flexibility of neural networks, training
a model multiple times from different starting configu-
rations yields slightly different predictions which can be
assumed to approximately follow a Gaussian distribution.
We thus first consider a committee of NC independently
trained models with model variance as the only source
of error. The committee will provide NC predictions ŷl

(with l = 0, 1, ..., NC), with mean ŷ and the committee
standard deviation

s =

√√√√ 1

NC − 1

NC∑
l

(ŷl − ŷ)2 (1)

computed as the unbiased estimator of the population
standard deviation. In the following, we compute s as
defined above, but note that for a low number of com-
mittee members, a correction to the underestimation of

the true population standard deviation by the commit-
tee standard deviation can be applied.39. The mean ŷ is
subsequently used as overall model prediction and s as
an estimator of the model uncertainty. Repeating this
experiment (i.e. training NC models and averaging their
predictions ŷl to ŷ) multiple times would reveal that ŷ is
distributed around the target with a standard deviation
of sŷ = s/

√
NC . Choosing the target y = 0 we can, with-

out loss of generality, then obtain the expectation value
of the absolute error via

⟨|ŷ|⟩ = 2

∫ ∞

0

ŷ
1

sŷ
√
2π

e
− ŷ2

2s2
ŷ dŷ =

2sŷ√
2π

=
2s√
2πNC

. (2)

While Eq. (2) shows that the absolute error, on aver-
age, is related to the committee standard deviation by a
factor α = 2/

√
2πNC , this is only true for a large num-

ber of repeated experiments of committee training and
predictions. For a single committee prediction ŷ, for ex-
ample predicting the molecular energy or the force of a
single atom, the model error |ŷ| cannot be directly corre-
lated with the uncertainty obtained from the committee
standard deviation s, because the prediction corresponds
to a single random draw from the underlying distribu-
tion. At the same time a large number of repeated com-
mittee trainings is prohibitively expensive in practice, so
that the correlation of the absolute error and the com-
mittee uncertainty through Eq. (2) might seem inappli-
cable to machine learning. Alternatively, we find that
the conversion factor from Eq. (2) can also be recovered
by averaging over targets within a dataset of Ni data-
points, instead of averaging over multiple experiments of
model retraining and prediction for a single target. In
this case, the mean absolute error over all targets yi is
related to the mean committee standard deviation by a
factor 2/

√
2πNC :

1

Ni

∑
|ŷi − yi| ≃

2√
2πNC

· 1

Ni

∑
si. (3)

Nevertheless, averaging over datapoints is also undesir-
able, since we aim for a direct correlation of error and
uncertainty for a single datapoint.
Machine learning potentials, however, do not only yield

a prediction of a single energy value per configuration,
but also forces for each atom. Thus, each data point i
in a dataset of size Ni consists of 3Nj force components,
where Nj is the number of atoms. As a result the model

predictions f̂k
ij aim to reproduce the target forces fk

ij with

k denoting the spatial direction. The predicted forces f̂k
ij

are obtained as a committee average over NC committee
predictions

f̂k
ij =

1

NC

NC∑
l

f̂kl
ij , (4)

resulting in a prediction error of

ekij = |f̂k
ij − fk

ij | (5)
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Figure 1. Histogram of the ratio of absolute error and uncer-
tainty for Monte Carlo committee predictions featuring model
variance as the only error source for a) individual atoms of
all data points, and b) aggregated values within each data
point. The gray dashed line indicates the average over all
data points. The individual combinations of errors and un-
certainties are furthermore shown c) per atom or d) per data
point, colored according to the error/uncertainty ratio. The
data were obtained with the parameters NC = 10, Ni = 100,
Nj = 1000 and ground-truth uncertainties drawn from an
inverse-Gamma distribution.

and a committee standard deviation of

skij =

√√√√ 1

NC − 1

NC∑
l

(f̂kl
ij − f̂k

ij)
2. (6)

Similar to the prediction of a single target discussed
above, ekij and skij cannot be correlated per atom, be-
cause again a single committee prediction corresponds to
a single draw from a distribution centered around the tar-
get with a width determined by skij/

√
NC . However, we

can utilize force predictions averaged over sets of atoms
to correlate variance error with uncertainty. Namely, by
averaging over all directions k and atoms j, we arrive at
a per-structure mean absolute error of

ei =
1

Nj

Nj∑
j

1

3

∑
x,y,z

ekij (7)

and an average standard deviation of

si =
1

Nj

Nj∑
j

1

3

∑
x,y,z

skij . (8)

In the following we will use Monte Carlo simulation to
corroborate that ei and si are strongly correlated whereas

ekij and skij are not. For a dataset of Ni structures con-

sisting of Nj atoms each, we draw σk
ij from an inverse-

Gamma distribution as proposed in Ref. 28, so that each
combination of i, j, and k gets assigned its own ground-
truth uncertainty. We then draw from normal distribu-
tions with µ = 0 and σ = σk

ij to obtain NC model pre-
dictions of a committee for each combination of i, j, and
k. Subsequently, we compute the committee standard
deviation skij and absolute error ekij as well as the aver-
aged values si and ei within a data point, Eqs. (7) and
Eq. (8), from the committee predictions. The simula-
tion thus corresponds to a simple artificial system, where
an otherwise perfect model only features variance error.
Fig. 1 depicts histograms of the error-uncertainty ratio
for the individual and aggregated case, as well as scat-
ter plots of the errors versus uncertainties. For NC = 10,
the conversion factor between error and uncertainty from
Eq. (3) is 2/

√
2πNC = 0.25. Clearly, both the individ-

ual and aggregated versions converge to a ratio of 0.25
averaged over all data points (gray dashed lines). How-
ever, as expected, the individual error-uncertainty ratios
are broadly distributed so that there is no linear depen-
dency between error and uncertainty for the individual
data points, as visible in Fig. 1c. Fig. 1a and Fig. 1c
furthermore depict that the distribution of the predicted
values around the target lead to more predictions being
observed towards the center of the distribution (small
error, dark purple) than its outskirts (orange). There-
fore, many individual uncertainty values obtained from
the committee standard deviation significantly underesti-
mate the actual model error, so that the individual com-
mittee uncertainties cannot be used to identify high-error
atoms. In contrast, the ratio of averaged absolute er-
rors over the uncertainties show a narrow distribution
as visible in Fig. 1b and Fig. 1d, so that we can actu-
ally estimate the prediction error from the uncertainty
by multiplication with 0.25, corroborating Eq. (3).

We have run the Monte Carlo simulations for differ-
ent NC , Ni, Nj , as well as different distributions for σ

k
ij ,

namely uniformly random distributions within an inter-
val, normal distributions, and even constant values, and
observe the same behavior across all systems: The in-
dividual ratios are centered around 2/

√
2πNC but are

distributed too broadly to show a meaningful correlation
between the absolute errors and uncertainties, while the
ratio of the respective aggregated values are distributed
in a narrow peak yielding a strong correlation.

We can therefore conclude that for models where the
variance is the main source of error, the mean force error
over a structure or molecule can be easily predicted by
multiplication of the mean committee standard deviation
by 2/

√
2πNC . For cases where model variance is the

only source of error, we have thus identified a method to
correlate the error and uncertainties within a single data
point, by aggregating over the errors and uncertainties of
all atoms within that data point.
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Figure 2. Relation between absolute error and uncertainty for the Transition1x dataset (a, top row), the SrTiO3 dataset (b,
middle row), and the liquid water dataset (c, bottom row). For each dataset, individual absolute errors versus uncertainties
are depicted in the first column, aggregated absolute errors versus uncertainties in the second column, sparsification curves in
the third column, and the distribution of the proportionality constant α in the fourth column. For the Transition1X dataset,
the insets furthermore show heatmaps of the respective plots for clarity.

B. Real systems with mixed error sources

In addition to model variance, nearly all machine learn-
ing models also suffer from model bias, which can stem
from fundamental shortcomings of the model, too little
data, or ill-chosen features, amongst others.29 We there-
fore examine whether our approach also holds up for ma-
chine learning potentials trained on real data sets.

Since we aggregate force uncertainties over atoms, the
number of atoms per data point is important and we
chose three data sets examining a large variety of sys-
tem sizes and configurations. 1) Transition1x12 features
nudged elastic band (NEB) searches for a wide range of
organic reactions in gas phase with 7 to 23 H, C, N, and
O atoms, and thus resembles rather small systems with-
out periodic boundary conditions. From each reaction,
we only used the last, converged reaction pathways made
up of ten images each, where indices 1, 2, 9, and 10 were
used as training and validation set. The test set can thus
be split into different indices corresponding to a different
level of extrapolation from the training configurations. 2)
Surface reconstructions of crystalline SrTiO3 were taken
from Ref. 40, and feature 136 Sr, Ti, and O atoms per
data point, thus resembling large systems with periodic
boundary conditions. 3) A liquid water data set from
Ref. 41 features 192 H and O atoms per data point, and

thus resembles a large, homogeneous system with peri-
odic boundary conditions that lends itself to dissecting
the overall simulation cell into smaller sub-regions. On
each dataset, we trained a five-membered ensemble of the
equivariant message-passing neural network MACE.4 See
Methods for further details.

Fig. 2 depicts direct comparisons between individual
(first column) and aggregated (second column) absolute
errors versus uncertainties, as well as sparsification plots
(third column) and the distribution of the ratios between
absolute error and uncertainty α (fourth column). The
sparsification curves are obtained by ordering the test
data points by either the absolute error or the uncer-
tainty, and then obtaining the mean absolute error over a
fraction of the data points. Without removing any data
points (i.e. the fraction of removed data points equals
zero), this yields simply the mean absolute error aver-
aged over all test data points, all atoms and all direc-
tions. By iteratively removing test data (highest values
of error or uncertainty are removed first), the mean ab-
solute error over the remaining data is therefore lowered
if the ordering corresponds to the absolute error (oracle
order). If the model uncertainties show the exact same
order as the absolute errors, the area between the oracle
curve and the sparsification curve is zero. A large area
therefore indicates that the uncertainties are not ordered
according the absolute error.
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Figure 3. a) Replot of the individual errors vs uncertain-
ties as heatmap for the Transition1x dataset. b) Replot of
the molecular error vs uncertainty as heatmap for the Transi-
tion1X dataset. c) Mean absolute error and mean uncertainty
over all data points and all atoms as a function of the reac-
tion path image index for Transition1x. d) For each index,
the distribution of α is plotted for the aggregated force un-
certainties and errors. e) Fit of α obtained from 20% of the
SrTiO3 test set. f) Prediction error obtained via the model
uncertainty and the fitted value of α versus the true error for
the remaining 80% of the test set.

For all datasets, we observe large areas in the sparsifi-
cation plots for the individual force uncertainties showing
that they do not correlate with the absolute error, and
cannot be used to order the test set according to the esti-
mated error. In fact, as we have explored in the previous
subsection, the single individual force uncertainties and
errors cannot correlate for mathematical reasons. To ob-
tain a direct correlation, uncertainties and errors have
to be averaged over sets of atoms, here the full molecule
or structure, to make use of Eq. (3). Although the data
sets have a different number of data points, and a dif-
ferent number of atoms per data point, they all show a
large improvement in correlation between error and un-
certainty upon aggregation over all atoms in a data point.
In all cases, an ordering of the predicted values accord-
ing to their uncertainty corresponds nearly perfectly to
the oracle ordering according to the true prediction error,
and the distribution of α is narrow. Note that the dis-
tribution of α is not centered around the expected value

of 2/
√
2πNC anymore, since all models feature differing

amounts of model bias, so that the error from model vari-
ance is only a small part of the overall prediction error.

Fig. 3a and Fig. 3b furthermore depict heatmaps of
the individual and molecular errors versus uncertainties
for the Transition1X dataset, since the actual functional
dependence is hard to read from Fig. 2 due to the large
number of test data points. Here, it becomes obvious
that even for this difficult extrapolation task, the aggre-
gation successfully leads to a highly correlated molecular
error and uncertainty. The Transition1x dataset is es-
pecially interesting to research the correlation between
error and uncertainty, since we can resolve it with re-
spect to the NEB image index. Since indices 1, 2, 9,
and 10 were used in the training and validation sets, we
can plot the test set performance and uncertainty met-
rics over the indices 3, 4, 5, 6, 7, and 8. The indices 5
and 6 are the most dissimilar to the training set, which
has never seen any transition state structures, but only
(close-to) equilibrium structures. We therefore expect
the model to have a much larger model bias for the in-
dices 5 and 6, than the indices 3 and 8. Fig. 3c depicts
the mean absolute errors and mean uncertainty over all
data points as a function of the index. We find that the
model performs worst for indices 5 and 6, as expected.
The model furthermore identifies these predictions as the
most uncertain, featuring a high aggregated committee
standard deviation. Further, the model is able to identify
a higher model bias (extrapolation error), Fig. 3d, where
the distribution of α shifts to higher values, the more the
model encounters data points far away from the training
set configurations. The values change from 0.93 for in-
dex 8 to 1.21 for index 5, as opposed to a pure-variance
model with α = 2/

√
2πNC = 0.46. Since Eq. (3) di-

rectly outputs the expected amount of variance error for
a given dataset and model architecture, we can further-
more compute the fraction of variance and non-variance
error of the overall error. The variance error is shaded
in dark gray in Fig. 3c, as well as the non-variance error
in light gray, which both visibly increase for structures
far away from equilibrium. Together, the overall uncer-
tainty strongly correlates with the actual error. The good
correlation of aggregated uncertainties with aggregated
errors for models with a significant amount of bias er-
ror may seem surprising, since technically the relation in
Eq. (3) relation only holds for errors stemming from vari-
ance. Recently, the bias error was found to be correlated
with the variance error when changing the dataset size or
model architecture.29 Here, we also find that the presence
of model bias only changes the value of α and broadens
its distribution slightly, but preserves the correlation. In
fact, we find that the bias and variance error are corre-
lated for machine learning potentials (the variance error
also increased for index 5 and 6), but the amount of bias
error differs between the test sets with different degrees
of extrapolation. Overall, the aggregated force uncer-
tainties reliably identify sets of data points with a higher
model bias, here extrapolation error due to missing train-
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ing data, which is an important prerequisite for successful
active learning cycles.

Finally, we observe that although α never corresponds
to the variance-only case, its true value can easily be ob-
tained from a small test set, and subsequently be used
to transform between the model uncertainty (committee
standard deviation) and the prediction error. Fig. 3e de-
picts how α is fitted from 20% of the test data of the
SrTiO3 system, which is then subsequently used to ob-
tain the predicted error for the remaining 80% of the
test data, Fig. 3f. The predicted error is simply αsi,
and can approximate the true error up to a mean abso-

lute deviation of only 0.005 eV Å
−1

for each single data
point(for a model with a force mean absolute error of

0.042 eV Å
−1

), thus providing an accurate, quantitative
proxy of the error. This enables an easy and reliable iden-
tification of erroneous model predictions for single data
points, as opposed to a full dataset.

C. Spatially resolved uncertainty

For large systems, we can go one step further, as we
obtain sufficient statistics even when aggregating only
over part of the system instead of all atoms in the system.
To obtain a spatially resolved error and uncertainty, we
aggregate locally over Nn neighboring atoms n around
atom j (including j) located within a cutoff rcut via

elocalij =
1

Nn

Nn∑
n

1

3

∑
x,y,z

ekin. (9)

Similarly, the uncertainties can be averaged over all
neighboring atoms as

slocalij =
1

Nn

Nn∑
n

1

3

∑
x,y,z

skin. (10)

Instead of a single absolute error and uncertainty per
data point, we therefore obtain Nj absolute errors and
uncertainties for each data point, each centered around
an atom j.
Spatially resolved errors and uncertainties for the

SrTiO3 surface are shown in Fig. 4, where a lighter color
corresponds to a larger error or uncertainty. It is clear
that mere atomic errors and uncertainties are not cor-
related, and the uncertainties provide lots of false posi-
tives for the expected error. This is in agreement with
earlier findings where the aggregated uncertainty of the
entire system was used for an active learning procedure,
because the atomic uncertainties failed to correlate with
the error.31 In contrast, the local errors and uncertainties
correlate very strongly, so that the local uncertainty can
be used to reliably identify high-error regions.

Fig. 5a depicts the local mean absolute error versus
the local uncertainty for rcut = 5 Å for the liquid water
dataset. In contrast to the individual force component

Figure 4. Spatially resolved errors and uncertainties for a data
point from the SrTiO3 dataset (side view). Top: The atomic
error and committee uncertainty obtained by summing over
the three spatial directions for each atom. Bottom: The local
error and uncertainty, Eqs. (9) and (10), aggregated up to
rcut = 4 Å.

Figure 5. Local errors for the for the liquid water dataset. A)
Local mean absolute error versus local uncertainty for rcut =
5 Å . B) Global mean absolute error for all atoms in a data
point over the maximum of local uncertainties. C) Ratio of
local error versus local uncertainty for different cutoff radii.

errors and uncertainties in Fig. 2c which feature little
correlation, the local errors and uncertainties are cor-
related. Furthermore, the maximum local uncertainty,
Fig. 5b, correlates with the overall mean absolute error
averaged over all atoms in the data point, so that the lo-
cally aggregated force uncertainties can both be used to
select high-error local substructures within a data point,
but also high-error data points. Fig. 5c shows the dis-
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Figure 6. Schematic depiction of an active learning cycle,
where an MD simulation with a machine learning potential
generates a trajectory. Frames with high local uncertainties,
indicated by lighter, yellow colors, are selected and cut into
smaller boxes. The edge regions (gray background) are re-
laxed using the model and finally the energies and forces for
the small boxes are then obtained ab-initio, and added to the
training set, on which a new model is trained.

tribution of the ratio of local error versus local uncer-
tainty for different cutoff radii. Again it is seen that
the atomic uncertainties are uncorrelated with the corre-
sponding absolute error. In a molecular system like wa-
ter, one might intuitively aggregate over individual water
molecules. Fig. 5c shows that even such a highly localized
aggregation, rcut = 1 Å, leads to a certain degree of cor-
relation. For larger cutoff radii, the correlation becomes
stronger and the locally aggregated uncertainty and error
naturally converge to the globally aggregated quantities
eventually.

D. Active learning using spatially resolved uncertainty

With the spatially resolved uncertainties established
as proxies for the local prediction error, we in the fol-
lowing explore their use in an active learning scenario.
The concept of local uncertainties is most helpful for
large systems, where they would enable an active learn-
ing loop involving cutting out a fragment of the system
for ab-initio calculations, instead of recomputing the full
system. Molecular dynamics (MD) simulations pose an
important application, where a large simulation cell pro-
hibits the addition of new training data of the full system.
Here, we can make use of the direct correlation of local
uncertainty with local error to design an active learning
framework based on local subregions where a model pre-

diction is identified to fail. As detailed in the Methods
section, we start with only 50 high energy water struc-
tures largely irrelevant to the density and temperature
of interest. The active learning cycle is schematically de-
picted in Fig. 6. The procedure consists of iteratively se-
lecting sub-regions of the large simulation cell exhibiting
large local uncertainty and constructing new small cells
for which ab-initio calculations are performed. Thereby,
new training data is only added for the relevant subre-
gions. Fig. 7 depicts the performance of the uncertainty-
based models on test sets also constructed from MD sim-
ulation (see Methods for details). For all test sets the
error falls off rapidly as data from the local substructures
are added to the training set, with each active-learning
cycle adding only ten data points. As comparison, we
furthermore randomly selected frames and regions to cut
out boxes. Averaged over all test data points, the accu-
racy of predicting forces does not differ significantly be-
tween the two approaches, because with the little amount
of training data available, the addition of any data is
helpful to the model. However, the uncertainty-sampling
method largely outperforms random sampling for high-
energy structures even after only a few active learning cy-
cles. This is especially important for molecular dynamics
simulations, where even infrequent wrong predictions of
the forces can cause the trajectory to deviate from an ab-
initio trajectory significantly, or can cause the simulation
to crash. We therefore largely favor a model not only
able to predict typical configurations well, but also ex-
trapolate outside of that realm. The identification of ill-
predicted environments via the local uncertainty there-
fore enables an efficient, fast, and effective way to collect
new training data in an active learning scheme for molec-
ular dynamics simulation and yields stable models better
able to extrapolate.

´

III. CONCLUSION

We have shown that the epistemic uncertainty of a sin-
gle prediction obtained via a committee standard devia-
tion cannot be directly correlated to the absolute error
because the absolute error is distributed along a normal
distribution with a width determined by the epistemic
uncertainty from model variance. For machine learning
potentials, this holds true both for energy and atomic
force predictions. Building on these results, we have
developed an approach to nevertheless use force uncer-
tainties to identify high-error data points by aggregating
force uncertainties and errors over groups of atoms. For
variance-dominated models, a strong correlation between
aggregated uncertainties and errors can be proven math-
ematically. For machine learning potentials, we further
find that the approach even holds for models containing
bias. The aggregated force uncertainty is directly corre-
lated both with the aggregated absolute error over that
group of atoms but also the total absolute error of the
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Figure 7. Model performance (mean absolute errors of the forces) as a function of the active learning cycle with each active-
learning cycle adding ten data points of new ab-initio calculations. The active learning is performed via a random (dashed
lines) or local uncertainty-based (full lines) sampling strategy. The different panels show different subsets of the test data,
sorted by their potential energy.

model prediction for various datasets. Our approach con-
fidently identifies high-error data points for systems with
low and high numbers of atoms, and is applicable to pe-
riodic and non-periodic systems in gas, liquid, and solid
phase alike. We furthermore demonstrated that an aggre-
gation must not necessarily include all atoms of a struc-
ture, but can be restricted to neighboring atoms around
an atom of interest. Locally aggregated uncertainties can
then be applied to identify high-error local substructures,
and thus resolve absolute errors on an atomic scale. The
benefits of locally aggregated uncertainties were show-
cased for an active learning study, indicating that data
selection via spatially resolved uncertainties allows for a
data-efficient and fast training of accurate machine learn-
ing potentials. We therefore envision the current study
to spark new applications within machine learning po-
tentials, especially active learning cycles, across a large
variety of systems.

IV. METHODS

A. Data sets and models

The equivariant message-passing neural network
MACE4 was used as provided, with hyperparameters as
indicated in the following paragraphs. In all cases, train-
ing was performed using the AMSGrad optimizer with
hyperparameters and learning rate schedules given by the
defaults set in the MACE package. All models were con-
structed using two layers with 128 channels for even and
odd parity features and a maximum order lmax = 3 of
spherical harmonics. Eight Bessel basis functions and
a polynomial cutoff function of order p = 5 were used
for generating the radial features, which are passed into
MLPs with three layers of 64 nodes each and SiLU serv-
ing as the non-linear transfer function. The final read-
out function generating the atomic energies is given by a
MLP with a single layer of 16 hidden features.

Transition1x12 was downloaded as provided. From the
roughly 10M data points of 10,073 reactions, we only

kept the last, converged reaction pathways, where each
pathway is made up of 10 images of the NEB search, re-
sulting in 100k data points. The dataset was then split
into a training and validation fraction made up of struc-
tures of the first or last two images (index 1, 2, 9, 10) in
the NEB search (40k data points), corresponding to the
equilibrated reactants, products, and configurations close
to these equilibrated structures. All other image indices
were put into the test set (60k data points). This split
allows us to explore the correlation of epistemic uncer-
tainty with the absolute error for regions the model has
never seen, namely non-equilibrium configurations along
diverse reaction paths. Since the image indices are known
for all data points, we can evaluate the correlation as a
function of the distance to the training image indices,
and therefore explore mild (index 3, 8) to strong (index
5, 6) out-of-distribution examples.

MACE models for Transition1X were trained with a
cutoff of 5 Å for a maximum of 1400 epochs with an early
stopping patience of 50, with a force weight of 100.0 and
an energy weight of 1.0. Then, 100 further epochs with-
out early stopping were conducted with a force weight of
100.0 and an energy weight of 1000.0.

SrTiO3(110)-4×1 structures were obtained from a sub-
set of structures originally published in Ref. 40, which
were then re-evaluated via VASP version 6.4.242 single-
point evaluations with the r2SCAN functional.43 The en-
ergy cutoff was set to 440 eV and the width of Gaussian
smearing to 0.02 eV. The final data set contained 889
unique structures, which were split randomly into train-
ing, validation, and test sets with 554, 237, and 98 data
points, respectively.

MACE models for SrTiO3 were trained with a cutoff of
4 Å for a maximum of 1200 epochs with an early stopping
patience of 50, where the force and energy weights corre-
sponded to 100.0 and 1.0, respectively. Subsequently, 300
epochs without early stopping were conducted at force
and energy weights of 100.0 and 1000.0, respectively.

Finally, 1,593 structures of 64 water molecules origi-
nally calculated at the revPBE0-D3 level of theory and
periodic boundary conditions were taken from Cheng et
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al.41 as provided. Since the set contains five structures
with duplicate atomic positions these were removed from
the dataset, resulting in 1,588 unique structures. The
energies and forces for these structures were recomputed
at the RPBE-D344,45 level of theory using VASP version
6.4.242. The hard PAW potential setups provided by the
VASP package were used, with the cutoff energy set to
850 eV, the width for Gaussian smearing set to 0.05 eV
and solely the Γ-point of the Brillouin zone being sam-
pled. Following the results reported in Ref. 46, D3 correc-
tions have been computed with the zero damping scheme.
The dataset was randomly split into training, validation
and test sets with ratios 80:10:10.

MACE models for liquid water were all computed with
a cutoff radius of 4 Å. Training was initially run with a
force weight of 100.0 and an energy weight of 1.0 for
800 epochs without early stopping. Subsequently, the
energy and force weights were adjusted to 1000.0 and
100.0 respectively and 200 more epochs were performed.

B. Active learning for a molecular dynamics simulation of
water

Two independent active learning cycles were run for
15 iterations, one based on identifying new structures
using local uncertainties and one based on sampling ran-
domly. Both start from a model trained on an 80:20 split
of the 50 highest energy structures contained in the wa-
ter dataset described above. At each iteration, a 20 ps
molecular dynamics simulation of a system containing
128 water molecules at a fixed density of 0.86 g cm−3 was
run with a timestep of 0.5 fs in the NVT ensemble at
350K using a Nosé-Hoover thermostat. LAMMPS ver-
sion 2023.3.2847 was used with MACE as the engine for
energy and force evaluations. The given density lies be-
low the experimental density of water, as expected for
the RPBE-D3 level of theory.46

The trajectories obtained from the MD simulations
were used to generate new training data to improve the
models: At each active learning step, the first 10 ps of the
trajectory were divided into ten evenly sized segments to
guarantee new structures were sampled at different inter-
vals of the simulation. For the active learning cycle based
on randomly selecting new data, a random snapshot was
selected from each of the ten buckets. For the local
uncertainty-based runs, snapshots were selected from the
subsets by calculating the locally aggregated uncertain-
ties for each atom based on a committee of five MACE
models using an aggregation rcut = 4 Å and choosing the
frames featuring the environments with the highest un-
certainties. Boxes containing 64 water molecules were
subsequently cut out from the snapshots: A central oxy-
gen atom and the 63 closest oxygen atoms to it were
selected, and the water molecules determined by select-
ing the two hydrogen atoms closest to each oxygen re-
spectively. The box length for the new, smaller config-

uration is given by lnew =
(
1
2Vinit

) 1
3 and the originally

selected center oxygen atom was placed in the center of
a cubic box with this length. For the active learning
cycle based on local uncertainties, the central atom was
given by the oxygen atom featuring the maximum local
uncertainty in the snapshot. For the run based on ran-
dom selection, the index of the central oxygen atom was
randomly generated. To avoid introducing high energies
and forces due to cutting a periodic box from a larger
initial configuration, the atoms close to the border of
the new box were relaxed using the MACE model at the
current active learning iteration based on the following
procedure: All atoms within a distance of 0.8 lnew/2 of
the central oxygen atoms were kept fixed. The box was
then padded by 2 Å in each direction. Five BFGS iter-
ations were performed to relax the positions of the free
atoms and the box size decreased by 0.2 Å in each direc-
tion. This procedure was repeated until the original box
size was recovered, to allow the border regions to relax
to physically meaningful structures. Energies and forces
for the configurations obtained by this procedure were
then calculated using the DFT setup described above. A
new active learning iteration was then started by adding
the new configurations to the dataset from the previous
iteration and retraining MACE models from randomly
initialized model parameters based on the new dataset.
We furthermore generated ten additional data points

per AL cycle for both the random and uncertainty-based
selection following the exact same procedure as described
above, utilizing the trajectory from 10-20 ps. This data
was used as independent test set, totalling 360 data
points.

DATA AND SOFTWARE AVAILABILITY

The Transition1x, SrTiO3, and water datasets in-
cluding all data generated during the active learning
loops for water are available on Zenodo at 10.5281/zen-
odo.11086346, together with scripts to calculate locally
aggregated uncertainties and cut and relax water boxes
for the active learning study, as well as a Jupyter note-
book for the Monte Carlo experiment.
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ture Communications 12 (2021), 10.1038/s41467-021-25342-8.

36A. Johansson, Y. Xie, C. J. Owen, J. S. Lim, L. Sun, J. Vander-
mause, and B. Kozinsky, “Micron-scale heterogeneous catalysis
with bayesian force fields from first principles and active learn-
ing,” (2022), arXiv:2204.12573 [physics.comp-ph].

37S. Roy, J. P. Dürholt, T. S. Asche, F. Zipoli, and R. Gómez-
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