
AI-driven discovery of synergistic drug combinations against 

pancreatic cancer 

 
Mohsen Pourmousa1+, Sankalp Jain1+, Elena Barnaeva1, Wengong Jin2, Joshua Hochuli3, Zina 

Itkin1, Travis Maxfield3, Cleber Melo-Filho3, Andrew Thieme3, Kelli Wilson1, Carleen Klumpp-

Thomas1, Sam Michael1, Noel Southall1, Tommi Jaakkola2, Eugene N. Muratov3,4, Regina 

Barzilay2, Alexander Tropsha3,4, Marc Ferrer1, Alexey V. Zakharov1*. 

 
1 National Center for Advancing Translational Sciences (NCATS), National Institutes of Health, 

9800 Medical Center Drive, Rockville, Maryland 20850, United States. 
 2 Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, 

Cambridge, MA 02139, USA. 
3 Laboratory for Molecular Modeling, Division of Chemical Biology and Medicinal Chemistry, 

UNC Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC, 27599, USA. 
4 Predictive, LLC. Raleigh, NC, 27614, USA. 

 

 

+ authors contribute equally 

* Address for correspondence: 9800 Medical Center Dr, Rockville, Maryland 20850, USA; 

Telephone: 301-480-9847; E-mail: alexey.zakharov@nih.gov. 

  

https://doi.org/10.26434/chemrxiv-2024-zv92k ORCID: https://orcid.org/0000-0003-2466-1711 Content not peer-reviewed by ChemRxiv. License: CC BY 4.0

https://doi.org/10.26434/chemrxiv-2024-zv92k
https://orcid.org/0000-0003-2466-1711
https://creativecommons.org/licenses/by/4.0/


Abstract 
 

Treatment regimens, especially in cancer, often include more than one medicine in order to achieve 

durable outcomes. Identifying the optimal combination of treatments has historically been done 

through clinical trial and error. And for many conditions, such as pancreatic cancer, an optimal 

treatment protocol has remained elusive, and the best available treatment combinations provide 

only modest benefit. Recent developments have led to the application of both experimental 

screening approaches and in silico modeling methods to identify synergistic drug combinations 

and expand the therapeutic options for multiple diseases. Here we conduct a study to compare 

different predictive approaches for identifying new treatment combinations for pancreatic cancer 

using cell line growth as an initial proxy for clinical utility. NCATS performed screening involving 

496 pairwise combinations of 32 antineoplastic drugs, tested against the PANC-1 human 

pancreatic carcinoma cell line in duplicates using a 10 × 10 matrix format. This dataset served as 

the basis for generating and training advanced AI/ML models focused on pancreatic cancer. Next, 

three independent groups (NCATS, UNC and MIT), though in a collaborative manner, utilized 

three different workflows with AL/ML approaches to discover new perspective drug combinations 

against pancreatic cancer among over 1.5 million drug combinations. As a result of this 

collaboration, 88 proposed combinations were tested in a cell-based assay; 53 of them were 

synergistic (hit rate ~60%). While all machine learning approaches demonstrate advances in the 

direction of predicting synergistic drug combinations, graph convolutional networks resulted in 

the best performance with a hit rate ~83%, and Random Forest delivered the highest precision of 

65%. Interestingly, all utilized AL/ML methods among the three groups proposed different drug 

combinations with a small overlap of only two combos from 90. This study demonstrates the 

potential of a collaborative modeling approach for prioritizing drug combinations in large-scale 

screening campaigns, particularly when focusing on maximizing the efficacy of drugs known to 

exhibit synergy. 
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Introduction 

 
Drug combinations have become standard therapy for numerous diseases including malaria, HIV, 

tuberculosis, and cancers [1–8]. Combination therapies can offer benefits such as enhanced 

efficacy, reduced toxicity, and avoiding the acquisition of monotherapy resistance [9–12]. In the 

case of pancreatic cancer, the prognosis in the past ten years has remained unchanged [13], and 

treatments have become ineffective [14–16] owing to growing resistance. Discovering anti-

pancreatic cancer agents with high efficacy and low toxicity is crucial and constitutes one of the 

most challenging tasks for the scientific community working in oncology. 

 

Effective drug combinations have been occasionally discovered in the clinic [17, 18], and there 

has also been an increase in preclinical experimental efforts to identify synergistic combinations 

reported in the literature [17, 19–22]. Employing combination therapy in the context of pancreatic 

cancer addresses the disease's heterogeneity and adaptive nature, leading to enhanced treatment 

efficacy and offering a promising strategy to overcome resistance mechanisms [23]. Though a few 

computational models have been reported in the literature recently [24–27], the extent of 

combination synergy in the context of pancreatic cancer remains largely unexplored. 

 

Approved drugs have well-studied toxicity profiles and are readily available at scale for 

discovering new synergistic drug combinations. However, the sheer number of available and 

possible drug-like molecules [28] and an exponential number of their combinations make finding 

new therapeutic combinations highly inefficient by experimental means. High-throughput 

combinatorial screening is an established approach to identifying new synergistic drug 

combinations [29]; due to the exceedingly large number of unique chemical combinations, this 

approach is restrictive. In this context, in silico methods present an efficient complement to HTS 

and in vitro screening. [30–33]. 

 

One of the most popular computational drug discovery approaches, namely, Quantitative 

Structure-Activity Relationship (QSAR) modeling, employs statistical or machine learning 

approaches to establish and validate correlations between computed molecular features and 

experimentally measured biological activities of molecules [34–39]. This approach has been 
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widely applied in cancer drug discovery [24–27, 40, 41], using methods varying from simple linear 

[42–45] to non-linear machine learning methods, such as Neural Network (NN) [46], Support 

Vector Machine (SVM) [47] or Random Forest (RF) [48]. Most of the previous efforts covered 

the attempts to design novel monotherapies. However, recently, Cheng et al. [49] developed a 

biological network proximity measure using QSAR to predict drug synergy for hypertension and 

cancer. Other studies have utilized various machine learning techniques for synergy prediction 

[50–52], including deep learning approaches [53–55]. Preuer et al. [53] trained a deep neural 

network on a large oncology screen [56] and demonstrated the advantage of deep learning over 

standard machine learning models such as RFs and SVMs. 

 

In this study, we combined efforts from three independent groups representing the National Center 

for Advancing Translational Sciences (NCATS), The University of North Carolina at Chapel Hill 

(UNC), and the Massachusetts Institute of Technology (MIT) to utilize different AI/ML 

methodologies to discover new prospective drug combinations against pancreatic cancer. To 

enable computational modeling studies, the NCATS team performed cell-based assays against 

pancreatic cancer, screening 1912 single agent compounds as well as assessing the most active 32 

compounds (determined by IC50 and curve response class) for binary combinations using a 10 × 

10 matrix format. Each team trained their models independently using 496 drug combinations in 

the training set with measured synergy effects on pancreatic cancer cell lines (see below for details 

of data generation) and predicted the top 30 synergistic combinations from 1.5 million possible 

combinations. Interestingly, among the proposed combinations from the three groups, there was 

almost no overlap (only two combos from 90), which emphasizes the importance of different 

AI/ML approaches. A cumulative selection of 88 drug combinations were then tested in a cell-

based assay. This experimental validation resulted in 53 synergistic active combinations (out of 88 

nominations; hit rate ~60%). We found that the graph convolutional method provided the best 

performance, with the hit rate ~83% and Random Forest showed the best precision result of 65%. 

In our opinion, there are several important conclusions of this study. First, and most importantly, 

it provides a successful example of using modern ML approaches to advance the experimental 

discovery of novel drug combinations for pancreatic cancer and, potentially, many other diseases. 

Second, it provides an interesting case study for benchmarking several common ML approaches 

differing in their complexity in a carefully designed prospective investigation. Finally, it outlines 
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the power of collaborative research using complementary but distinct ML methods in ensuring the 

highest experimental hit rate in computer-aided drug discovery.  

 

Methods 

 

Data generation 

 

We used NCATS’ in-house compound collection MIPE4 which consists of nearly 2,000 

antineoplastic compounds with diverse and redundant mechanisms of action (MoA), and includes 

approved drugs, phases I−III investigational drugs, and pre-clinical molecules. The screening of 

this library and all following in vitro experiments were performed with continuous tumor-cell line 

from a human carcinoma of the exocrine pancreas (PANC-1) that is often used as a model for this 

highly aggressive type of pancreatic cancer. 

 

The initial screening of MIPE4 library was performed in a duplicated single-agent dose-response 

manner (11 serial dilutions 1:3 in the range of [46uM – 0.78nM]. For this assay, PANC-1 cells 

were grown in DMEM media with 10% FBS and 1% antibiotics mix. The day of the experiment, 

they were harvested with 0.25% Trypsin for 5min, spun down and seeded as a cell suspension in 

growth media 500 cells/5ul/well. The cell density was experimentally selected based on efficient 

proliferation rate of cells for the period of 72 hours. Cells were plated onto white tissue culture-

treated 1536-well Aurora plates (Brooks Automation, Chelmsford, MA) with MultiDrop Combi 

dispenser (Thermo Scientific, Logan, UT), and allowed to attach overnight at 37°C, 5% CO2. Next, 

23nl/well of compound solutions in DMSO were added to cells with a pintool transfer (Kalypsis, 

San Diego, CA). As the positive control, we used “no cells” column which would be equal to 100% 

killing capacity of a compound (IC100), and DMSO was used as a vehicle neutral control (IC0). 

The cells were stimulated with compounds or DMSO for 72 hours at 37°C, 5% CO2, 95% 

humidity. For detection, we used CellTiter-Glo® Luminescent Cell Viability Assay (Promega, 

G7573) an ATP-based detection method of viable cells. This assay applies the properties of a 

thermostable firefly luciferase to generate a stable “glow-type” luminescent signal which could be 

measured within minutes when added directly to cell culture. 
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At the end of 72-hour stimulation period, 5ul/well of CellTiter-Glo® reagent was added to plates 

with BioRAPTR FRD dispenser. The plates were incubated at ambient temperature for 10 min and 

then the luminescent signal was read on ViewLux plate reader (PerkinElmer, Waltham, MA) with 

3 sec exposure time. 

 
From this MIPE4 library, the most active 32 molecules were selected based on their IC50 and curve 

response class (CRC) for further matrix combinations. They were run in “all versus all” 

combinations, totaling 496 unique pairwise combinations, as 10x10 matrices/blocks where two 

compounds were applied in nine 1:2 serial dilutions. The concentration range for each compound 

was selected individually to arrange their IC50 roughly in the middle of that range. Each block had 

a DMSO control (IC0), as well as Bortezomib, a well-known cancer drug, as the positive control 

(IC100). Each block was tested in duplicate. 

 

To perform the matrix screening, the compounds mixtures were pre-dispensed to empty 1536-well 

white solid bottom plates with Echo 650 acoustic liquid handler (Beckman Coulter), 20nl/well 

each. Then, the plates were dispensed with PANC-1 cell suspension at 500 cells/5ul media density 

and placed in a tissue-culture incubator (5%CO2, 37ºC, 95% humidity). CellTiter-Glo® reagent 

was added to wells 72 hours later for detection as described above. 

 

Compounds standardization 

 

Chemical structures of molecules in the training and test mixtures were standardized and curated 

following our canonical data curation practices using ChemAxon Standardizer version 20.9 [57, 

58]. Briefly, salts and solvents were stripped from all compounds followed by removal of 

counterions, large organic compounds (Da ≥ 2000), mixtures, and inorganic compounds. Specific 

chemotypes such as aromatic, nitro groups, sulfo groups, tautomers, and protonation state were 

standardized using ChemAxon Standardizer software (https://chemaxon.com/). 
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Synergy Calculation 

 

The degree of combination synergy (or antagonism) is quantified by comparing the observed 

compound combination response against the expected response, calculated using a reference 

model that assumes no interaction between compounds. The commonly-used reference models 

include the highest single agent (HSA) [59], Bliss [60], Loewe [61] and Zero interaction potency 

(ZIP) model [62]. In this study, different synergy metrics such as gamma (𝛾𝛾), beta, and Excess 

HSA were analyzed to measure the degree of reproducibility of duplicated combinations.  

 

Computational Modeling Approach 1: NCATS 

 

For machine learning, the molecular structures can be represented as numerical feature vectors, or 

molecular descriptors [63]. We employed several features and their concatenations to benchmark 

different machine learning methods. Each combination had two compounds and therefore two 

feature vectors were averaged to yield a single feature vector per combination. Avalon1024, 

Avalon2048, Morgan1024, and Morgan2048 fingerprints and RDKit descriptors (https://rdkit.org) 

were generated using python RDKit package. Additionally, an in-house Python 3.7.7 was used to 

generate biological descriptors from NCATS predictor (https://predictor.ncats.io/) [64]. 

Mechanisms of action were turned into feature vectors as follows: There were 821 unique 

mechanisms of action for the original 1784 PANC1 screening compounds. Each mechanism of 

action was encoded as an element in a vector of length 821, and the presence or absence of a 

mechanism of action for each combination was represented by 1 and 0, respectively. For instance, 

a combination with two distinct mechanisms of action would be encoded as a vector that has two 

elements set to 1 and the rest of them set to 0. 

 

Random forest (RF) classification and regression [65, 66], eXtreme Gradient Boosting (XGBoost) 

[67], and deep neural network (DNN) [68] were used for benchmarking machine learning 

algorithm. Area under the curve (AUC) of the receiver operating characteristic (ROC) curve 

measured the performance of the classification models. XGBoost learning rates were tuned to be 

0.01. DNN consisted of a sequential model with three hidden layers. The main parameters were 

optimized sequentially as follows: learning rate=0.0001, optimizer=Adam, batch size=128, 
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epochs=70. The number of neurons in hidden layers were tuned in a nested hyper parameter 

scheme with 700, 1000, and 2000 neurons in the first layer, 500 and 700 neurons in the second 

layer, and 200 and 300 neurons in the third layer. 

 

Cross-validation scheme for training the model was one-compound-out [69]. This approach 

involves excluding one compound from each fold so that the fold has all the combinations except 

those containing that compound. As 32 compounds constituted the combinations (or training data), 

a total of 32 folds were performed within this scheme. The cross validation of the nested 

hyperparameter tuning in DNN split each 32 folds into three smaller folds. 

 

Consensus modeling in general outperformed individual QSAR models [70, 71]. In this study, two 

approaches were taken to find consensus models: i) averaging the probabilities of individual 

models and ii) finding the majority vote from individual models. When finding the consensus 

model between classification and regression, the regression values were converted to pseudo-

probabilities after scaling them to 0 to 1 and subtracting the scaled value from 1. 

 

Computational Modeling Approach 2: UNC 

 

General 

 

RDKit descriptors and Morgan Fingerprints for both training set compounds and virtual screening 

library were calculated using the RDKit package in Python. Simplex descriptors [72, 73] were 

calculated with the HiT QSAR program [72]. Machine learning models were developed using the 

Python packages scikit-learn and PyTorch (for neural networks). Scikit-learn models used the 

default hyperparameters. All models were trained as classifiers (using binary labels) but produced 

a “confidence score” by different means. These “confidence scores” were averaged during 

consensus prediction calculation. Since the Simplex descriptors are computationally expensive 

[74], to calculate consensus predictions on the full test set, only the descriptor-based models with 

RDKit descriptors and Morgan Fingerprint were run to calculate consensus predictions on the full 

test set. Subsequently, the top 2,000 scoring combinations were evaluated with the Simplex-based 

models and the models with IC50 data. 
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Mechanism of Action selections 

 

The training set columns ‘MOA 1’ & ‘MOA 2’ are aggregated and sorted, to form one MOA pair 

per row [one row per 496 unique drug pairs in training set]. Matrix rows are then grouped by 

unique MOA pairs. Counts of the number of rows from the original training set included, and the 

means for the ‘label’ [activity binary] column, were calculated for each of the 280 unique MOA 

pairs present in the training set. MOA pairs with 3 or more representative drug pairs in the training 

set, and a mean ‘label’ value greater than or equal to 0.66, were classified as the 24 most synergistic 

MOA pairs occurring in the training set. Chemotext [75], ROBOKOP [76]and knowledge graph 

mining [77] were used to identify and refine the MOAs of test compounds. Virtual screening of 

the test set [1.6M unique drug pairs], to remove drug pairs which do not represent any of the above 

24 MOA pairs, yielded a subset of 888 unique drug pairs prioritized for selection by MOA model. 

 

Pure descriptor models 

 

A total of 15 model types trained purely on gamma binary labels were developed for use in 

consensus. Two descriptor types (RDKit descriptors and Morgan Fingerprint) were calculated for 

individual compounds in training mixtures and composited by either element-wise average or sum 

at every position in the descriptor. A third descriptor type, Simplex[72, 73], was calculated for the 

training mixtures, and did not require composition. Each of these descriptor/composition pairs was 

used as input for neural network, random forest, and gradient boosting models. To calculate a 

consensus, the prediction of every model for every descriptor was averaged. This resulted in three 

consensus models, each corresponding to a different descriptor.  

 

Descriptor and IC50 models 

 

Two models were developed incorporating compound IC50 data: a graph convolutional model and 

a neural network model based on Simplex descriptors. To develop the graph model, standardized 

SMILES strings for each of the constituent compounds were converted into graphs (adjacency 

matrices and node feature matrices) using the OpenChem software package [78]. A combined 
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mixture graph was created by taking the direct sum of individual adjacency matrices and the 

concatenation of node feature matrices. This combined graph was passed through a graph 

convolutional network resulting in a latent representation of the mixture graph, to which the 

respective Log IC50 values of each component compound were concatenated. The resulting 

representation was passed further through a neural network, and a classification score was 

produced as the final output. 

 

For the neural network model, mixture Simplex descriptors were first produced and then cleaned, 

removing the highly correlated simplexes. The resulting Simplex descriptors were passed through 

several layers of a neural network, after which the Log IC50 values of each component compound 

were appended to the mixture representation. Like the graph model, the resulting representation 

was used as an input to the neural network model, and a classification score was produced as 

output. Each model was defined as above up to a set of hyperparameters (number of layers, size 

of each layer, learning rate, number of training epochs, etc.). To find optimal hyperparameters for 

each model, a specific mixture-oriented external validation was performed on several models. For 

a wide range of hyperparameter values, only insignificant differences were observed between 

models. Therefore, within this range, the final models were chosen for computational efficiency. 

 

Computational Modeling Approach 3: ComboNet  

 

MIT’s ComboNet [79] approach utilizes a graph convolutional network that embeds a molecule 

into a continuous feature vector. This vector is learned automatically through the single-agent and 

combination data rather than hand-crafted. When trained on the single-agent data, the model takes 

a molecule as input and predicts whether it will inhibit cancer cell growth (binary label). When 

trained on the combination data, the model first takes a combination (A, B) as input and predicts 

the inhibition score c(AB) of this combination. Then it predicts their single-agent activity s(A) and 

s(B) and computes its expected inhibition score under bliss independence assumption: s(AB) = 

s(A) + s(B) - s(A)s(B). Finally, it quantifies the synergy score of combination (A, B) as c(AB) - 

s(AB). In addition to pancreatic cancer (PANC-1), our model is trained on 40 different cell lines 

collected from NCI-60 (single-agent data) [80]and NCI ALMANAC (combination data) [29]. 

Following a multi-task training scheme, our model is trained on 47K single-agent and 4K 
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combination data points in total, which is much larger than the PANC-1 data. To evaluate our 

approach, we split the pancreatic cancer combination dataset into training (80%), validation (10%) 

and test sets (10%). 

Importantly, in this adaptation of ComboNet, we omitted drug-target interaction data, a deviation 

from the initial design [79], as it did not enhance the model's predictive accuracy. 

 

Results and Discussion 

 
Figure 1 provides an overview of the computational workflow adopted in this study. Three 

different modeling approaches were used to nominate 90 compounds, which result in a total of 

4005 combinations, for further experimental validation. 

 

 
 
 
Figure 1: Computational workflow of the virtual screening strategy used in this study. 
 

Data Overview 

 

First, we performed the analysis of the PANC-1 training dataset. Figure 2 shows activity 

distribution of the 32 compounds in single-agent dose response curves used for modeling. The IC50 

values range between 2 nM and 3 mM, which points out that the dataset is diverse in terms of the 

activity values. Next, all possible pairwise combinations of 32 compounds were plated and 
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screened in duplicates in 10×10 matrix format utilizing the PANC-1 cell line assay for generation 

of representative modeling set. We further analyzed the reproducibility of assay results and the 

best metrics to identify synergistic drug combinations. For this, we calculated the Pearson 

correlation of the gamma scores, beta, and Excess HSA. The correlation of gamma scores of 

duplicates was higher than the other two metrics (Figure 3, Supplementary Figure S1), confirming 

a great reproducibility of utilized assay system and matrix screening technology. Hence, gamma 

was used as the synergy metric with a cutoff of 0.95 (𝛾𝛾 ≤ 0.95 as synergistic and 𝛾𝛾 > 0.95 as non-

synergistic or antagonist) [81]. The gamma scores were averaged for each duplicate resulting in 

one synergy value for each unique combination. 

 

 
 
Figure 2: Variation of activity of 32 compounds in single-agent dose−response curves. Log(IC50) 
varies between -8.7 to -5.5 (≈ 2 nm−3 mM). These potent compounds constitute 496 combinations 
(all vs. all) used in this study. 
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Figure 3: Reproducibility of combination experiments as measured by synergy metric. Gamma 
values of 496 combinations in two replicates have a Pearson’s coefficient of 0.83. Combinations 
with Gamma < 0.95 are considered synergistic. Similar plots for other synergy metrics are in 
Supplementary Fig. S1. 
 

 

A total of 496 combinations along with their corresponding scores were used as the training data. 

The original library of 1784 compounds, after omitting the 32 compounds, was used to generate 

1,533,876 (all possible) pairwise combinations that serves as the virtual data set to predict 

prospectively and select new synergistic combination for further biological validation. Three 

modeling approaches were then pursued by three independent research groups and each approach 

provided a ranked list of top 30 synergistic combinations from the generated virtual set. 

 

Modeling results 

 
NCATS 

Detailed model statistics on the training set and the test set are provided in Supplementary Table 

S1. All the models with different descriptors combination (as outlined in the method section) 

showed AUC values close to or above 75% for both training set and test datasets. Using a 2048-

bit fingerprint resulted in improved model performance; in comparison to 1024-bit fingerprints 

and/or RDKit descriptors. Combining descriptors did not provide any performance improvement. 
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Overall, all three machine learning methods (RF, XGBoost and DNN) demonstrated fairly similar 

performance to different descriptor types. Combining RF classification and regression models 

based on Avalon2048 resulted in the highest AUC of 0.78±0.09 (Figure 4). This model was used 

to predict top 30 combinations (based on prediction score) from the virtual set comprising 

1,591,724 combinations. 

 
A)                                                                           B)  

 
 

            
 
Figure 4: Random forest regression and classification models. Training set included 496 
combinations constituted from 32 drugs (all vs. all). Cross validation strategy was one-compound-
out, hence 32 folds. Average of Avalon 2048 fingerprints of each pair of drugs was used as the 
feature vector of combination. A) Regression models of Gamma of 32 folds are plotted on top of 
each other (Pearson’s coefficient = 0.52). B) Classification model yields 32 ROC curves (not 
shown for clarity) with average AUC and standard deviation of 0.78 ± 0.09. Blue line, average 
ROC curve; grey area, ±1 standard deviation; red line, random prediction; Gamma ≤ 0.95, 
synergistic; Gamma > 0.95, non-synergistic. Similar plots for Morgan 2048 and RDKit descriptors 
are in Supplementary Figures S2 and S3. 
 

UNC 

Model validation statistics for all evaluated models are reported in Supplementary Table S2. We 

applied two validation strategies: “compounds out” validation [82] and “everything out” validation  

[83]. For the “compounds out” validation strategy (evaluating on combinations containing one 

training compound and one non-training compound) most models produced a correct classification 

rate (or balanced accuracy) between 0.6 and 0.65 and had a positive predictive value (PPV) 
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between 0.6 and 0.7. For the “everything out” validation strategy (evaluating on combinations 

containing no training compounds), most models produced a CCR between 0.5 and 0.55, and a 

PPV between 0.5 and 0.6. This difference in results between validation strategies matches the 

expectation of “everything out” being a more challenging modeling task. For both validation 

strategies, y-randomization produced validation statistics consistent with random predictions. 

 

Models using experimental IC50 values as part of chemical representation did not appear to have 

significantly better performance than models which omit them. Among the descriptor-based 

models, descriptor composition strategies (either averaging or summing columns) performed 

similarly.  

 

Consensus model predictions were calculated as an average between the three descriptor consensus 

model predictions, and the two descriptors + IC50 individual model predictions. Only those 

combinations that included two active compounds and one training compound were considered for 

the first two tiers of nomination. Using the mechanism of action selection method (described in 

the methods section) and this criteria, 48 combinations were selected. Our first tier of nominations 

(n = 12) were those combinations from the set of 48 with a consensus prediction score > 0.7. The 

second tier of nominations (n = 12) were the highest scoring mixtures from pure descriptor model 

predictions. The third tier of nominations (n = 6) were combinations nominated by the mechanism 

of action criteria that were composed of two active compounds and no training compounds, then 

ranked by the models. The fourth tier of nominations (n = 12) were chosen from the set of 48 

mechanism nominations with a model confidence between 0.6 and 0.7. The fifth tier of 

nominations were the next (n = 29) highest scoring mixtures from pure model predictions. The 

final tier of nominations were the next (n = 29) highest scoring mixtures from the mechanism of 

action selection with two active compounds and one training compound ranked by model 

confidence. The top 30 compounds were from the first three tiers, i.e., 12 combinations with 

mechanism of action + predicted score > 0.7 and 2 active compounds; 12 highest scoring 

combinations from remaining list with 2 active compounds; and then 6 combinations with 

mechanism of action, 2 active compounds, but no training compounds. 
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ComboNet 

The results for the graph convolutional model are provided in Supplementary Table S3. The graph 

convolutional model achieved test AUC 0.840 +/- 0.036 (averaged under five different random 

splits; Supplementary Figure S4). This model was then applied to select the top 30 combinations. 

 

Experimental validation 

As described above, computational models were used to nominate a total of 90 compounds 

combinations for experimental validation. Interestingly, there were only 2 combinations that were 

common across the top 30 combinations which were suggested by both ComboNet and UNC. 

Thus, a total of 88 combinations were experimentally evaluated. Overall, the list of top 30 proposed 

compounds from respective institute for experimental testing were distinct. All combinations were 

tested in duplicates in 10×10 matrix format utilizing the PANC-1 cell line assay. 

 

Considering the same cutoff for gamma (i.e., 𝛾𝛾 ≤ 0.95 as synergistic), the models from all three 

institutes performed substantially well. The graph convolutional model from ComboNet was able 

to predict 25 out of 30 compound combinations correctly, thus providing the highest hit rate of 

83%. The next best performing model was the RF model from NCATS, which is based on 

individual classification and regression RF models built using Avalon2048 descriptors. The 

NCATS models could identify 16 out of 30 combinations with a hit rate of 53%, followed by the 

models from UNC which provided a hit rate of 40%, predicting 12 out of 30 correctly. While both 

UNC and ComboNet used graph convolutional networks to predict drug synergy, ComboNet is 

trained on auxiliary data from NCI-ALMANAC which includes drug synergy data from multiple 

diseases (4000 data points). This could be a possible reason for the superior performance of 

ComboNet model. Interestingly, from both NCATS and UNC models, one compound 

demonstrated synergy with multiple other compounds. However, in the case of ComboNet, the list 

of synergistic combinations was diverse (Figure 5). During combination selection, MIT group also 

noticed that some compounds demonstrated synergy with many other compounds. To test a diverse 

set of drug combinations, MIT group selected the top five combinations for each compound, i.e., 

if a compound is predicted to be synergistic with many compounds, only five combinations are 

selected for testing. This resulted in a diverse selection of compounds. 

  

https://doi.org/10.26434/chemrxiv-2024-zv92k ORCID: https://orcid.org/0000-0003-2466-1711 Content not peer-reviewed by ChemRxiv. License: CC BY 4.0

https://doi.org/10.26434/chemrxiv-2024-zv92k
https://orcid.org/0000-0003-2466-1711
https://creativecommons.org/licenses/by/4.0/


 

 

   A) NCATS                                                                     B) UNC 
 

  
 
  C)  ComboNet 

 

 
 
 
Figure 5:  Heat map showing the selected compound combination by each institute. x-axis contact: 
compound 1, y-axis: compound 2; color scale: compound combination selection criteria adopted 
by respective institutes. 
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Finally, we retrospectively evaluated the final models from each institute for their ability to predict 

the 88 combinations selected for experimental testing (see Table 1, Figure 6). The NCATS models 

not only provide the highest balanced accuracy (BACC=0.59) but also yield the minimum number 

of false positives (FP), thus resulting in the highest precision of 0.65. Although ComboNet 

provided the highest AUC value (AUC = 0.78), it resulted in a high number of FP’s. In terms of 

precision, the consensus of all three approaches did not result in any significant improvement. 

Thus, all three approaches yield considerably good results and could be recommended for the 

detection of synergistic drug combinations. 

 

Table 1: Retrospective prediction of 88 nominated compounds from the respective final models 
from each institute 
 
 TP TN FP FN Sens Spec Balanced 

Accuracy 
AUC 

NCATS 40 15 22 11 0.78 0.41 0.59 0.56 
UNC 50 0 37 1 0.98 0.0 0.49 0.60 
ComboNet 51 2 35 0 1.0 0.05 0.53 0.78 
Consensus 51 2 35 0 1.0 0.05 0.53 0.67 

 

 
 
Figure 6: Retrospectively prediction of 88 nominated compounds from the respective final models 
from each institute  
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Exploring the biological relevance of most synergistic combination against 

PANC-1 
 

Among prospectively discovered new drug combinations both NSC-319726 and AZD-8055 

showed good synergy with several drugs (Figure 7). Here we provide analysis of clinical 

prospective on these drugs.  

 

Figure 7: Matrix Blocks from NSC-319726 + AZD-8055 Drugs in PANC-1 Assay.  

The activity was normalized so that 100 corresponded to no cytotoxicity effect and 0 corresponded 

to full cytotoxicity effect. 

 

NSC-319726 is a preclinical mutant p53 activator recognized as a critical process in the pancreatic 

tumor development [84, 85]. The clinical development of p53 activators, particularly MDM2 

antagonists, and their relevance in pancreatic tumor development have been earlier reported [84, 

86]. Notably, idasnutlin, an MDM2 antagonist, has entered phase III testing, signifying its 

advancement in clinical evaluation [87, 88]. Likewise, AZD-8055 is an mTOR (mechanistic target 

of rapamycin) inhibitor that has been investigated for its potential therapeutic value in various 

cancer types, including pancreatic tumors [89, 90]. The therapeutic exploitation of autophagy's 

role in pancreatic cancer has been explored through clinical trials using autophagy inhibitors, 

specifically chloroquine and hydroxychloroquine. However, these inhibitors have not shown 

significant clinical benefits in the metastatic stage of pancreatic cancer [91–93]. The lack of 

clinical benefits from autophagy inhibition may be due to the fact that clinically safe doses of drugs 
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do not inhibit autophagy enough to have a significant effect [80]. In pancreatic cancer, where 

KRAS is activated and p53 is disabled, cells can tolerate low levels of autophagy because the 

KRAS/BRAF/MAPK cascade sends inhibitory signals and p53 transcription is disabled, reducing 

autophagy protein levels. To achieve a clinically significant decrease in autophagy levels, 

inhibition of the KRAS/BRAF/MAPK cascade may be necessary, as this could have a synergistic 

effect with autophagy inhibition [91, 94]. The loss of p14ARF in pancreatic cancer cells may 

reduce their ability to induce autophagy, which could potentially make these cancer cells more 

sensitive to autophagy inhibition [84, 95]. Inhibition of autophagy in cancer cells is being explored 

as a therapeutic strategy, as it can disrupt their survival mechanisms and enhance the efficacy of 

other treatments [96]. 

 

In the clinical setting, the potential future for autophagy therapeutics lies in their combination with 

other targeted drugs, such as KRAS cascade inhibitors, specifically for well-defined molecular 

subtypes of pancreatic cancer that exhibit dependency on autophagy. This envisioned combination 

therapy approach would maximize the therapeutic impact by simultaneously targeting multiple 

key pathways involved in pancreatic cancer development and progression. Furthermore, in 

addition to the speculative perspective, the direct targeting of p53 activation holds promise in 

unlocking the full benefits of autophagy inhibition in the context of pancreatic cancer. However, 

further research and clinical studies are required to fully elucidate the synergistic effects and 

therapeutic potential of combining autophagy inhibition with p53 activation or other targeted 

therapies in pancreatic cancer. 

 

Conclusion 

 
Drugs synergy not only allows to maximize the efficacy but also helps achieve a desired 

therapeutic effect at lower doses of individual drugs, hence lowering the chances of side effects. 

Experimental assessment of drugs synergy is more expensive than examining single agents 

because, compared to the number of individual compounds, the total number of possible 

combinations is exponentially high. Therefore, AI/ML computational approaches such as network-

based and structure-activity relationship methods can expedite identification and prioritization of 

synergistic combinations from large libraries of combinations. However, only a limited number of 
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studies reported prospective predictions of drug synergy, underlining the necessity and scope of 

exploring different computational approaches. Pancreatic cancer, characterized by complex 

molecular mechanisms involves multiple pathways in tumor development and progression and is 

resistant to conventional treatments, such as chemotherapy and radiation therapy. Thus, by 

synergistically targeting multiple critical pathways, combination approaches can have a greater 

impact on inhibiting tumor growth, inducing cell death, and suppressing metastasis. In this 

collaboration, we investigated three AI/ML workflows from three different independent groups 

for discovering drug synergistic combinations against pancreatic cancer. Overall, all the three 

approaches performed well and demonstrated a hit-rate ≥ 53% (experimental validation). While 

all machine learning approaches demonstrate advances in the direction of predicting synergistic 

drug combinations, graph convolutional networks resulted in the best performance with a hit rate 

~83%, and Random Forest delivered the highest precision of 65%. Interestingly, all AL/ML 

models proposed different drug combinations with small overlap of only 2 combinations from 90, 

which emphasize the importance of utilizing different methods in early drug discovery over the 

most “predictive” ones. The synergy prediction workflow reported in this study is easily 

extendable for compound prioritization in large scale combination drug screenings and maximize 

the efficacy of drugs already known to induce synergy. 
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