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Abstract

Objective: The primary objective of this study is to conduct a comprehensive review of the significance of molecular docking in the field of drug discovery.
This includes an examination of the various approaches and methods used in molecular docking, as well as an exploration of the techniques used for
interpreting and validating docking results.
Methods: To gather relevant data, a systematic search was conducted using Web of Science, PubMed, and Google Scholar. The search focused on
articles related to molecular docking methodologies and their applications in drug discovery. Additionally, alternative techniques that can be used for more
precise simulations of ligand-protein interactions were also considered.
Results: Molecular docking has proven to be an incredibly rich and valuable process in the field of drug discovery. Its flexibility allows for the incorporation
of advanced computational techniques, thereby enhancing the reliability and efficiency of drug discovery processes. The results of the study highlight the
significant strides made in the field of molecular docking, demonstrating its potential to revolutionize drug discovery.
Conclusions: Molecular docking continues to evolve, with new advancements being made regularly. Despite the challenges faced, these advancements
have significantly contributed to the enhancement of molecular docking, solidifying its position as a crucial tool in the field of drug discovery.
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INTRODUCTION

Molecular docking stands as a cornerstone in the modern drug
discovery process, providing a computational lens through which
the interaction between small molecule ligands and their macro-
molecular targets can be scrutinized. At its core, molecular docking
simulates the “lock-and-key” mechanism that underlies molecular
recognition, which is pivotal for the identification and optimization
of compounds with therapeutic potential [1–4]. The technique’s
allure lies in its ability to predict how a ligand binds to a protein,
thereby offering insights into the binding affinity and biological
activity of the ligand, which are crucial for the rational design of
drugs [2, 5].

Despite its widespread adoption and success, molecular dock-
ing is not without its challenges. One of the primary hurdles is
the accuracy of scoring functions, which are mathematical models
used to predict the binding affinity between the ligand and its
target [6]. These functions must strike a delicate balance between
computational efficiency and the ability to accurately replicate the
complex physicochemical phenomena occurring at the molecular
level [6, 7]. The inherent limitations of scoring functions, such as
their simplified treatment of solvent effects and protein flexibil-
ity, often necessitate the use of additional validation strategies to
ensure the reliability of docking predictions [7, 8].

The field of molecular docking is continuously evolving, with
recent advances aimed at addressing these challenges. The inte-
gration of machine learning algorithms with docking simulations
has shown promise in enhancing the predictive power of scoring
functions [3, 9]. Furthermore, the development of methods that

account for the dynamic nature of proteins, such as ensemble dock-
ing and induced-fit models, has improved the representation of
protein-ligand interactions [7,10]. These innovations, coupled with
the increasing computational power and the availability of high-
quality structural data, are propelling molecular docking towards
more accurate and efficient drug discovery workflows [2, 3, 10].

Figure 1 shows the exponential evolution of the number of in-
dexed papers related to molecular docking since year 2000. These
data indicates that molecular docking remains a vital interpretative
tool in drug discovery, enabling the identification of novel thera-
peutics and the management of various diseases. As computational
methods become more sophisticated and integrated with experi-
mental data, the potential of molecular docking to contribute to the
discovery of next-generation drugs continues to expand [2, 3, 5].

APPROACHES AND TECHNIQUES

There are two main approaches within molecular docking: rigid
docking and flexible docking.

Rigid docking is a computational approach that treats both the
ligand and the receptor as rigid bodies, meaning that their confor-
mations do not change during the docking process. This method
simplifies the interaction between the two molecules by consid-
ering only their translational and rotational degrees of freedom
without accounting for any flexibility in their structures. It is par-
ticularly useful for initial screening in virtual screening campaigns
where the goal is to quickly identify potential binders from large
libraries of compounds. It can also be used when the binding site
is well-defined and when the ligand and receptor are known to
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Figure 1 Evolution of number of papers with “molecular dock-
ing” keyword. Data included herein are derived from Clari-
vate™ (Web of Science™). © Clarivate 2024. All rights reserved.

undergo minimal conformational changes upon binding. Because
it does not account for conformational changes, rigid docking can
be much faster than flexible docking approaches. It is often used to
examine large systems, such as protein-protein interactions, where
the number of potential conformations can be prohibitively large
for flexible docking methods [11].

Flexible docking is a sophisticated approach in molecular dock-
ing that accounts for the flexibility of the ligand and, in some cases,
the receptor (protein) during the docking process. This method is
crucial for accurately predicting how a molecule binds to a target,
as it considers the dynamic nature of molecular interactions, which
can significantly influence binding affinity and specificity. It allows
the ligand to adopt multiple conformations during the docking
process. This is essential because ligands can change their shape
to fit more snugly into the binding site of the receptor. Techniques
such as incremental construction from rigid parts, global energy
optimization, and multi-conformer docking are used to explore the
conformational space of the ligand [12]. While more computation-
ally intensive, some flexible docking approaches also account for
receptor flexibility. This can involve modeling key side chains of
the receptor as flexible, or using molecular dynamics simulations
to generate multiple receptor conformations that can be used in
docking [13–15].

High-throughput docking (HTD)
High-throughput docking (HTD) is a computational technique
used in drug discovery to rapidly screen vast libraries of small
molecules (ligands) to identify those that are most likely to bind
to a target protein with high affinity. This process is crucial for
identifying potential drug candidates in the early stages of drug
development. HTD leverages the principles of molecular docking,
which predicts the preferred orientation of a ligand to a protein
(receptor) to form a stable complex, thereby estimating the binding
affinity between the two molecules. HTD is primarily used in
structure-based drug design to enrich a sub-library with potential
ligands from a larger chemical library. This enriched sub-library
is then prioritized for further experimental evaluation. The main
goal is to efficiently and effectively identify molecules that are
likely to interact with the target protein, thereby reducing the time
and cost associated with experimental high-throughput screening
(HTS) [16].

Ensemble docking
Ensemble docking is a computational technique used in the field
of molecular docking to address the challenge of protein flexibility
when predicting the binding of ligands to their protein targets.
Traditional docking methods often treat the protein as a rigid struc-
ture, which can lead to inaccuracies because proteins are dynamic
and can adopt multiple conformations. Ensemble docking over-
comes this limitation by considering multiple conformations of the
protein target during the docking process. It uses a set of different
protein structures, or an ensemble to represent the various confor-
mations that a protein can adopt. These structures can be sourced
from experimental data, such as X-ray crystallography or NMR
spectroscopy, or generated computationally through techniques
like molecular dynamics simulations [17, 18]. By accounting for
protein flexibility, ensemble docking can provide a more accurate
prediction of the ligand’s binding mode and affinity. It allows
the ligand to interact with different conformations of the binding
site, which can lead to the identification of the most favorable
binding pose across the ensemble [17, 19]. Ensemble docking is
computationally more intensive than traditional docking because it
involves multiple docking runs, one for each protein conformation.
However, advancements in computational power and parallel pro-
cessing have made it more feasible to perform ensemble docking
on a large scale [20, 21].

Incorporation of solvent
The solvent can be considered as implicit or explicit. The difference
between implicit and explicit solvent models in molecular docking
lies primarily in how they simulate the solvent environment’s
effect on the molecular interactions between the ligand and the
receptor.

Implicit solvent models simplify the solvent environment by
treating it as a continuous medium rather than simulating indi-
vidual solvent molecules. This approach averages the solvent’s
effects on the solute, focusing on the macroscopic properties of the
solvent, such as its dielectric constant. Because they do not require
the simulation of individual solvent molecules, implicit models
are computationally less demanding. This allows for faster simula-
tions and the ability to study larger systems or longer time scales
with reduced computational resources. While implicit models
can speed up simulations and are useful for exploring conforma-
tional space, they may lack the detailed representation of specific
solvent-solute interactions, such as hydrogen bonding or the pre-
cise effect of solvent molecules on the solvation shell of the ligand
and receptor [22, 23].

The incorporation of explicit solvent in molecular docking is a
critical aspect that significantly influences the accuracy of docking
predictions. This approach involves explicitly including water
molecules or other solvent molecules in the docking simulations
to more accurately model the real-life conditions under which
molecular interactions occur. The presence of solvent can affect the
conformation of the ligand and the receptor, as well as the inter-
action between them, making the consideration of solvent effects
essential for realistic docking studies. Water molecules often play
a crucial role in ligand recognition and complex stabilization for
both nucleic acids and proteins. The polarization effects caused by
the solvent can significantly impact the docking process, especially
for nucleic acids where the phosphate groups and counter ions like
Mg+2 or K+ influence the water molecules and functional groups
of drugs. Despite the recognized importance of explicit solvent
in docking, incorporating water molecules into the docking pro-
cess presents significant challenges. The large, solvent-accessible
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interface of macromolecules makes it extremely challenging to
accurately model the effects of water molecules within a reason-
able computational timeframe [24]. It is worth noting that even
the water model used can affect the calculated parameters in the
simulations [25, 26].

Machine learning and artificial intelligence
The integration of machine learning (ML) and artificial intelligence
(AI) into molecular docking represents a significant advancement
in the field of drug discovery and computational chemistry. These
technologies are being used to enhance the accuracy, efficiency, and
predictive power of molecular docking simulations. One of the pri-
mary applications of ML in molecular docking is the development
of improved scoring functions. Traditional scoring functions often
struggle to accurately predict binding affinities due to their re-
liance on simplified physical models. ML models, trained on large
datasets of known ligand-receptor interactions, can learn complex
patterns and interactions, leading to more accurate predictions of
binding affinities. ML algorithms can significantly speed up the
virtual screening process by learning to predict which molecules
are likely to bind to a given target. This can be particularly useful in
high-throughput screening, where ML models can prioritize poten-
tially active compounds for further investigation, thereby reducing
the need for extensive experimental assays. AI techniques, partic-
ularly deep learning models, can be trained to predict the likely
binding poses of ligands within a receptor’s active site. These
models can learn from large datasets of known ligand-receptor
complexes, capturing subtle patterns that may not be apparent
through traditional docking methods. AI models can also be used
to address the challenge of protein flexibility in docking simu-
lations. By training on dynamic data from molecular dynamics
simulations, ML models can predict how protein conformational
changes affect ligand binding, which is a significant challenge for
traditional docking methods that often consider the protein as a
rigid body [27, 28].

Deep learning architectures like convolutional neural networks
(CNNs) and recurrent neural networks (RNNs) are particularly
suited for modeling the spatial and temporal complexities of molec-
ular interactions. These models have been used to develop new
docking algorithms that can automatically learn from structural
data. Reinforcement learning (RL) has been applied to optimize
the docking process itself. In this approach, the docking algorithm,
modeled as an agent, learns to improve its strategy for exploring
the conformational space of the ligand and receptor to maximize
the predicted binding affinity. Transfer learning involves applying
knowledge gained from one problem domain to a different but
related problem. In the context of docking, models trained on large
datasets of molecular interactions can be fine-tuned with smaller,
specific datasets to improve performance on particular types of
targets or ligands [3].

Hybrid methods
Hybrid methods in molecular docking are integrated computa-
tional approaches that combine different techniques to enhance the
accuracy and effectiveness of docking simulations. These methods
leverage the strengths and mitigate the drawbacks of individual
virtual screening (VS) strategies, thereby improving the outcomes
of computer-aided drug design. Hybrid methods can incorporate
a variety of computational techniques, including but not limited
to, molecular docking, molecular dynamics simulations, quan-
tum mechanics, machine learning, pharmacophore modeling, and
ligand-based drug design. The integration of these methods allows

for a more comprehensive analysis of ligand-receptor interactions
by considering factors such as protein flexibility, solvent effects,
and the dynamic nature of molecular interactions. Here are some
examples of hybrid methods used in molecular docking.

Combination of Scoring Functions: A hybrid method may involve
the use of multiple scoring functions to evaluate the binding affin-
ity of ligand-receptor complexes. This can include a combination
of empirical, knowledge-based, and physics-based scoring func-
tions to provide a more comprehensive assessment of the docking
results. Integration of Ligand-Based and Structure-Based Docking: Hy-
brid methods can integrate ligand-based pharmacophore modeling
with structure-based docking to enhance the virtual screening pro-
cess. This approach can improve the identification of bioactive
molecules by considering both the chemical properties of known
ligands and the structural details of the target protein. Use of Molec-
ular Dynamics Simulations: Molecular dynamics (MD) simulations
can be integrated with docking to account for protein flexibility and
solvent effects. In this hybrid approach, MD simulations are used
to generate multiple conformations of the protein, which are then
used in docking simulations to predict how ligands bind to differ-
ent protein states. Machine Learning-Enhanced Docking: Machine
learning algorithms can be used to refine docking predictions. For
example, ML models can be trained on large datasets of known in-
teractions to improve the prediction of binding poses and affinities
or to re-score docking results to better correlate with experimen-
tal data. Quantum Mechanics/Molecular Mechanics (QM/MM): This
hybrid approach combines the accuracy of quantum mechanics
(QM) for modeling the electronic interactions within the docking
site with the efficiency of molecular mechanics (MM) for the rest
of the system. QM/MM methods are particularly useful for cap-
turing the electronic effects that are critical for understanding en-
zyme mechanisms, reaction energetics, and the influence of metal
ions in docking simulations. Pharmacophore-based Docking: Phar-
macophore models represent the spatial arrangement of features
that are necessary for a molecule to interact with a specific bio-
logical target. Hybrid methods that incorporate pharmacophore
models into docking simulations can improve the identification of
bioactive molecules by considering both the chemical properties
of known ligands and the structural details of the target protein.
This approach can implicitly account for the flexibility of the re-
ceptor, which is often a limitation in traditional docking methods.
High-Throughput Docking Using Quantum Mechanical Scoring: High-
throughput docking (HTD) is a computational technique used to
rapidly screen large libraries of compounds. A hybrid method that
uses quantum mechanical scoring within HTD can provide a more
accurate description of protein-ligand interactions, capturing the
underlying physics of the molecular system and accounting for all
contributions to the energy, including those effects usually missing
in classical force fields [16, 27, 29–36].

Fragment-based docking
Fragment-based drug discovery (FBDD) involves screening a li-
brary of small, low-molecular-weight compounds against a target
protein to identify those that bind with high efficiency and speci-
ficity. These fragments are then used as starting points for the
development of more potent and selective drug candidates. Com-
pared to traditional high-throughput screening (HTS), FBDD can
efficiently cover chemical space with a higher hit rate. It requires
fewer compounds to be screened and can identify binders with
high ligand efficiency, which is a measure of the binding energy per
atom of the ligand. In silico methods, including molecular docking,
play a crucial role in FBDD. Docking is used to predict the ligand-
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receptor interaction modes and to identify hits by structure-based
virtual screening. Computational strategies can also guide the
growth of fragment hits into potent leads. Fragments are particu-
larly sensitive to scoring problems because they are weak ligands
that form few interactions with the protein. Therefore, the cor-
rect and incorrect poses can be difficult to distinguish. However,
incorporating binding mode information can improve fragment
docking, as it helps to sort poses by similarity to the crystallo-
graphic structure of the protein in complex with known binders.
FBDD is applicable to a wide range of targets, including those
considered “undruggable” by traditional methods. The versatility
of fragment-based docking allows it to be used in conjunction with
other biophysical methods to guide fragment growth and confirm
molecular interactions between a target and a ligand [37–40].

Virtual screening and drug repurposing
Virtual screening and drug repurposing are two interconnected
strategies in the field of molecular docking that leverage compu-
tational methods to expedite the drug discovery process. These
approaches are particularly valuable for identifying new therapeu-
tic applications for existing drugs or compounds, thereby reducing
the time and cost associated with traditional drug development.
Virtual screening (VS) is a computational technique used to evalu-
ate a large library of compounds against a biological target to iden-
tify those most likely to bind to and modulate the target’s activity.
It can be broadly categorized into ligand-based and structure-based
(receptor-based) virtual screening. Ligand-Based Virtual Screening
(LBVS) relies on the knowledge of known active ligands to search
for new compounds with similar chemical properties or structural
features [11, 41]. Structure-Based Virtual Screening (SBVS) requires
the three-dimensional structure of the target receptor. Molecular
docking is a key component of SBVS, where compounds are com-
putationally “docked” into the binding site of the target protein to
predict their binding mode and affinity [11, 41, 42]. Virtual screen-
ing has become increasingly important with the advancement of
technologies for protein structural science, including cryo-electron
microscopy and X-ray crystallography, making receptor-based vir-
tual screening a crucial step in lead compound discovery [11].

DOCKING FRAMEWORK

The steps required for molecular docking can be broadly catego-
rized into several key stages, from preparation of the molecules
involved to the analysis of the docking results. Here is a detailed
breakdown of these steps:

1. Preparation of ligands and proteins.

2. Identification of the binding site.

3. Setup of docking calculations.

4. Running the docking.

5. Evaluation of results.

6. Validation of results.

Preparation of ligands and proteins
The preparation of ligands and proteins is a crucial initial step in
the molecular docking process, ensuring that the molecular struc-
tures are suitable for accurate and efficient docking simulations.
Ligands can be sourced from databases such as PubChem [43]
and ZINC [44] or drawn using chemical drawing tools like Chem-
Draw, ChemSketch or Maestro if they are not available in databases.

Once the ligand structure is obtained, it is important to optimize
its geometry and calculate partial charges. This can be done using
computational chemistry tools that perform energy minimization
and charge distribution calculations. Ligands may need to be pre-
pared in multiple conformations, especially if they are flexible.
This involves generating different spatial arrangements of the lig-
and to explore various possible interactions with the target protein.
The prepared ligand structures are then converted into a format
suitable for the docking software, such as PDBQT for AutoDock,
which includes information on atom types and charges [31, 45, 46].

Protein structures are typically retrieved from databases like
the Protein Data Bank (PDB) [47]. If the structure of the target pro-
tein is not available, homology modeling may be used to predict
the structure based on similar proteins. The retrieved or modeled
protein structure often requires cleaning, which includes the re-
moval of water molecules, ligands, or ions that are not relevant to
the docking study. Additionally, missing atoms or residues in the
protein structure need to be added. The protonation states of ioniz-
able residues are adjusted, and the protein structure is subjected to
energy minimization to relieve any steric clashes and to stabilize
the structure [45, 48].

Identification of the binding site
The identification of the binding site in molecular docking is of
paramount importance because it is where the ligand interacts
with the protein, and this interaction is central to the ligand’s
biological activity. Accurately identifying the binding site is crucial
for several reasons [2, 31, 45]:

Efficiency: Knowing the location of the binding site before dock-
ing processes significantly increases the efficiency of the docking.
It allows the docking algorithms to focus computational resources
on the regions of the protein most likely to interact with the ligand,
rather than searching the entire protein surface.

Accuracy: Correctly identifying the binding site ensures that
the ligand is docked in the correct location, which is essential for
predicting the binding affinity and the biological activity of the
ligand accurately.

Mechanistic Insights: Analyzing the interactions within the bind-
ing site can provide insights into the mechanism of action of the
ligand. Understanding these interactions can guide the optimiza-
tion of the ligand’s structure to improve its efficacy and specificity.

Drug Discovery and Development: In drug discovery, the iden-
tification of the binding site is a critical step for structure-based
drug design. It enables the discovery of novel compounds with
therapeutic potential and assists in the optimization of existing
drugs.

Drug Repurposing: Identifying binding sites can also contribute
to drug repurposing efforts by revealing alternative targets or
pathways that an existing drug might modulate.

Target Validation: Accurate binding site identification helps in
validating the target protein for therapeutic intervention, which is
a crucial step in the early stages of drug development.

Flexibility and Dynamics: Understanding the binding site’s flexi-
bility and dynamics can inform the design of drugs that can accom-
modate or induce changes in the protein’s conformation, which is
important for the induced-fit model of enzyme activity.

Setup of docking calculations
Before starting the docking calculations, ensure that the docking
software is properly installed on your system. You may also need
additional software for preparing the inputs and analyzing the
results. The setup of docking calculations involves several critical
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steps to ensure accurate and efficient simulation of ligand-receptor
interactions. In general, each software has a proper set of parame-
ters. One step involves defining the search space within the protein,
usually by setting up a grid around the binding site. This can be
based on known ligand binding data or predicted using software
tools that identify potential binding pockets. The binding site can
be defined using coordinates or by selecting specific residues. Pa-
rameters such as grid size and spacing are crucial because they
influence the accuracy and speed of the docking process. Some
programs allow you to adjust the scaling of van der Waals radii and
specify the ligand size to be docked and to define constraints to
bias the docking if the docked poses do not match experimentally
validated poses.

Running the docking
Running molecular docking involves various computational strate-
gies depending on the resources available and the scale of the
docking project. For small-scale docking tasks, molecular docking
can be performed on a single CPU. This involves installing dock-
ing software, preparing the input files, and running the docking
process using command-line or graphical interface. This method
is straightforward but can be time-consuming if the ligand library
is large. Almost all docking software can utilize multiple CPU
cores to parallelize the docking process, significantly reducing
the computation time. This is achieved by setting the number of
CPUs in the docking command, which allows the software to run
multiple docking calculations simultaneously. For larger datasets,
high-performance computing (HPC) clusters can be used. These
systems involve multiple CPUs working in parallel, managed by
job scheduling systems like PBS or SLURM. Docking tasks are
distributed among the CPUs, greatly enhancing the throughput
of virtual screening campaigns. Some docking tools have been
optimized to run on Graphics Processing Units (GPUs), which
can perform calculations faster than CPUs for certain types of
computational tasks.

Evaluation of results
Evaluating the results of molecular docking is a critical step in the
drug discovery process, as it helps determine the potential efficacy
and specificity of ligands based on their predicted interactions
with the target protein.

Analysis of docking poses Pose Selection: Review the top-ranked
poses based on the docking scores provided by the docking soft-
ware. These scores typically reflect the predicted binding affinity
of the ligand to the receptor. They are mathematical models used
to predict the binding affinity of a ligand to a protein. They assess
the quality of the ligand poses generated during the docking pro-
cess by calculating a score that typically reflects the free energy of
binding. These functions can be categorized into several types, in-
cluding force-field-based, empirical, and knowledge-based scoring
functions. Each type uses different parameters and methodologies
to estimate the interaction energies. During the docking process,
multiple poses (conformations) of a ligand are generated [49, 50].

Scoring functions evaluate each pose based on its potential en-
ergy, interaction with the protein, and other physicochemical prop-
erties. The poses are then ranked based on their scores, with lower
scores generally indicating more favorable interactions (higher
binding affinity). The pose with the best (lowest) score is typi-
cally considered the most likely binding conformation. However,
selecting the top-scoring pose as the best solution is not always
reliable. It is essential to consider the distribution of scores and

the differences between the top poses. In some cases, additional
criteria such as the presence of key interactions (e.g., hydrogen
bonds with crucial residues) or the fit within the binding pocket
are also considered to validate the selected pose. Scoring func-
tions are not perfect and often face challenges such as accurately
capturing solvent effects, protein flexibility, and entropic changes.
Due to these limitations, the top-scoring pose might not always
represent the experimentally observed binding mode. Therefore, it
is recommended to analyze multiple top-ranking poses and con-
sider additional validation methods such as molecular dynamics
simulations or experimental data. To improve the reliability of
pose selection, consensus scoring can be used. This approach com-
bines scores from multiple scoring functions to balance out their
individual biases and errors, potentially leading to a more accurate
selection of the best pose [50–53].

Recent developments include the integration of machine learn-
ing techniques with traditional scoring functions to enhance their
predictive accuracy. These advanced scoring functions are trained
on large datasets of known protein-ligand interactions to better
generalize across different systems. While scoring functions pro-
vide a quantitative measure to evaluate and rank ligand poses,
their limitations necessitate careful analysis and often the use of
additional validation strategies to ensure the selection of the most
biologically relevant pose [3, 54].

Visual Inspection: Visual inspection of docking poses comple-
ments the quantitative assessments provided by scoring functions.
This qualitative analysis involves manually examining the docked
conformations of a ligand within the binding site of a protein to en-
sure that the interactions are plausible and consistent with known
biochemical and pharmacological data. While scoring functions
provide a numerical estimate of binding affinity, they can some-
times be misleading due to their inherent limitations, such as the
inability to accurately model solvent effects or protein flexibility.
Visual inspection helps to confirm that the top-scoring poses are
chemically and physically reasonable [55–57].

By visually inspecting the docking poses, researchers can iden-
tify critical interactions such as hydrogen bonds, ionic interactions,
and hydrophobic contacts that are known to be important for bind-
ing but might not be adequately captured by the scoring function.
It can also reveal artifacts or unrealistic binding modes that might
occur due to algorithmic limitations or errors in the input data (e.g.,
incorrect protonation states or unusual torsional angles). Molecu-
lar visualization tools such as PyMOL [58], UCSF Chimera [59], or
VMD [60] are commonly used for inspecting docking poses. These
tools provide 3D visualizations of the protein-ligand complex, al-
lowing for detailed examination of the interaction interface.

2D interaction diagrams are also a valuable tool as they provide
a simplified, yet informative, visualization of the interactions be-
tween a ligand and its protein target. These diagrams help quickly
understand the key interactions that contribute to binding, such as
hydrogen bonds, hydrophobic contacts, salt bridges, π − π, and
ionic interactions. This type of diagrams simplify the visualization
of complex 3D molecular interactions, making it easier to under-
stand and analyze the interactions between ligands and proteins.
This simplification is crucial for quickly assessing the nature and
strength of these interactions without the need to manipulate 3D
structures. They allow for the comparative visualization of multi-
ple ligand-protein complexes, particularly useful in drug discovery
projects where multiple ligands are being assessed for their interac-
tion with the same protein. 2D interaction diagrams are available
from tools like PLIP [61], LigPlot+ [62], LeView [63], PoseEdit [64]
among many others.
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Validation of results
Validating docking results is essential to ensure that the predicted
interactions between the ligand and the protein target are accurate
and reliable. Validation can be approached through both experi-
mental and computational methods.

From the experimental point of view, the most direct way to val-
idate a docking pose prediction is by determining the experimental
protein structure in complex with the ligand, typically through
X-ray crystallography or NMR spectroscopy. Also, assays such as
surface plasmon resonance (SPR), isothermal titration calorimetry
(ITC), and enzyme inhibition studies can provide experimental
evidence for the binding affinity and kinetics of the ligand-protein
interaction, which can be compared to docking predictions. An-
other experimental technique is site-directed mutagenesis that
can be used to alter specific amino acids within the binding site.
The effects of these mutations on ligand binding can validate the
importance of predicted interactions [4, 65–67].

From the computational point of view, several methods can
be useful validating the docking results. Re-docking and Cross-
docking: Re-docking involves docking the co-crystallized ligand
back into the binding site of the protein to see if the docking
method can reproduce the experimentally observed binding mode.
Cross-docking tests the docking protocol on a set of proteins with
known ligands to assess its robustness. Scoring Function Evaluation:
Comparing different scoring functions and evaluating their perfor-
mance on benchmark datasets or against experimental data can
help validate the docking results. The use of consensus scoring,
where multiple scoring functions are applied, can also improve
validation. Ensemble Docking: Docking against multiple conforma-
tions of the protein, generated through techniques like molecular
dynamics simulations, can account for receptor flexibility and
provide a more comprehensive validation of the docking results.
Decoy Sets: Docking a set of inactive compounds (decoys) seeded
with known active compounds can help assess the ability of the
docking protocol to distinguish between binders and non-binders,
providing a measure of its predictive accuracy. Molecular Dynamics
Simulations: Post-docking molecular dynamics simulations can be
used to assess the stability of the ligand-receptor complex over
time, providing further validation of the docking results. Area Un-
der Curve (AUC) and Enrichment Factor (E.F): The AUC value from
receiver operating characteristic (ROC) curves and the enrichment
factor at certain percentages can be used to validate the docking
tool’s ability to rank active compounds higher than decoys. Ligand
Efficiency Metrics: Metrics such as ligand efficiency (LE) and bind-
ing efficiency index (BEI) can be used to evaluate the quality of the
docking poses in terms of binding affinity relative to the size of the
ligand [4, 65–72].

OTHER METHODS TO STUDY THE LIGAND-PROTEIN IN-
TERACTION

MOZYME
MOZYME is a semiempirical quantum chemistry method that is
particularly useful for studying large molecular systems, including
protein-ligand interactions. it is based on the Localized Molecular
Orbital (LMO) method, which allows for the efficient modeling of
large systems by focusing on local interactions within the system.
This method is particularly advantageous for studying proteins
and sections of DNA, where the size of the system can make tradi-
tional quantum mechanical methods computationally prohibitive.
The MOZYME method has been applied to study the interactions
between ligands and proteins by enabling the semiempirical mod-

eling of these large complexes. It uses a divide-and-conquer ap-
proach, dividing the system into smaller subsystems, which signif-
icantly speeds up the computational process. It can be integrated
with other computational methods to enhance its capabilities. For
example, it has been combined with Density Functional Theory
(DFT) to study the pKa values of ionizable residues in proteins,
providing a more comprehensive understanding of protein-ligand
interactions. One of the key advantages of MOZYME is its linear-
scaling SCF method, which allows systems of up to 15,000 atoms
to be modeled. This makes it particularly suitable for studying
protein-ligand interactions, where the size and complexity of the
system can otherwise limit the applicability of quantum mechani-
cal methods. The MOZYME method is implement in the MOPAC
software [73–77].

Fragment Molecular Orbital
The Fragment Molecular Orbital (FMO) method is a computational
approach used to study the interactions between a ligand and a
protein by breaking down large molecular systems into smaller,
more manageable fragments. This method allows for the applica-
tion of quantum mechanical calculations to systems that would
otherwise be too large and computationally demanding. The FMO
method was developed to compute very large molecular systems
by dividing them into fragments and performing ab initio or den-
sity functional theory (DFT) calculations on these smaller units. his
approach enables the study of complex biomolecular interactions,
including protein-ligand binding, by providing detailed insights
into the chemical nature of each residue and water molecule’s
contribution to ligand binding. FMO offers faster computational
speeds than traditional quantum-mechanical (QM) methods and
provides accurate information for investigating the chemical na-
ture and binding characteristics of protein-ligand interactions. It
is particularly useful for revealing atomistic details about indi-
vidual contributions toward ligand binding, which are difficult
to detect without using QM methods. The FMO method can be
applied to structure-based drug design (SBDD) processes, as it
allows for the rationalization of affinity and selectivity in ligand
binding. By analyzing crystal structures of receptors with their cor-
responding agonists and antagonists, FMO can provide valuable
insights for computer-aided drug design (CADD). FMO-based Pair
Interaction Energy Decomposition Analysis (PIEDA) provides a
breakdown of interaction energies into components such as elec-
trostatic, exchange, charge transfer, and dispersion contributions.
This detailed analysis helps identify key residues and interactions
critical for binding. The FMO method is implemented in software
packages like GAMESS (US), ABINIT-MP, PAICS, and OpenFMO,
which are distributed free of charge [78–83].

FINAL REMARKS

In conclusion, molecular docking has emerged as a pivotal method
in the realm of drug discovery, significantly enhancing the effi-
ciency and effectiveness of the process. By predicting the binding
orientation of small molecule ligands to their protein targets, it
provides valuable insights into the molecular interactions and
mechanisms underpinning drug-receptor recognition. This com-
putational approach not only reduces the time and cost associated
with traditional experimental methods but also facilitates the ex-
ploration of a vast chemical space, enabling the identification of
potential drug candidates with improved specificity and efficacy.
However, it’s important to note that molecular docking is not with-
out its challenges, including the need for accurate protein and
ligand structures, and the complexity of scoring functions. Despite
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these, the continuous advancements in computational power, al-
gorithms, and structural biology promise a promising future for
molecular docking in drug discovery.
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