# Supplementary Materials for

# Defluorinative Functionalization Approach led by Difluoromethyl Anion Chemistry

Kensuke Muta, Kazuhiro Okamoto, Hiroki Nakayama, Shuto Wada, Aiichiro Nagaki\*

\*Corresponding author. Email: nagaki@sci.hokudai.ac.jp

#### **Table of Contents**

| General Information                                         |     |
|-------------------------------------------------------------|-----|
| Experimental Prociedurs                                     |     |
| Defluorinative functionalization products characterizations | S24 |
| NMR Spectra                                                 |     |
| References and Notes                                        |     |

# General Information Equipment

GC analyses were performed on a SHIMADZU GC-2014 gas chromatograph (column, Rtx-200; 0.25 mm x 30 m). GC yields were calculated by GC analyses with *n*-undecane as an internal standard using calibration lines derived from commercial compounds with internal standards. NMR spectra were recorded on JEOL JNM-ECZ400S spectrometers (400 MHz for <sup>1</sup>H, using Me<sub>4</sub>Si as a standard (0.0 ppm); 100 MHz for <sup>13</sup>C, using CHCl<sub>3</sub> in CDCl<sub>3</sub> as a standard (77.0 ppm); 376 MHz for <sup>19</sup>F, using C<sub>6</sub>F<sub>6</sub> as a standard (-162.9 ppm) in CDCl<sub>3</sub> as a standard). NMR yields were calculated by <sup>19</sup>F NMR with C<sub>6</sub>F<sub>6</sub> as an internal standard. EI mass spectra were recorded on JMS-T2000GC spectrometer. ESI mass spectra were recorded on Exactive Plus HPLC: UltiMate 3000. APCI mass spectra were recorded on Exactive Plus HPLC: UltiMate 3000. Some of the mass spectra were measured by the Instrumental Analysis Service at Hokkaido University. GPC separation was performed on Japan Analytical Industry Co., Ltd LC-9201. Flash chromatography was carried out on a silica gel (Kanto Chem. Co., Silica Gel N, spherical, neutral, 40-100 µm). All batch reactions were carried out in flame-dried glassware under an argon atmosphere.

# Flow system

Stainless steel (SUS304) T-shaped micromixers with inner diameters of 250 µm were manufactured by Sanko Seiki Co., Inc. Stainless steel (SUS316) microtube reactors with inner diameter of 1000 µm purchased from GL Sciences were used unless otherwise stated. The micromixers and microtube reactors were connected with stainless steel fittings (GL Sciences, 1/16 OUW). The flow microreactor system was immersed in a cryogenic mixture bath with dry ice and acetone to control the temperature. Solutions were continuously introduced to the flow microreactor system using syringe pumps (Harvard PHD2000), equipped with gastight syringes purchased from SGE. All reactions were carried out under an atmosphere of argon.

# Materials

Dry tetrahydrofuran (THF), diethyl ether (Et<sub>2</sub>O), 1,2-dimethoxyethane (DME), and triglyme were purchased from Kanto Chemical Co., Inc. and used without further purification. Dry diglyme and Potassium were also purchased from Sigma-Aldrich. Naphthalene (Np) was purchased from FUJIFILM Wako Pure Chemical Corporation. Substrates, electrophiles, and some other reagents were purchased from Tokyo Chemical Industry Co., Ltd., FUJIFILM Wako Pure Chemical Corporation, Kanto Chemical Co., Inc., and Sigma-Aldrich. Some compounds were synthesized by the reported procedure.

# **Experimental Procedures**

# Preparation of Metal Naphthalenide (MNp)

Naphthalene (3.7 g, 28.6 mmol, 1.3 equiv) was dissolved in anhydrous THF (100.0 ml) (0.22 M). Metal (K, Li, Na, 22.0 mmol, 1.0 equiv) was added and the mixture was stirred for 2 h at ambient temperature until the solution became dark green.



Fig. S1. Potassium Naphthalenide (KNp)

#### Procedure for preparation of starting materials and electrophiles

#### **General Procedure of desalination process**

Benzotrifluoride derivatives hydrochloride was dissolved in CH<sub>2</sub>Cl<sub>2</sub> (20 mL) and slowly added sat. aq. NaHCO<sub>3</sub> (20 mL), extracted. The combined organic layer was dried over Na<sub>2</sub>SO<sub>4</sub> and concentrated under reduced pressure. Obtained benzotrifluoride derivatives used to react after drying.

#### 4-phenyl-benzotrifluoride



4-bromo-benzotrifluoride (5.0 g, 22 mmol), phenylboronic acid (3.2 g, 26.6 mmol, 1.2 equiv.),  $Pd(OAc)_2$  (4.5 mg, 1 mol%), KOH (3.7 g, 67 mmol, 3 eq.), and H<sub>2</sub>O (50 mL) were added to 100 mL two-necked round bottom flask and stirred overnight at 80 °C. After the reaction, the reaction mixture was extracted with EtOAc (3 x 5 mL), washed brine, and the organic layer was dried over anhydrous Na<sub>2</sub>SO<sub>4</sub>, and concentrated. The residue was purified by flash column chromatography (hexane/EtOAc= 10:1) to give the product. The NMR spectral data were identical to those reported in the literature (*49*).

#### 3,3-Dimethyl-1-[4-(trifluoromethyl)phenyl]-2-butanone



To a 100 mL two-necked round bottom flask was added substrate (4.9 g, 30.4 mmol) in CH<sub>2</sub>Cl<sub>2</sub> (30 mL), cooled at 0 °C, then, triethylamine (5.8 g, 57.3 mmol, 1.9 equiv) was added dropwise. Pivaloyl chloride was added dropwise for 2 hours keeping below 10 °C. The reaction mixture was washed with water (2 x 50 mL) and sat. aq. NH<sub>4</sub>Cl (2 x 50 mL). The combined organic layer was dried over Na<sub>2</sub>SO<sub>4</sub> and concentrated under reduced pressure. The obtained solid was washed with hexane and filtration. The NMR spectral data were identical to those reported in the literature (*50*).

#### **1-(3-(Trifluoromethyl)phenyl)**-*N*-ethylpropan-2-amine (51)



To a stirred suspension of NaOH (17.4 g, 3.5 equiv) in methanol (85 mL) was added dropwise ethylamine hydrochloride (35.3 g, 3.5 equiv) in methanol (80 mL), over 30 minutes. Following 1-(3-trifluoromethyl)phenyl-propan-2-one (24.8 g, 122.7 mmol) was added to the mixture. The mixture was stirred at 20 °C for 4.5 hours, then cooled to 0 °C. Solution of sodium borohydride (4.7 g, 1.0 equiv) in 1M sodium hydroxide (10 mL) was added dropwise keeping the below 10 °C, and then was stirred at 20 °C for 2 hours. The reaction mixture was methanol (270 mL) removed then water (100 mL) was added and the mixture was extracted with hexane (100 mL). The aqueous phase was eliminated and the organic phase was washed with water (3 x 100 mL). The combined organic layer was dried over Na<sub>2</sub>SO<sub>4</sub> and concentrated under reduced pressure. The crude product was distilled under reduced pressure with a distillation of the vigreux column. The distillation heads were eliminated, and the bottom residue was purified through column chromatography (hexane/EtOAc= 10:1) on silica gel to yield free base fenfluramine as a colorless oil.

# NMR Spectroscopy:

<sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) δ 7.48-7.35 (m, 4H), 2.95-2.85 (m, 1H), 2.82 (dd, *J*=13.2, 6.4 Hz, 1H), 2.76-2.68 (m, 1H), 2.65-2.57 (m, 2H), 1.09-1.03 (m, 6H).

<sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>) δ 140.47, 132.68, 130.75, 130.43-130.28 (m), 128.69, 125.84 (t, J= 3.7 Hz), 122.97 (dt, J= 7.5, 3.7 Hz), 54.41, 43.32, 41.47, 20.11, 15.38 (d, J= 3.2 Hz).

<sup>19</sup>F NMR (376 MHz, CDCl<sub>3</sub>) δ -63.77 (s, 3F).

**Gemfibrozil chloride** (52)



To a 100 mL two-necked round bottom flask was added Gemfibrozil (17.6 mmol), dry  $CH_2Cl_2$  (40.0 mL), and 10 mol% of *N*, *N*-dimethyl formamide (DMF). The reaction mixture was cooled to 0 °C and stirred for 5 minutes. Then oxalyl chloride (4.3 g, 33.9 mmol, 2.0 equiv) was added dropwise to the reaction mixture and stirred at ambient temperature overnight. The resulting mixture was concentrated under reduced pressure and used directly without further purification for the reaction.

#### **Benzonic acid haloperidol ester** (53)



To a 50 mL two-necked round bottom flask was added Haloperidol (3.0 g, 7.8 mmol) in CH<sub>2</sub>Cl<sub>2</sub> (30 mL). Ethyldiisopropylamine (DIEA) (2.0 mL, 11.7 mmol) and benzoyl chloride (1.4 mL, 11.7 mmol) were added, and then the reaction mixture was stirred at ambient temperature for 24 hours. The solution was quenched with sat. aq. NaHCO<sub>3</sub> (100 mL), was extracted into CH<sub>2</sub>Cl<sub>2</sub> (4 x 100 mL), and concentrated. The residue was purified through column chromatography (MeOH/dichloromethane= 10:1) on silica gel. The NMR spectral data were identical to those reported in the literature.

#### 2-(N-tert-Butoxycarbonyl-4-piperodonyl) ethyl iodide (54)



To a 200 mL two-necked round bottom flask was added *N*-tert-Butoxycarbonyl-4-piperidineacetic acid **6** (5.1 g, 21.0 mmol) in 1, 4-dioxane (100 mL) and dimethyl sulfide borane (9.8 mL, 5.0 equiv), and were stirred at 50 °C for 2.5 hours. Then the reaction mixture was concentrated under reduced pressure. The residue was quenched with water (50 mL), and extracted with Et<sub>2</sub>O/EtOAc (200 mL, 1:1), washed with 1M aq. NaOH (50 mL) and brine (50 mL). The combined organic layer was dried over Na<sub>2</sub>SO<sub>4</sub> and concentrated under reduced pressure. Following the obtained crude product (4.6 g), Imidazole (1.9 g, 1.38 equiv), and triphenylphosphine (7.2 g, 1.38 equiv) were added to 200 mL two-necked round bottom flask and cooled to 0 °C. The reaction mixture was stirred and I<sub>2</sub> (7.4 g, 1.48 equiv) was added dropwise. Then the reaction mixture was stirred at ambient temperature for 15 minutes and was added to Et<sub>2</sub>O (200 mL). The solution was washed with sat. aq. Na<sub>2</sub>SO<sub>4</sub> (2 x 200 mL), sat. aq. CaSO<sub>4</sub> (200 mL), and brine. The combined organic layer was purified by short-column chromatography (hexane) and concentrated under reduced pressure to afford the pure product as a brown oil in 70 % overall yield (4.92 g). The NMR spectral data were identical to those reported in the literature.

#### Method A (in the presence of methanol)

To a 10 mL test tube were added benzotrifluoride (29.2 mg, 0.2 mmol), methanol (3.1–3.7 equiv), and THF (2 mL). To a stirred solution at -78 °C, and then metal naphthalenide (0.22 M in THF) was added dropwise. After stirring for 10 min, the reaction mixture was quenched with sat. aq. NH<sub>4</sub>Cl (5 mL). The organic layer was analyzed by gas chromatography with an undecane as an internal standard.

Table S1. Hydrodefluorination using metal naphtalenides in the presence of methanol\*

|        | F F<br>F – | MeOH<br>(3.1~3.7 equiv) | MNp (2.2 equiv)<br>-78 ⁰C, 10 min<br>then sat. NH₄Cl aq. | Sa F F | M <sup>⊕</sup> [ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ |
|--------|------------|-------------------------|----------------------------------------------------------|--------|------------------------------------------------------|
| 0.2 IV |            |                         |                                                          |        |                                                      |
|        | entry      | metal                   | yield of 3                                               | a Rec  | covery of <b>1a</b>                                  |
|        |            |                         | / %                                                      |        | / %                                                  |
|        | 1          | Li                      | trace                                                    |        | 77                                                   |
|        | 2          | Na                      | 7                                                        |        | 70                                                   |
|        | 3          | K                       | 3                                                        |        | 53                                                   |

\*Reaction conditions: **1a** (0.2 mmol), MeOH (3.1–3.7 equiv), MNp (2.2 equiv), -78 °C, 10 min. Yields and conversions were determined by gas chromatography with an internal standard.

#### Method B (in the absence of methanol)

To a 10 mL test tube were added benzotrifluoride (29.2 mg, 0.2 mmol), and THF (2 mL). To a stirred solution at -78 °C, and then metal naphthalenide (0.22 M in THF) was added dropwise. After stirring for 10 sec, and then methanol (4.0–4.3 equiv) was added. The mixture was stirred for 10 min, the reaction mixture was quenched with sat. aq. NH<sub>4</sub>Cl (5 mL). The organic layer was analyzed by gas chromatography with an undecane as an internal standard.

# Table S2. Hydrodefluorination using metal naphtalenides in the absence of methanol\*

|         | F _    | MNp (2.2 equiv)<br>-78 <sup>o</sup> C, 10 s | MeOH<br>(4.0~4.3 equiv)<br>-78 °C, 10 min<br>then sat. NH <sub>4</sub> Cl aq. | 3a     | M <sup>®</sup>     |
|---------|--------|---------------------------------------------|-------------------------------------------------------------------------------|--------|--------------------|
| 0.2 M i | in THF |                                             |                                                                               |        |                    |
|         | ontru  | motal                                       | yield of 3                                                                    | a Reco | overy of <b>1a</b> |
|         | entry  | metai                                       | / %                                                                           |        | / %                |
|         | 1      | Li                                          | n.d.                                                                          |        | 55                 |
|         | 2      | Na                                          | n.d.                                                                          |        | 54                 |
|         | 3      | K                                           | trace                                                                         |        | 47                 |

\*Reaction conditions: **1a** (0.2 mmol), MeOH (4.0–4.3 equiv), MNp (2.2 equiv), -78 °C, 10 min. Yields and conversions were determined by gas chromatography with an internal standard.

Optimization of hydrodefluorination in the absence of methanol under the flow Scheme S1.



A flow microreactor system consisting of two T-shaped micromixers (**M1** and **M2** (inner diameter  $\phi = 250 \mu$ m)), two microtube reactors (**R1** and **R2**), and three tube precooling units (**P1**, **P2**, and **P3** (inner diameter  $\phi = 1000 \mu$ m, length L= 100 cm)) was used. The flow microreactor system was cooled by a cooling bath. A solution of benzotrifluoride (**1a**) (0.10 M in solvent) (flow rate: 7.5 mL/ min) and a solution of metal naphtalenide (MNp) (0.22 M in THF) (flow rate: 7.5 mL/ min) were introduced to **M1** by syringe pumps. The resulting solution was passed through **R1** and was mixed with a solution of methanol (0.45 M in solvent) (flow rate: 5.0 mL/ min) in **M2**. The resulting solution was passed through **R2** (inner diameter  $\phi = 1000 \mu$ m). After a steady state was reached, the outcoming solution was collected for 20 seconds in a vessel containing 4 mL of sat. aq. NH<sub>4</sub>Cl. The yields of difluoromethyl benzene (**3a**) were determined by gas chromatography with an undecane as an internal standard. The optimizations are summarized in Table S3.

| entry | metal   | proton   | R1       |         | R?    | tR1    | tR2  | solvent | т   | yield        | recovery     | yield        |
|-------|---------|----------|----------|---------|-------|--------|------|---------|-----|--------------|--------------|--------------|
| Chuy  | metai   | source   |          |         | N2    | ι      | ι    | sorvent | 1   | of <b>3a</b> | of <b>1a</b> | of <b>4q</b> |
|       | laquin  | loquin   | $\phi$ 1 | $L_{I}$ | $L_2$ | 1000   | 1999 | /volume | /°C | /0/          | /0/          | /0/          |
|       | /equiv  | /equiv   | /µm      | /cm     | /cm   | /sec   | /sec | ratio   | / C | /70          | / 70         | /70          |
| 1     | Li/ 2.2 | MeOH/3.0 | 250      | 3.5     | 200   | 0.0069 | 4.7  | THF     | -60 | n.d.         | 28           | n.d.         |
| 2     | Li/ 2.2 | MeOH/3.0 | 1000     | 3.5     | 200   | 0.11   | 4.7  | THF     | -60 | n.d.         | 20           | n.d.         |
| 3     | Li/ 2.2 | MeOH/3.0 | 1000     | 12.5    | 200   | 0.39   | 4.7  | THF     | -60 | n.d.         | 19           | n.d.         |
| 4     | Li/ 2.2 | MeOH/3.0 | 1000     | 50      | 200   | 1.6    | 4.7  | THF     | -60 | n.d.         | 19           | n.d.         |
| 5     | Li/ 2.2 | MeOH/3.0 | 1000     | 200     | 200   | 6.3    | 4.7  | THF     | -60 | n.d.         | 19           | n.d.         |
| 6     | Na/ 2.2 | MeOH/3.0 | 250      | 3.5     | 200   | 0.0069 | 4.7  | THF     | -60 | 32           | 10           | n.d.         |
| 7     | Na/ 2.2 | MeOH/3.0 | 1000     | 3.5     | 200   | 0.11   | 4.7  | THF     | -60 | 29           | 10           | n.d.         |
| 8     | Na/ 2.2 | MeOH/3.0 | 1000     | 12.5    | 200   | 0.39   | 4.7  | THF     | -60 | 20           | 17           | n.d.         |
| 9     | Na/ 2.2 | MeOH/3.0 | 1000     | 50      | 200   | 1.6    | 4.7  | THF     | -60 | 20           | 26           | n.d.         |
| 10    | Na/ 2.2 | MeOH/3.0 | 1000     | 200     | 200   | 6.3    | 4.7  | THF     | -60 | trace        | 19           | n.d.         |

| Ta  | ւ |   | C7 |
|-----|---|---|----|
| 1 2 | n | P |    |
|     |   |   |    |

| 11 | K/ 2.2 | MeOH/3.0        | 250  | 3.5  | 200 | 0.0069 | 4.7         | THF                    | -60 | 68 | 14    | n.d.  |
|----|--------|-----------------|------|------|-----|--------|-------------|------------------------|-----|----|-------|-------|
| 12 | K/ 2.2 | MeOH/3.0        | 1000 | 3.5  | 200 | 0.11   | 4.7         | THF                    | -60 | 70 | 15    | n.d.  |
| 13 | K/ 2.2 | MeOH/3.0        | 1000 | 12.5 | 200 | 0.39   | 4.7         | THF                    | -60 | 66 | 14    | n.d.  |
| 14 | K/ 2.2 | MeOH/3.0        | 1000 | 50   | 200 | 1.6    | 4.7         | THF                    | -60 | 66 | 14    | n.d.  |
| 15 | K/ 2.2 | MeOH/3.0        | 1000 | 200  | 200 | 6.3    | 4.7         | THF                    | -60 | 60 | 13    | n.d.  |
| 16 | K/ 2.1 | MeOH/3.0        | 250  | 3.5  | 200 | 0.0069 | 4.7         | THF                    | -78 | 60 | 20    | 3     |
| 17 | K/ 2.2 | MeOH/3.0        | 250  | 3.5  | 200 | 0.0069 | 4.7         | THF                    | -78 | 75 | 9     | 6     |
| 18 | K/ 2.5 | MeOH/3.0        | 250  | 3.5  | 200 | 0.0069 | 4.7         | THF                    | -78 | 72 | 3     | 10    |
| 19 | K/ 3.0 | MeOH/3.0        | 250  | 3.5  | 200 | 0.0069 | 4.7         | THF                    | -78 | 61 | 5     | 17    |
| 20 | K/ 2.2 | MeOH/1.5        | 250  | 3.5  | 200 | 0.0069 | 4.7         | THF                    | -78 | 20 | 35    | trace |
| 21 | K/ 2.2 | MeOH/2.0        | 250  | 3.5  | 200 | 0.0069 | 4.7         | THF                    | -78 | 56 | 22    | 3     |
| 22 | K/ 2.2 | MeOH/5.0        | 250  | 3.5  | 200 | 0.0069 | 4.7         | THF                    | -78 | 69 | 13    | -     |
| 23 | K/ 2.2 | <b>TFE</b> /1.5 | 250  | 3.5  | 200 | 0.0069 | 4.7         | THF                    | -78 | 51 | 27    | trace |
| 24 | K/ 2.2 | <b>TFE</b> /2.0 | 250  | 3.5  | 200 | 0.0069 | 4.7         | THF                    | -78 | 50 | 32    | trace |
| 25 | K/ 2.2 | TFE/3.0         | 250  | 3.5  | 200 | 0.0069 | 4.7         | THF                    | -78 | 41 | 42    | trace |
| 26 | K/ 2.2 | AcOH/1.5        | 250  | 3.5  | 200 | 0.0069 | 4.7         | THF                    | -78 | 31 | 42    | trace |
| 27 | K/ 2.2 | AcOH/2.0        | 250  | 3.5  | 200 | 0.0069 | 4.7         | THF                    | -78 | 29 | 50    | trace |
| 28 | K/ 2.2 | AcOH/3.0        | 250  | 3.5  | 200 | 0.0069 | 4.7         | THF                    | -78 | 19 | 59    | trace |
| 29 | K/ 2.2 | MeOH/3.0        | 250  | 3.5  | 50  | 0.0069 | 1.2         | THF                    | -78 | 51 | trace | 10    |
| 30 | K/ 2.2 | MeOH/3.0        | 250  | 3.5  | 100 | 0.0069 | 2.4         | THF                    | -78 | 63 | 10    | trace |
| 31 | K/ 2.2 | MeOH/3.0        | 250  | 3.5  | 300 | 0.0069 | 7.1         | THF                    | -78 | 66 | 13    | 5     |
| 32 | K/ 2.2 | MeOH/3.0        | 250  | 3.5  | 400 | 0.0069 | 9.4         | THF                    | -78 | 62 | 8     | 4     |
| 34 | к/22   | MeOH/3.0        | 250  | 35   | 200 | 0 0069 | 47          | THF/DME                | -78 | 74 | trace | 9     |
| 57 | 10/2.2 | We011/5.0       | 230  | 5.5  | 200 | 0.0009 | <b>ч.</b> 7 | /10:1                  | -70 | 74 | trace | ,     |
| 35 | K/ 2.2 | MeOH/3.0        | 500  | 3.5  | 200 | 0.027  | 4.7         | THF/DME<br>/10:1       | -78 | 73 | 5     | trace |
| 36 | K/ 2.2 | MeOH/3.0        | 1000 | 3.5  | 200 | 0.11   | 4.7         | THF/DME<br>/10:1       | -78 | 77 | 4     | trace |
| 37 | K/ 2.2 | MeOH/3.0        | 1000 | 12.5 | 200 | 0.39   | 4.7         | THF/DME<br>/10:1       | -78 | 69 | 3     | trace |
| 38 | K/ 2.2 | MeOH/3.0        | 1000 | 25   | 200 | 0.97   | 4.7         | THF/DME<br>/10:1       | -78 | 71 | trace | trace |
| 39 | K/ 2.2 | MeOH/3.0        | 1000 | 50   | 200 | 1.6    | 4.7         | THF/DME<br>/10:1       | -78 | 71 | 6     | trace |
| 40 | K/ 2.2 | MeOH/3.0        | 1000 | 100  | 200 | 3.1    | 4.7         | THF/DME<br>/10:1       | -78 | 67 | 3     | trace |
| 41 | K/ 2.2 | MeOH/3.0        | 1000 | 200  | 200 | 6.3    | 4.7         | THF/DME<br>/10:1       | -78 | 68 | trace | trace |
| 42 | K/ 2.2 | MeOH/3.0        | 250  | 3.5  | 200 | 0.0069 | 4.7         | $\mathrm{THF}^\dagger$ | -78 | 64 | 15    | trace |
| 43 | K/ 2.2 | MeOH/3.0        | 500  | 3.5  | 200 | 0.027  | 4.7         | $\mathrm{THF}^\dagger$ | -78 | 62 | 17    | trace |
|    |        |                 |      |      |     |        |             |                        |     |    |       |       |

| 44  | K/ 2.2         | MeOH/3.0      | 1000 | 3.5  | 200   | 0.11   | 4.7 | $\mathrm{THF}^\dagger$ | -78 | 60    | 16    | trace |
|-----|----------------|---------------|------|------|-------|--------|-----|------------------------|-----|-------|-------|-------|
| 45  | K/ 2.2         | MeOH/3.0      | 1000 | 12.5 | 200   | 0.39   | 4.7 | $\mathrm{THF}^\dagger$ | -78 | 58    | 15    | trace |
| 46  | K/ 2.2         | MeOH/3.0      | 1000 | 25   | 200   | 0.97   | 4.7 | $\mathrm{THF}^\dagger$ | -78 | 57    | 12    | trace |
| 47  | K/ 2.2         | MeOH/3.0      | 1000 | 50   | 200   | 1.6    | 4.7 | $\mathrm{THF}^\dagger$ | -78 | 55    | 13    | trace |
| 48  | K/ 2.2         | MeOH/3.0      | 1000 | 100  | 200   | 3.1    | 4.7 | $\mathrm{THF}^\dagger$ | -78 | 54    | 13    | trace |
| 49  | K/ 2.2         | MeOH/3.0      | 1000 | 200  | 200   | 6.3    | 4.7 | $\mathrm{THF}^\dagger$ | -78 | 48    | 12    | trace |
|     |                |               |      |      |       |        |     | THF/                   |     |       |       |       |
| 50  | K/ 2.2         | MeOH/3.0      | 250  | 3.5  | 200   | 0.0069 | 4.7 | diglyme                | -78 | 50    | trace | 15    |
|     |                |               |      |      |       |        |     | /10:1                  |     |       |       |       |
|     |                |               |      |      |       |        |     | THF/                   |     |       |       |       |
| 51  | K/ 2.2         | MeOH/3.0      | 500  | 3.5  | 200   | 0.027  | 4.7 | diglyme                | -78 | 67    | 5     | 10    |
|     |                |               |      |      |       |        |     | /10:1                  |     |       |       |       |
|     |                |               |      |      |       |        |     | THF/                   |     |       |       |       |
| 52  | K/ 2.2         | MeOH/3.0      | 1000 | 3.5  | 200   | 0.11   | 4.7 | diglyme                | -78 | 73    | trace | trace |
|     |                |               |      |      |       |        |     | /10:1                  |     |       |       |       |
|     |                |               |      |      |       |        |     | THF/                   |     |       |       |       |
| 53  | K/ 2.2         | MeOH/3.0      | 1000 | 12.5 | 200   | 0.39   | 4.7 | diglyme                | -78 | 75    | trace | trace |
|     |                |               |      |      |       |        |     | /10:1                  |     |       |       |       |
|     |                |               |      | _    |       |        |     | THF/                   |     |       |       |       |
| 54  | K/ 2.2         | MeOH/3.0      | 250  | 3.5  | 200   | 0.0069 | 4.7 | triglyme               | -78 | 46    | 4     | 14    |
|     |                |               |      |      |       |        |     | /10:1                  |     |       |       |       |
| ~ ~ | W ( 0 0        |               | 500  | 2.5  | 200   | 0.027  | 4.7 | THF/                   | 70  | (0)   | 0     | 10    |
| 22  | K/ 2.2         | MeOH/3.0      | 500  | 3.5  | 200   | 0.027  | 4./ | triglyme               | -/8 | 60    | 9     | 12    |
|     |                |               |      |      |       |        |     | /10:1                  |     |       |       |       |
| 56  | <b>V</b> /22   | $M_{2}OH/2$ 0 | 1000 | 2.5  | 200   | 0.11   | 17  | 1 III/                 | 79  | 74    | traco | 1     |
| 50  | <b>N</b> / 2.2 | WEO11/3.0     | 1000 | 5.5  | 200   | 0.11   | 4./ | /10·1                  | -/0 | /4    | uace  | 4     |
|     |                |               |      |      |       |        |     | 710.1<br>THF/          |     |       |       |       |
| 57  | к/22           | MeOH/3.0      | 1000 | 12.5 | 200   | 0 39   | 47  | triolyme               | -78 | 71    | trace | 4     |
| 57  | 10 2.2         | Wie011/5.0    | 1000 | 12.5 | 200   | 0.57   | 1.7 | /10:1                  | 70  | / 1   | uuee  |       |
|     |                |               |      |      |       |        |     | THE/DME                |     |       |       |       |
| 58  | K/ 2.2         | MeOH/3.0      | 250  | 3.5  | 200   | 0.0069 | 4.7 | /10:1                  | -20 | 30    | 24    | trace |
|     |                |               |      |      |       |        |     | THF/DME                |     |       |       |       |
| 59  | K/ 2.2         | MeOH/3.0      | 500  | 3.5  | 200   | 0.027  | 4.7 | /10:1                  | -20 | 26    | 26    | trace |
|     |                |               |      |      |       |        |     | THF/DME                |     |       |       |       |
| 60  | K/ 2.2         | MeOH/3.0      | 1000 | 3.5  | 200   | 0.11   | 4.7 | /10:1                  | -20 | 15    | 30    | trace |
|     |                |               |      |      |       |        |     | THF/DME                |     |       |       |       |
| 61  | K/ 2.2         | MeOH/3.0      | 1000 | 12.5 | 200   | 0.39   | 4.7 | /10:1                  | -20 | trace | 25    | trace |
|     | TT / A -       |               | 100- | • -  | • • • | c c=   | . – | THF/DME                |     |       |       |       |
| 62  | K/ 2.2         | MeOH/3.0      | 1000 | 25   | 200   | 0.97   | 4.7 | /10:1                  | -20 | trace | 22    | trace |

| 63 | K/ 2.2 | MeOH/3.0 | 1000 | 50   | 200 | 1.6    | 4.7 | THF/DME<br>/10:1 | -20 | trace | 19 | trace |
|----|--------|----------|------|------|-----|--------|-----|------------------|-----|-------|----|-------|
| 64 | K/ 2.2 | MeOH/3.0 | 1000 | 100  | 200 | 3.1    | 4.7 | THF/DME<br>/10:1 | -20 | trace | 31 | trace |
| 65 | K/ 2.2 | MeOH/3.0 | 1000 | 200  | 200 | 6.3    | 4.7 | THF/DME<br>/10:1 | -20 | trace | 31 | trace |
| 66 | K/ 2.2 | MeOH/3.0 | 250  | 3.5  | 200 | 0.0069 | 4.7 | THF/DME<br>/10:1 | -40 | 54    | 22 | trace |
| 67 | K/ 2.2 | MeOH/3.0 | 500  | 3.5  | 200 | 0.027  | 4.7 | THF/DME<br>/10:1 | -40 | 54    | 22 | trace |
| 67 | K/ 2.2 | MeOH/3.0 | 1000 | 3.5  | 200 | 0.11   | 4.7 | THF/DME<br>/10:1 | -40 | 44    | 24 | trace |
| 68 | K/ 2.2 | MeOH/3.0 | 1000 | 12.5 | 200 | 0.39   | 4.7 | THF/DME<br>/10:1 | -40 | 45    | 22 | trace |
| 69 | K/ 2.2 | MeOH/3.0 | 1000 | 25   | 200 | 0.97   | 4.7 | THF/DME<br>/10:1 | -40 | 38    | 24 | trace |
| 70 | K/ 2.2 | MeOH/3.0 | 1000 | 50   | 200 | 1.6    | 4.7 | THF/DME<br>/10:1 | -40 | 38    | 22 | trace |
| 71 | K/ 2.2 | MeOH/3.0 | 1000 | 100  | 200 | 3.1    | 4.7 | THF/DME<br>/10:1 | -40 | 22    | 33 | trace |
| 72 | K/ 2.2 | MeOH/3.0 | 1000 | 200  | 200 | 6.3    | 4.7 | THF/DME<br>/10:1 | -40 | 20    | 27 | trace |
| 73 | K/ 2.2 | MeOH/3.0 | 250  | 3.5  | 200 | 0.0069 | 4.7 | THF/DME<br>/10:1 | -60 | 71    | 12 | trace |
| 74 | K/ 2.2 | MeOH/3.0 | 500  | 3.5  | 200 | 0.027  | 4.7 | THF/DME<br>/10:1 | -60 | 73    | 15 | trace |
| 75 | K/ 2.2 | MeOH/3.0 | 1000 | 3.5  | 200 | 0.11   | 4.7 | THF/DME<br>/10:1 | -60 | 73    | 14 | trace |
| 76 | K/ 2.2 | MeOH/3.0 | 1000 | 12.5 | 200 | 0.39   | 4.7 | THF/DME<br>/10:1 | -60 | 72    | 13 | trace |
| 77 | K/ 2.2 | MeOH/3.0 | 1000 | 25   | 200 | 0.97   | 4.7 | THF/DME<br>/10:1 | -60 | 72    | 14 | trace |
| 78 | K/ 2.2 | MeOH/3.0 | 1000 | 50   | 200 | 1.6    | 4.7 | THF/DME<br>/10:1 | -60 | 68    | 13 | trace |
| 79 | K/ 2.2 | MeOH/3.0 | 1000 | 100  | 200 | 3.1    | 4.7 | THF/DME<br>/10:1 | -60 | 58    | 7  | trace |
| 80 | K/ 2.2 | MeOH/3.0 | 1000 | 200  | 200 | 6.3    | 4.7 | THF/DME<br>/10:1 | -60 | 49    | 6  | trace |

<sup>†</sup>5.0 equiv of 1,2-dimethoxyethane was used for the benzotrifluoride.

#### In-line IR monitoring of generation of difluoromethyl benzyl anion 2a



A flow microreactor system consisting of two T-shaped micromixers **M1** (inner diameter  $\phi = 250 \ \mu\text{m}$ ), PTFE tube **R1** (inner diameter  $\phi = 1000 \ \mu\text{m}$ , length L= 10 cm)), two tube precooling units **P1** and **P2** (inner diameter  $\phi = 1000 \ \mu\text{m}$ , length L= 100 cm), and **IR** unit was used. The flow microreactor system was cooled at -20 °C or -78 °C by a cooling bath. A solution of benzotrifluoride (**1a**) (0.10 M in THF) (flow rate: 7.5 mL/ min) and a solution of potassium naphtalenide (KNp) (0.22 M in THF) (flow rate: 7.5 mL/ min) were introduced to **M1** by syringe pumps. Then, a solution was passed through **R1** and **IR**. After a steady state was reached, IR measurement was started.



Fig. S2. In-line IR of PhCF<sub>2</sub>H, KNp, PhCF<sub>3</sub> and reactive intermediate at -20 °C.



Fig. S3. In-line IR of PhCF<sub>2</sub>H, KNp, PhCF<sub>3</sub> and reactive intermediate at -78 °C.

#### **DFT calculation studies**

DFT calculation studies have been performed with a Gaussian16 program package to estimate the FT-IR spectra of benzotrifluoride (PhCF<sub>3</sub>), its hydrodefluorination product (PhCF<sub>2</sub>H), and the reactive intermediate (*55*). We have employed B3LYP density functional and 6-31G+(d) basis set, in combination with the dispersion force correction model according to Grimme's D3 method (*56*) and the IEFPCM solvation model for THF (*57*).

|                                            | characteristic        |                             |                     |
|--------------------------------------------|-----------------------|-----------------------------|---------------------|
| structure                                  | vibrational frequency | $E_{\text{zero}}$ (hartree) | $G_{298}$ (hartree) |
|                                            | $(cm^{-1})$           |                             |                     |
| PhCF <sub>3</sub>                          | 1317                  | -569.227756                 | -569.262995         |
| PhCF <sub>2</sub> H                        | 1381                  | -469.964233                 | -469.997953         |
| (conformer A)                              |                       |                             |                     |
| PhCF <sub>2</sub> H                        | 1423                  | -469.965395                 | -469.998575         |
| (conformer B)                              |                       |                             |                     |
| PhCF <sub>2</sub> K                        | 1524, 1640            | -1069.299657                | -1069.337557        |
| THF                                        | -                     | -232.347890                 | -232.374573         |
| PhCF <sub>2</sub> K(thf) <sub>4</sub>      | 1524, 1640            | -1998.765184                | -1998.842716        |
| K <sup>+</sup> (naphthalene) <sup>•-</sup> | 1402, 1526            | -985.696956                 | -985.734795         |
| naphthalene                                | -                     | -385.773840                 | -385.803767         |
| $\mathbf{K}^+$                             | -                     | -599.834426                 | -599.849602         |
| $F^-$                                      | -                     | -99.978235                  | -99.992394          |

**Table S4.** Summary of the calculated frequencies and energies for the optimized geometries of relevant species

Table S5. Optimized ground-state geometry of PhCF<sub>3</sub>



| Н | -0.20390000 | 2.15550000  | -0.03310000 |
|---|-------------|-------------|-------------|
| Н | -0.20120000 | -2.15370000 | -0.03320000 |
| Н | -2.68320000 | -2.15500000 | 0.00840000  |
| Н | -3.92870000 | -0.00140000 | 0.02960000  |
| С | 1.44710000  | 0.00050000  | -0.00520000 |
| F | 1.98210000  | -1.08250000 | -0.62880000 |
| F | 1.93520000  | -0.01890000 | 1.27110000  |
| F | 1.98320000  | 1.10050000  | -0.59670000 |

Table S6. Optimized Ground State Geometry of the simplified reactive intermediate (PhCF<sub>2</sub>H\_1)



**Table S7.** Optimized Ground State Geometry of the simplified reactive intermediate (PhCF<sub>2</sub>H\_2)



| С | 2.08534968  | -1.08350662 | 0.00440905  |
|---|-------------|-------------|-------------|
| С | 0.70195341  | -1.29163317 | 0.00731613  |
| С | -0.16816346 | -0.19689611 | 0.00333170  |
| С | 0.34182618  | 1.10948659  | -0.00347944 |
| С | 1.72152413  | 1.31422134  | -0.00624293 |
| С | 2.59438385  | 0.21789627  | -0.00233294 |
| Н | 2.76011707  | -1.93495870 | 0.00751884  |
| Н | 0.30413872  | -2.30362324 | 0.01248221  |
| Н | -0.33922503 | 1.95583720  | -0.00641141 |
| Н | 2.11807207  | 2.32575943  | -0.01137219 |
| Н | 3.66885872  | 0.38063028  | -0.00437924 |
| С | -1.64847267 | -0.42401461 | 0.00522870  |
| F | -2.24209751 | 0.19179092  | 1.09941825  |
| F | -2.23997552 | 0.16136629  | -1.10679828 |
| Н | -1.94371099 | -1.47538209 | 0.01920043  |

**Table S8.** Optimized Ground State Geometry of the simplified reactive intermediate



| Н | 4.65471398  | -0.03863682 | -0.38868141 |
|---|-------------|-------------|-------------|
| С | -0.72658200 | 0.01780255  | 0.02527907  |
| F | -1.15611676 | -1.07850909 | 0.90616479  |
| F | -1.14139082 | 1.17681594  | 0.82289304  |
| Κ | -3.49429408 | -0.02871160 | -0.53219917 |

**Table S9.** Optimized Ground State Geometry of the simplified reactive intermediate (THF)



| С | -1.19067069 | 0.45967233  | -0.00000010 |
|---|-------------|-------------|-------------|
| 0 | 0.0000036   | 1.26206451  | -0.00000030 |
| С | 1.19067088  | 0.45967188  | -0.00000059 |
| С | 0.77478834  | -1.02733370 | 0.0000081   |
| С | -0.77478868 | -1.02733366 | 0.00000019  |
| Н | -1.78017675 | 0.72061133  | 0.88838738  |
| Н | -1.78017683 | 0.72061094  | -0.88838764 |
| Н | 1.78017604  | 0.72060940  | -0.88838911 |
| Н | 1.78017724  | 0.72061072  | 0.88838672  |
| Н | 1.17004705  | -1.54175609 | -0.88124601 |
| Н | 1.17004633  | -1.54175423 | 0.88124904  |
| Н | -1.17004718 | -1.54175467 | -0.88124751 |
| Н | -1.17004787 | -1.54175452 | 0.88124767  |
|   |             |             |             |

**Table S10.** Optimized Ground State Geometry of the simplified reactive intermediate



| С | 4.39629237  | 0.00549321  | 0.50791272  |
|---|-------------|-------------|-------------|
| С | 3.65942250  | -0.88923549 | -0.29876918 |
| С | 4.38112468  | -1.76534288 | -1.13877367 |
| С | 5.77668845  | -1.74266454 | -1.17283404 |
| С | 6.49572535  | -0.84390820 | -0.37326281 |
| Н | 6.33487123  | 0.72383073  | 1.10447370  |
| Н | 3.86366117  | 0.68438146  | 1.16724340  |
| Н | 3.83543939  | -2.46493834 | -1.76605855 |
| Н | 6.30792521  | -2.43349476 | -1.82472864 |
| Н | 7.58232627  | -0.82485303 | -0.40387623 |
| С | 2.18664610  | -0.81459978 | -0.36960415 |
| F | 1.68157223  | -2.17387416 | -0.52595712 |
| F | 1.70906940  | -0.49794117 | 0.98243491  |
| Κ | -0.49172296 | 0.14155231  | -0.79559406 |
| 0 | -2.16481762 | -2.06204454 | -1.21371300 |
| С | -3.26084242 | -2.32197281 | -0.30903226 |
| С | -1.53285036 | -3.31418836 | -1.59214374 |
| С | -3.01157051 | -3.72579749 | 0.24026198  |
| Н | -3.26089181 | -1.53493550 | 0.45034333  |
| Н | -4.20670257 | -2.27837238 | -0.86878692 |
| С | -2.39066638 | -4.42783533 | -0.97875728 |
| Н | -1.48366759 | -3.35821396 | -2.68562477 |
| Н | -0.51247086 | -3.31315528 | -1.19080303 |
| Н | -3.92797071 | -4.20576859 | 0.59794522  |
| Н | -2.29332431 | -3.68917192 | 1.06754238  |
| Н | -3.17654344 | -4.73957408 | -1.67740917 |
| Н | -1.79768800 | -5.30901578 | -0.71552247 |
| 0 | -1.62001646 | -0.04324983 | 1.83109507  |
| С | -1.25183917 | -1.24815665 | 2.54962143  |
| С | -1.31996438 | 1.10691855  | 2.64994504  |
| С | -0.58343024 | -0.79705626 | 3.86091765  |
| Н | -2.15460417 | -1.84580861 | 2.72192316  |
| Н | -0.56603959 | -1.81707845 | 1.91305800  |
| С | -0.17739975 | 0.65501813  | 3.55563678  |
| Н | -1.06176916 | 1.93140852  | 1.98081746  |
| Н | -2.21094325 | 1.38317921  | 3.23528688  |
| Н | 0.26681787  | -1.43222334 | 4.12671323  |
| Н | -1.30175689 | -0.82505998 | 4.68895812  |
| Н | 0.76704707  | 0.67680477  | 3.00227027  |
| Н | -0.07856232 | 1.27343313  | 4.45367209  |

| -2.78178902 | 1.70191328                                                                                                                                                                                                                                                                                                                                                                             | -1.50767139                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|-------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| -3.91442020 | 0.92894493                                                                                                                                                                                                                                                                                                                                                                             | -1.97237677                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| -3.24313677 | 2.56210867                                                                                                                                                                                                                                                                                                                                                                             | -0.45008136                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| -4.98118052 | 0.98010569                                                                                                                                                                                                                                                                                                                                                                             | -0.84997713                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| -4.28715589 | 1.36598578                                                                                                                                                                                                                                                                                                                                                                             | -2.90807171                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| -3.55032533 | -0.08239361                                                                                                                                                                                                                                                                                                                                                                            | -2.17474172                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| -4.26113616 | 1.70973228                                                                                                                                                                                                                                                                                                                                                                             | 0.30407926                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| -2.36983517 | 2.85689114                                                                                                                                                                                                                                                                                                                                                                             | 0.13576115                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| -3.71014904 | 3.46375255                                                                                                                                                                                                                                                                                                                                                                             | -0.87837002                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| -5.32278709 | -0.01856388                                                                                                                                                                                                                                                                                                                                                                            | -0.56233524                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| -5.85675213 | 1.54988711                                                                                                                                                                                                                                                                                                                                                                             | -1.17966808                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| -3.73165878 | 0.99822614                                                                                                                                                                                                                                                                                                                                                                             | 0.94626508                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| -4.94100768 | 2.30555916                                                                                                                                                                                                                                                                                                                                                                             | 0.92182274                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 0.17880390  | 2.83835111                                                                                                                                                                                                                                                                                                                                                                             | 0.02649396                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 0.18035603  | 3.76512754                                                                                                                                                                                                                                                                                                                                                                             | -1.07262348                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 1.50971505  | 2.89374132                                                                                                                                                                                                                                                                                                                                                                             | 0.57417027                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 1.54338289  | 3.57210110                                                                                                                                                                                                                                                                                                                                                                             | -1.76464406                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| -0.68396416 | 3.53291593                                                                                                                                                                                                                                                                                                                                                                             | -1.69987098                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 0.07277679  | 4.78895732                                                                                                                                                                                                                                                                                                                                                                             | -0.68148389                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 2.44613578  | 2.97899350                                                                                                                                                                                                                                                                                                                                                                             | -0.64494123                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 1.59672710  | 3.78419238                                                                                                                                                                                                                                                                                                                                                                             | 1.21604032                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 1.65342999  | 1.99603405                                                                                                                                                                                                                                                                                                                                                                             | 1.17813931                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 1.92752419  | 4.51718382                                                                                                                                                                                                                                                                                                                                                                             | -2.16139834                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 1.45536589  | 2.87096896                                                                                                                                                                                                                                                                                                                                                                             | -2.60098000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 3.32152233  | 3.60194860                                                                                                                                                                                                                                                                                                                                                                             | -0.43566622                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 2.79566610  | 1.97920309                                                                                                                                                                                                                                                                                                                                                                             | -0.91664931                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|             | -2.78178902<br>-3.91442020<br>-3.24313677<br>-4.98118052<br>-4.28715589<br>-3.55032533<br>-4.26113616<br>-2.36983517<br>-3.71014904<br>-5.32278709<br>-5.85675213<br>-3.73165878<br>-4.94100768<br>0.17880390<br>0.18035603<br>1.50971505<br>1.54338289<br>-0.68396416<br>0.07277679<br>2.44613578<br>1.59672710<br>1.65342999<br>1.92752419<br>1.45536589<br>3.32152233<br>2.79566610 | -2.781789021.70191328-3.914420200.92894493-3.243136772.56210867-4.981180520.98010569-4.287155891.36598578-3.55032533-0.08239361-4.261136161.70973228-2.369835172.85689114-3.710149043.46375255-5.32278709-0.01856388-5.856752131.54988711-3.731658780.99822614-4.941007682.305559160.178803902.838351110.180356033.765127541.509715052.893741321.543382893.57210110-0.683964163.532915930.072776794.788957322.446135782.978993501.596727103.784192381.653429991.996034051.927524194.517183821.455365892.870968963.321522333.601948602.795666101.97920309 |

Table S11. Optimized Ground State Geometry of the simplified reactive intermediate



| C | 2.14991306  | -1.13572778 | 0.70147860  |
|---|-------------|-------------|-------------|
| Н | -1.49792544 | -0.34708007 | -2.49295445 |
| Н | 3.06705487  | -1.34941013 | -1.24156450 |
| Н | 0.95364160  | -0.89521894 | -2.49429384 |
| С | -1.49412975 | -0.33754923 | -1.40363307 |
| С | -1.49293334 | -0.32381063 | 1.40649537  |
| Н | 0.95562749  | -0.87159123 | 2.50051549  |
| Н | 3.06794938  | -1.33792558 | 1.25039663  |
| С | -2.68386320 | -0.05265498 | 0.69806599  |
| С | -2.68444728 | -0.05948962 | -0.69687551 |
| Н | -1.49590648 | -0.32315921 | 2.49586219  |
| Н | -3.60043222 | 0.15863841  | 1.24610875  |
| Н | -3.60146388 | 0.14650492  | -1.24618734 |
| Κ | 0.96568410  | 2.16106886  | -0.00803809 |
|   |             |             |             |

Table S12. Optimized Ground State Geometry of the simplified reactive intermediate (Naph-0)

| С | -0.00000000 | 2.43739124  | 0.70981639  |
|---|-------------|-------------|-------------|
| С | 0.00000000  | 1.24617498  | 1.40549179  |
| С | -0.00000000 | 0.00000000  | 0.71774994  |
| С | 0.00000000  | -0.00000000 | -0.71774994 |
| С | 0.00000000  | 1.24617498  | -1.40549179 |
| С | 0.00000000  | 2.43739124  | -0.70981639 |
| Н | 0.00000000  | -1.24433104 | 2.49338250  |
| Н | -0.00000000 | 3.38227422  | 1.24702970  |
| Н | 0.00000000  | 1.24433104  | 2.49338250  |
| С | -0.00000000 | -1.24617498 | 1.40549179  |
| С | -0.00000000 | -1.24617498 | -1.40549179 |
| Н | 0.00000000  | 1.24433104  | -2.49338250 |
| Н | 0.00000000  | 3.38227422  | -1.24702970 |
| С | -0.00000000 | -2.43739124 | -0.70981639 |
| С | -0.00000000 | -2.43739124 | 0.70981639  |
| Н | 0.00000000  | -1.24433104 | -2.49338250 |
| Н | -0.00000000 | -3.38227422 | -1.24702970 |
| Н | -0.00000000 | -3.38227422 | 1.24702970  |
|   |             |             |             |

# Defluorinative functionalization in the presence of the benzoyl chloride Scheme S2.



A flow microreactor system consisting of two T-shaped micromixers (**M1** and **M2** (inner diameter  $\phi = 250 \mu m$ )), two microtube reactors (**R1** and **R2**), and three tube precooling units (**P1**, **P2**, and **P3** (inner diameter  $\phi = 1000 \mu m$ , length L= 100 cm)) was used. The flow microreactor system was cooled at -78 °C by a cooling bath. A solution of benzotrifluoride (**1a**) (0.10 M in THF/1,2-dimethoxyethane (DME)= 10/1) (flow rate: 7.5 mL/ min) and a solution of benzoyl chloride (0.45 M in THF/1,2-dimethoxyethane (DME)= 10/1) (flow rate: 5.0 mL/ min) were introduced to **M1** by syringe pumps. The resulting solution was passed through **R1** (inner diameter  $\phi = 1000 \mu m$ , length L= 50 cm) and was mixed with a solution of potassium naphtalenide (KNp) (0.22 M in THF) (flow rate: 7.5 mL/ min) in **M2**. The resulting solution was passed through **R2** (inner diameter  $\phi = 1000 \mu m$ , length L= 200 cm). After a steady state was reached, the outcoming solution was collected for 20 seconds in a vessel containing 4 mL of sat. aq. NH4Cl. The yield of **3h** and recovery of **1a** were determined by <sup>19</sup>F NMR integration relative to the internal standard (hexafluorobenzene). However, this system did not give a corresponding compound **3h**, and substrate **1a** was quantitatively recovered.

# General procedure of defluorinative functionalization of benzotrifluoride under flow microreactor system



A flow microreactor system consisting of two T-shaped micromixers (**M1** and **M2** (inner diameter  $\phi$ = 250 µm)), two microtube reactors (**R1** and **R2**), and three tube precooling units (**P1**, **P2**, and **P3** (inner diameter  $\phi$ = 1000 µm, length L= 100 cm)) was used. The flow microreactor system was cooled at -78 °C by a cooling bath. A solution of benzotrifluoride (**1a**) (0.10 M in THF/1,2-dimethoxyethane (DME)= 10/1) (flow rate: 7.5 mL/ min) and a solution of potassium naphtalenide (KNp) (0.22 M in THF) (flow rate: 7.5 mL/ min) were introduced to **M1** by syringe pumps. The resulting solution was passed through **R1** (inner diameter  $\phi$ = 1000 µm, length L= 3.5 cm) and was mixed with a solution of electrophile (0.45 M in THF/1,2-dimethoxyethane (DME)= 10/1) (flow rate: 5.0 mL/ min) in **M2**. The resulting solution was passed through **R2** (inner diameter  $\phi$ = 1000 µm, length L= 200 cm). After a steady state was reached, the outcoming solution was collected for 20 seconds in a vessel containing 4 mL of sat. aq. NH4Cl. The yields of corresponding difluoromethyl arenes (**4**) were determined by <sup>19</sup>F NMR integration relative to the internal standard (hexafluorobenzene). The reaction mixture was extracted with EtOAc (3 x 5 mL), and was washed with brine. The combined organic layers were dried over Na<sub>2</sub>SO<sub>4</sub>, and filtered, concentrated under vacuum. Then, the crude product was purified by flash column chromatography on silica gel to give a product.

# General procedure of hydrodefluorination of aryl bearing fluorine atoms under flow microreactor system



A flow microreactor system consisting of two T-shaped micromixers (**M1** and **M2** (inner diameter  $\phi = 250 \mu$ m)), two microtube reactors (**R1** and **R2**), and three tube precooling units (**P1**, **P2**, and **P3** (inner diameter  $\phi = 1000 \mu$ m, length L= 100 cm)) was used. The flow microreactor system was cooled at -78 °C by a cooling bath. A solution of benzotrifluoride derivatives (**1**) (0.10 M in THF/1,2-dimethoxyethane (DME)= 10/1) (flow rate: 7.5 mL/ min) and a solution of potassium naphtalenide (KNp) (0.22 M in THF) (flow rate: 7.5 mL/ min) were introduced to **M1** by syringe pumps. The resulting solution was passed through **R1** and was mixed with a solution of methanol (0.45 M in THF/1,2-dimethoxyethane (DME)= 10/1) (flow rate: 5.0 mL/ min) in **M2**. The resulting solution was passed through **R2** (inner diameter  $\phi = 1000 \mu$ m, length L= 200 cm). After a steady state was reached, the outcoming solution was collected for 20 seconds in a vessel containing 4 mL of sat. aq. NH4Cl. The yields of corresponding difluoromethyl arenes (**4**) were determined by <sup>19</sup>F NMR integration relative to the internal standard (hexafluorobenzene). The reaction mixture was extracted with EtOAc (3 x 5 mL), and was washed with brine. The combined organic layers were dried over Na<sub>2</sub>SO<sub>4</sub>, and filtered, concentrated under vacuum. Then, the crude product was purified by flash column chromatography on silica gel to give a product. The optimizations are summarized in Fig. S4.



#### Fig. S4. Scope of substrates of hydrodefluorination.

Using THF/diglyme (10:1) instead of THF/DME in parentheses. \*The yield of **3a** was determined by gas chromatography with an undecane as an internal standard. <sup>†</sup>Quench was carried out by methanol instead of sat. aq. NH<sub>4</sub>Cl.

#### **Defluorinative functionalization products characterizations**

#### **Difluoromethyl benzene (3a)**



Obtained in 77 % yield (Maximum yield). Yields were determined by GC analysis ('R 6.0 min) (initial oven temperature, 50 °C (5 min); temperature increase rate, 10 °C/min (25 min); final temperature, 300 °C) using an internal standard (undecane). The NMR spectral data were identical to those reported in the literature (*30*).

# **Deuterated difluoromethyl benzene (3b)**



Obtained in 74 % yield. The yield was determined by <sup>19</sup>F NMR integration relative to the internal standard (hexafluorobenzene). <sup>19</sup>F NMR (376 MHz, CDCl<sub>3</sub>)  $\delta$  -112.40 (s, 2F). <sup>19</sup>F NMR data matches previously reported data (58). The identity of the product was further confirmed by GCMS analysis.





Obtained in 66 % yield. The yield was determined by <sup>19</sup>F NMR integration relative to the internal standard (hexafluorobenzene). The reaction mixture was purified by flash column chromatography (hexane/EtOAc= 10:1, Rf= 0.4) to afford the pure product as a white solid.

# NMR Spectroscopy:

<sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) δ 7.47-7.44 (m, 4H), 7.32 (t, *J*= 7.3 Hz, 1H), 7.28-7.25 (m, 4H), 7.20 (t, *J*= 7.7 Hz, 2H), 7.07 (d, *J*= 7.6 Hz, 2H), 2.78 (s, 1H).

<sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>) δ 141.50, 134.22 (t, *J*= 26.2 Hz), 129.51, 127.99 (d, *J*= 4.7 Hz), 127.76, 127.71, 127.38 (t, *J*= 6.4 Hz), 127.00, 123.20 (t, *J*= 255.8 Hz), 80.85 (t, *J*= 28.9 Hz).

<sup>19</sup>F NMR (376 MHz, CDCl<sub>3</sub>) δ -102.57 (s, 2F).

# 1,2-Diphenyl-2,2-difluoroethanol (3d)



Obtained in 71 % yield. The crude product was purified by flash column chromatography on silica gel (hexane/EtOAc= 10:1, Rf= 0.2) to afford the pure product as a white solid (126.7 mg).

# NMR Spectroscopy:

<sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.40-7.17 (m, 10H), 5.04 (t, *J*= 10.1 Hz, 1H), 2.63 (s, 1H).

<sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>) δ 135.70, 133.65 (t, *J*= 25.9 Hz), 129.96, 128.61, 127.83 (t, *J*= 9.2 Hz), 126.23 (t, *J*= 6.3 Hz), 123.55, 121.0, 118.61, 76.85 (t, *J*= 30.7 Hz).

<sup>19</sup>F NMR (376 MHz, CDCl<sub>3</sub>) δ -108.09 (d, *J*= 9.1 Hz, 2F).



Obtained in 55 % yield. The yield was determined by <sup>19</sup>F NMR integration relative to the internal standard (hexafluorobenzene). The reaction mixture was purified by flash column chromatography (hexane/EtOAc= 10:1, Rf= 0.5) to afford the pure product as a colorless oil.

#### NMR Spectroscopy:

<sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) δ 7.63-7.60 (m, 2H), 7.52-7.43 (m, 3H), 4.30 (q, *J*=7.1 Hz, 2H), 1.30 (t, *J*=7.1 Hz, 3H).

<sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>) δ 164.21 (t, *J*= 35.4 Hz), 132.77 (t, *J*= 25.5 Hz), 130.95 (d, *J*= 2.2 Hz), 128.61, 125.40 (t, *J*= 6.3 Hz), 113.35 (t, *J*= 251.9 Hz), 63.11, 13.84.

<sup>19</sup>F NMR (376 MHz, CDCl<sub>3</sub>) δ -105.07 (s, 2F).

# 2,2-Difluoro- 2-(phenyl)acetaldehyde (3f)



Obtained in 48 % yield. The yield was determined by <sup>19</sup>F NMR integration relative to the internal standard (hexafluorobenzene). <sup>19</sup>F NMR (376 MHz, CDCl<sub>3</sub>)  $\delta$  -112.66 (s, 2F). <sup>19</sup>F NMR data matches previously reported data (*59*). The identity of the product was further confirmed by GCMS analysis.





Obtained in 83 % yield. The yield was determined by <sup>19</sup>F NMR integration relative to the internal standard (hexafluorobenzene). The crude product was purified by flash column chromatography on silica gel (hexane/EtOAc= 10:1, Rf= 0.3) to afford the pure product as a white solid.

# NMR Spectroscopy:

<sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) δ 8.09 (s, 1H), 7.69-7.67 (m, 2H), 7.59-7.56 (m, 2H), 7.53-7.45 (m, 3H), 7.36 (t, *J*= 8.0 Hz, 2H), 7.19 (t, *J*= 7.5 Hz, 1H).

<sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>) δ 161.80 (t, *J*= 30.8 Hz), 136.00, 132.55 (t, *J*= 25.4 Hz), 131.08 (t, *J*= 1.9 Hz), 129.20, 128.68, 125.63, 125.56 (t, *J*= 5.3 Hz), 120.11, 114.76 (t, *J*= 254.3 Hz).

<sup>19</sup>F NMR (376 MHz, CDCl<sub>3</sub>) δ -103.58 (s, 2F).

# 2,2-Difluoro-1,2-diphenylethane-1-one (3h)



3h

Obtained in 55 % yield. The yield was determined by <sup>19</sup>F NMR integration relative to the internal standard (hexafluorobenzene). The reaction mixture was purified by flash column chromatography (hexane/EtOAc= 10:1, Rf= 0.5) to afford the pure product as a yellow oil in 66 % isolated yield (115.2 mg).

# NMR Spectroscopy:

<sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) δ 8.04-8.02 (m, 2H), 7.63-7.57 (m, 3H), 7.50-7.43 (m, 5H). <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>) δ 188.89 (t, *J*= 30.8 Hz), 134.19, 133.03 (t, *J*= 25.0 Hz), 132.02, 130.88 (d, *J*= 1.7 Hz), 130.22 (t, *J*= 2.9 Hz), 128.79, 128.60, 125.54 (t, *J*= 5.8 Hz), 116.86 (t, *J*= 253.2 Hz). <sup>19</sup>F NMR (376 MHz, CDCl<sub>3</sub>) δ -98.76 (s, 2F).



Obtained in 76 % yield. The yield was determined by <sup>19</sup>F NMR integration relative to the internal standard (hexafluorobenzene). <sup>19</sup>F NMR (376 MHz, CDCl<sub>3</sub>)  $\delta$  -88.62 (q, *J*= 17.5 Hz, 2F). <sup>19</sup>F NMR data matches previously reported data (*60*). The identity of the product was further confirmed by GCMS analysis.



(1,1-Difluorononyl)benzene (3j)



Obtained in 71 % yield. The yield was determined by <sup>19</sup>F NMR integration relative to the internal standard (hexafluorobenzene). <sup>19</sup>F NMR (376 MHz, CDCl<sub>3</sub>)  $\delta$  -96.27 (t, *J*= 16.1 Hz, 2F). <sup>19</sup>F NMR data matches previously reported data (*61*). The identity of the product was further confirmed by GCMS analysis.



#### 1,1-Difluoro-1-phenyl-3-butene (3k)



Obtained in 41 % yield. The yield was determined by <sup>19</sup>F NMR integration relative to the internal standard (hexafluorobenzene). <sup>19</sup>F NMR (376 MHz, CDCl<sub>3</sub>)  $\delta$  -96.20 (t, *J*= 16.4 Hz, 2F). <sup>19</sup>F NMR data matches previously reported data (62). The identity of the product was further confirmed by GCMS analysis.



(Difluoroiodomethyl)benzene (3l)



Obtained in 65 % yield. The yield was determined by <sup>19</sup>F NMR integration relative to the internal standard (hexafluorobenzene). <sup>19</sup>F NMR (376 MHz, CDCl<sub>3</sub>)  $\delta$  -38.06 (s, 2F). <sup>19</sup>F NMR data matches previously reported data (*63*). The identity of the product was further confirmed by GCMS analysis.





Obtained in 56 % yield. The yield was determined by <sup>19</sup>F NMR integration relative to the internal standard (hexafluorobenzene). <sup>19</sup>F NMR (376 MHz, CDCl<sub>3</sub>)  $\delta$  -44.74 (s, 2F). <sup>19</sup>F NMR data matches previously reported data (*64*). The identity of the product was further confirmed by GCMS analysis.



(Chlorodifluoromethyl)benzene (3n)



Obtained in 80 % yield. The yield was determined by <sup>19</sup>F NMR integration relative to the internal standard (hexafluorobenzene). <sup>19</sup>F NMR (376 MHz, CDCl<sub>3</sub>)  $\delta$  -49.78 (s, 2F). <sup>19</sup>F NMR data matches previously reported data (*65*). The identity of the product was further confirmed by GCMS analysis.





Obtained in 48 % yield. The yield was determined by <sup>19</sup>F NMR integration relative to the internal standard (hexafluorobenzene). The crude product (0.25 mmol scale) was purified by GPC to afford the pure product as yellow oil in 55 % isolated yield (36.8 mg).

# NMR Spectroscopy:

<sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) δ 7.62 (dd, *J*= 8.0, 0.9 Hz, 2H), 7.49-7.44 (m, 3H), 4.26-4.09 (m, 2H), 1.31 (t, *J*= 7.1 Hz, 3H).

<sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>) δ 132.78-132.21 (m), 130.75 (t, *J*= 1.9 Hz), 128.39, 126.24-126.09 (m), 121.71-114.30 (m), 64.74 (d, *J*= 6.7 Hz), 16.28 (d, *J*= 5.6 Hz).

<sup>19</sup>F NMR (376 MHz, CDCl<sub>3</sub>) δ -109.72 (d, *J*= 120.6 Hz, 2F).

# (Difluoro(trimethylsilyl)methyl)benzene (3p)



Obtained in 85 % yield. The yield was determined by <sup>19</sup>F NMR integration relative to the internal standard (hexafluorobenzene). <sup>19</sup>F NMR (376 MHz, CDCl<sub>3</sub>)  $\delta$  -113.44 (s, 2F). <sup>19</sup>F NMR data matches previously reported data (*66*). The identity of the product was further confirmed by GCMS analysis.



# Tributhyl(difluoro(phenyl)methyl)stannane (3q)



Obtained in 63 % yield. The yield was determined by <sup>19</sup>F NMR integration relative to the internal standard (hexafluorobenzene). The crude product was purified by GPC to afford the pure product as yellow oil. HRMS (ESI) m/z Calcd for C<sub>19</sub>H<sub>32</sub>F<sub>2</sub>SnNa[M+Na]<sup>+</sup> 441.1395; Found: 441.1385.

# NMR Spectroscopy:

<sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) δ 7.41-7.37 (m, 2H), 7.33-7.28 (m, 3H), 1.54-1.22 (m, 13H), 1.01-0.97 (m, 5H), 0.86 (d, J= 14.6 Hz, 9H). <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>) δ 141.69 (t, J= 16.8 Hz), 136.04 (d, J= 293.8 Hz), 128.41, 128.16 (t, J= 2.7 Hz), 123.23 (t, J= 8.3 Hz), 28.53 (d, J= 1.5 Hz), 27.22 (d, J= 1.8 Hz), 13.59 (d, J= 1.6 Hz), 9.94 (d, J= 3.4 Hz). <sup>19</sup>F NMR (376 MHz, CDCl<sub>3</sub>) δ -97.53--98.29 (m, 2F).

Note: The title compound was unstable and decomposed after several days of storage at ambient temperature.

# ((Difluorophenylmethyl)thio)benzene (3r)



Obtained in 80 % yield. The yield was determined by <sup>19</sup>F NMR integration relative to the internal standard (hexafluorobenzene). The crude product was purified by flash column chromatography on silica gel (hexane only, Rf=0.5) to afford the pure product as a white solid.

# NMR Spectroscopy:

<sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) δ 7.63-7.61 (m, 2H), 7.57 (dd, *J*=7.7, 1.3 Hz, 2H), 7.45-7.35 (m, 6H).

<sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>) δ 136.36, 135.89 (t, *J*=25.0 Hz), 130.56, 129.87, 128.97, 128.32, 127.58, 127.45, 125.37 (t, *J*=4.8 Hz).

<sup>19</sup>F NMR (376 MHz, CDCl<sub>3</sub>) δ -72.99 (s, 2F).

#### 1-(Difluoromethyl)-4-methylbenzene (4a)



Obtained in 84 % yield (Maximum yield). The yield was determined by <sup>19</sup>F NMR integration relative to the internal standard (hexafluorobenzene). <sup>19</sup>F NMR (376 MHz, CDCl<sub>3</sub>)  $\delta$  -110.80 (d, *J*= 57.4 Hz, 2F). <sup>19</sup>F NMR data matches previously reported data (*67*). The identity of the product was further confirmed by GCMS analysis.



1-(Difluoromethyl)-2-methylbenzene (4b)



4b

Obtained in 75 % yield (Maximum yield). The yield was determined by <sup>19</sup>F NMR integration relative to the internal standard (hexafluorobenzene). <sup>19</sup>F NMR (376 MHz, CDCl<sub>3</sub>)  $\delta$  -114.21 (d, *J*= 54.1 Hz, 2F). <sup>19</sup>F NMR data matches previously reported data (67). The identity of the product was further confirmed by GCMS analysis.



#### 1-(Difluoromethyl)-3-methoxybenzene (4c)



Obtained in 87 % yield (Maximum yield). The yield was determined by <sup>19</sup>F NMR integration relative to the internal standard (hexafluorobenzene). <sup>19</sup>F NMR (376 MHz, CDCl<sub>3</sub>)  $\delta$  -111.74 (d, *J*= 53.8 Hz, 2F). <sup>19</sup>F NMR data matches previously reported data (*30*). The identity of the product was further confirmed by GCMS analysis.



4-(Difluoromethyl)-1,1'-biphenyl (4d)



4d

Obtained in 42 % yield (Maximum yield). The yield was determined by <sup>19</sup>F NMR integration relative to the internal standard (hexafluorobenzene). The reaction mixture was purified by flash column chromatography (hexane/EtOAc= 10:1, Rf= 0.4) to afford the pure product as a white solid.

# NMR Spectroscopy:

<sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) δ 7.67 (d, *J*= 8.1 Hz, 2H), 7.61-7.57 (m, 4H), 7.48-7.45 (m, 2H), 7.41-7.37 (m, 1H), 6.70 (t, *J*= 56.5 Hz, 1H).

<sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>) δ 143.66 (d, *J*= 1.9 Hz), 140.15, 133.16 (t, *J*= 22.1 Hz), 128.90, 127.89, 127.42, 127.23, 126.01 (t, *J*= 5.8 Hz), 114.72 (t, *J*= 238.4 Hz).

<sup>19</sup>F NMR (376 MHz, CDCl<sub>3</sub>) δ -111.56 (d, *J*= 57.2 Hz, 2F).



Obtained in 63 % yield (Maximum yield). The yield was determined by <sup>19</sup>F NMR integration relative to the internal standard (hexafluorobenzene). The reaction mixture was purified by flash column chromatography (hexane/EtOAc= 10:1, Rf= 0.2) to afford the pure product as a white solid.

HRMS (ESI) *m/z* Calcd for C<sub>12</sub>H<sub>15</sub>F<sub>2</sub>NONa[M+Na]<sup>+</sup> 250.1014; Found: 250.1010.

# NMR Spectroscopy:

<sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) δ 7.64 (d, *J*= 8.6 Hz, 2H), 7.47 (d, *J*= 8.6 Hz, 2H), 6.61 (t, *J*= 56.6 Hz, 1H), 1.33 (s, 9H).

<sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>) δ 176.81, 140.15, 129.86 (t, *J*= 22.7 Hz), 126.37 (t, *J*= 6.0 Hz), 119.72, 114.51 (t, *J*= 238.0 Hz), 39.69, 27.51.

<sup>19</sup>F NMR (376 MHz, CDCl<sub>3</sub>) δ -110.82 (d, *J*= 56.7 Hz, 2F).

# 1-(Difluoromethyl)-4-vinylbenzene (4f)



4f

Obtained in 40 % yield (Maximum yield). The yield was determined by <sup>19</sup>F NMR integration relative to the internal standard (hexafluorobenzene). <sup>19</sup>F NMR (376 MHz, CDCl<sub>3</sub>)  $\delta$  -111.54 (d, *J*= 57.1 Hz, 2F). <sup>19</sup>F NMR data matches previously reported data (*68*). The identity of the product was further confirmed by GCMS analysis.



#### 4-(Difluoromethyl)benzeneacetonitrile (4g)



Obtained in 58 % yield (Maximum yield). The yield was determined by <sup>19</sup>F NMR integration relative to the internal standard (hexafluorobenzene). <sup>19</sup>F NMR (376 MHz, CDCl<sub>3</sub>)  $\delta$  -112.19 (d, *J*= 53.7 Hz, 2F). <sup>19</sup>F NMR data matches previously reported data (*69*). The identity of the product was further confirmed by GCMS analysis.



Ethyl 4-(difluoromethyl)benzene acetate (4h)



4h

Obtained in 51 % yield (Maximum yield). The yield was determined by <sup>19</sup>F NMR integration relative to the internal standard (hexafluorobenzene). <sup>19</sup>F NMR (376 MHz, CDCl<sub>3</sub>)  $\delta$  -111.56 (d, *J*= 55.6 Hz, 2F). <sup>19</sup>F NMR data matches previously reported data (70). The identity of the product was further confirmed by GCMS analysis.




Obtained in 59 % yield (Maximum yield). The yield was determined by <sup>19</sup>F NMR integration relative to the internal standard (hexafluorobenzene). <sup>19</sup>F NMR (376 MHz, CDCl<sub>3</sub>)  $\delta$  -117.74 (d, *J*= 57.1 Hz, 2F). The identity of the product was further confirmed by GCMS analysis.

HRMS (APCI) *m/z* Calcd for for C<sub>7</sub>H<sub>8</sub>F<sub>2</sub>NO[M+H]<sup>+</sup> 160.0569; Found: 160.0568.



Note: The title compound could not be isolated due to highly volatile.

1-(Difluoromethyl)-4-fluorobenzene (4j)



4j

Obtained in 84 % yield (Maximum yield). The yield was determined by <sup>19</sup>F NMR integration relative to the internal standard (hexafluorobenzene). <sup>19</sup>F NMR (376 MHz, CDCl<sub>3</sub>)  $\delta$  -110.65 (d, *J*= 55.8 Hz, 2F), -110.6 (s, 1F). <sup>19</sup>F NMR data matches previously reported data (*30*). The identity of the product was further confirmed by GCMS analysis.





4k

Obtained in 81 % yield (Maximum yield). The yield was determined by <sup>19</sup>F NMR integration relative to the internal standard (hexafluorobenzene). <sup>19</sup>F NMR (376 MHz, CDCl<sub>3</sub>)  $\delta$  -115.19 (d, *J*= 55.9 Hz, 2F), -120.96 (s, 1F). <sup>19</sup>F NMR data matches previously reported data (71). The identity of the product was further confirmed by GCMS analysis.



1-(Difluoromethyl)-3-(trifluoromethyl)benzene (4l)



Obtained in 57 % yield (Maximum yield). The yield was determined by <sup>19</sup>F NMR integration relative to the internal standard (hexafluorobenzene). <sup>19</sup>F NMR (376 MHz, CDCl<sub>3</sub>)  $\delta$  -63.98 (s, 3F), -112.89 (d, *J*= 55.9 Hz, 2F). <sup>19</sup>F NMR data matches previously reported data (72). The identity of the product was further confirmed by GCMS analysis.





4m

Obtained in 72 % yield (Maximum yield). The yield was determined by <sup>19</sup>F NMR integration relative to the internal standard (hexafluorobenzene). The reaction mixture was purified by flash column chromatography (hexane/EtOA = 3:1, Rf= 0.1) to afford the pure product as a colorless oil.

HRMS (EI) *m*/*z* Calcd for C<sub>10</sub>H<sub>12</sub>F<sub>2</sub>O[M]<sup>+</sup> 186.0851; Found: 186.0852.

#### **NMR Spectroscopy:**

<sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) δ 7.36 (dq, *J*= 13.2, 6.9 Hz, 4H), 6.63 (t, *J*= 56.5 Hz, 1H), 3.69 (t, *J*= 6.1 Hz, 2H), 2.77 (t, *J*= 7.8 Hz, 2H), 1.95-1.88 (m, 2H), 1.30 (s, 1H).

<sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>) δ 142.53, 134.45 (t, *J*= 22.1 Hz), 130.85, 128.75, 125.45 (t, *J*= 6.2 Hz), 123.14 (t, *J*= 5.9 Hz), 114.83 (t, *J*= 238.9 Hz), 62.02, 32.91 (d, *J*= 214.8 Hz), -0.02.

<sup>19</sup>F NMR (376 MHz, CDCl<sub>3</sub>) δ -111.59 (d, *J*= 52.3 Hz, 2F).

#### **3-(Difluoromethyl)aniline (4n)**



Obtained in 69 % yield (Maximum yield). The yield was determined by <sup>19</sup>F NMR integration relative to the internal standard (hexafluorobenzene). The reaction mixture was purified by flash column chromatography (hexane/EtOAc= 10:1, Rf= 0.1) to afford the pure product as a yellow oil.

HRMS (ESI) *m/z* Calcd for for C<sub>7</sub>H<sub>8</sub>F<sub>2</sub>N[M+H]<sup>+</sup> 144.0619; Found: 144.0618.

#### NMR Spectroscopy:

<sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) δ 7.22 (t, *J*= 7.7 Hz, 1H), 6.88-6.75 (m, 3H), 6.55 (td, *J*= 56.6, 1.3 Hz, 1H), 3.79 (s, 1H), 1.57 (s, 1H).

<sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>) δ129.67, 117.13 (t, *J*= 1.8 Hz), 115.57 (t, *J*= 6.4 Hz), 114.77, 112.39, 111.56 (t, *J*= 6.2 Hz), 77.20.

<sup>19</sup>F NMR (376 MHz, CDCl<sub>3</sub>) δ-111.86 (d, *J*= 57.1 Hz, 2F).



40

Obtained in 46 % yield (Maximum yield). The yield was determined by <sup>19</sup>F NMR integration relative to the internal standard (hexafluorobenzene). <sup>19</sup>F NMR (376 MHz, CDCl<sub>3</sub>)  $\delta$  -114.56 (d, *J*= 55.5 Hz, 2F). <sup>19</sup>F NMR data matches previously reported data (73). The identity of the product was further confirmed by GCMS analysis.



2-(3-(difluoromethyl)phenyl)ethan-1-amine (4p)



Obtained in 75 % yield (Maximum yield). The yield was determined by <sup>19</sup>F NMR integration relative to the internal standard (hexafluorobenzene). The reaction mixture was purified by flash column chromatography (methanol only, Rf= 0.1) to afford the pure product as a white solid.

HRMS (ESI) *m/z* Calcd for C<sub>9</sub>H<sub>12</sub>F<sub>2</sub>N[M+H]<sup>+</sup> 172.0932; Found: 172.0931.

#### NMR Spectroscopy:

<sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) δ 7.41-7.31 (m, 4H), 6.63 (t, *J*= 56.5 Hz, 1H), 2.99 (t, *J*= 6.9 Hz, 2H), 2.80 (t, *J*= 6.9 Hz, 2H), 1.26 (s, 2H).

<sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>) δ 140.58, 134.50 (t, *J*= 22.1 Hz), 131.20 (d, *J*= 1.9 Hz), 128.80, 125.81 (t, *J*= 5.8 Hz), 123.42 (t, *J*= 6.2 Hz), 114.76 (t, *J*= 238.8 Hz), 43.35, 39.88.

<sup>19</sup>F NMR (376 MHz, CDCl<sub>3</sub>) δ -111.61 (d, *J*= 58.0 Hz, 2F).



Obtained in 64 % yield (Maximum yield). Yields were determined by GC analysis (<sup>*t*</sup>R 6.7 min) (initial oven temperature, 50 °C (5 min); temperature increase rate, 10 °C/min (25 min); final temperature, 300 °C) using an internal standard (undecane). The NMR spectral data were identical to those reported in the literature (*30*).

#### 3-(2-(Difluoromethyl)-10H-phenothiazin-10-yl)-N, N-dimethylpropan-1-amine (5a)



Obtained in 80 % yield. The crude product was purified by flash column chromatography on silica gel (hexane/Acetone/Et<sub>3</sub>N=91:6:3, Rf= 0.1) to afford the pure product as a yellow oil (70.2 mg).

#### NMR Spectroscopy:

<sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) δ 7.19-7.12 (m, 3H), 7.02 (d, *J*= 9.1 Hz, 2H), 6.96-6.90 (m, 2H), 6.58 (t, *J*= 56.5 Hz, 1H), 3.94 (t, *J*= 7.0 Hz, 2H), 2.40 (t, *J*= 7.0 Hz, 2H), 2.21 (s, 6H), 1.94 (t, *J*= 7.0 Hz, 2H).

<sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>) δ 145.67, 144.59, 133.43 (t, *J*= 22.2 Hz), 128.43, 128.41, 127.45, 127.42, 124.28, 122.80, 119.56 (t, *J*= 6.6 Hz), 116.94, 115.72, 114.57, 112.12 (t, *J*= 5.9 Hz), 57.02, 45.50 (d, *J*= 17.2 Hz), 25.04.

<sup>19</sup>F NMR (376 MHz, CDCl<sub>3</sub>) δ -111.49 (d, *J*= 57.4 Hz, 2F).

#### 3-(3-(Difluoromethyl)phenyl)-1,1-dimethylurea (5b)



5b

Obtained in 54 % yield. The yield was determined by <sup>19</sup>F NMR integration relative to the internal standard (hexafluorobenzene). The crude product was purified by flash column chromatography on silica gel (hexane/EtOAc= 10:1, Rf= 0.2) to afford the pure product as a white solid in 53 % isolated yield (28.2 mg). HRMS (ESI) m/z Calcd for C<sub>10</sub>H<sub>12</sub>F<sub>2</sub>N<sub>2</sub>ONa[M+Na]<sup>+</sup> 237.0810; Found: 237.0806.

#### NMR Spectroscopy:

<sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) δ 7.59 (s, 1H), 7.49 (dd, *J*= 8.1, 1.0 Hz, 1H), 7.36 (t, *J*= 7.9 Hz, 1H), 7.17 (d, *J*= 7.5 Hz, 1H), 6.60 (t, *J*= 56.5 Hz, 1H), 6.43 (s, 1H), 3.05 (s, 6H).

<sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>) δ 155.43, 139.37 (d, *J*= 99.2 Hz), 134.94 (t, *J*= 22.1 Hz), 129.05 (d, *J*= 60.6 Hz), 123.75-120.57 (m), 119.73 (t, *J*= 6.2 Hz), 116.82 (q, *J*= 8.2 Hz), 113.62 (d, *J*= 239.0 Hz), 36.39. <sup>19</sup>F NMR (376 MHz, CDCl<sub>3</sub>) δ -111.93 (d, *J*= 53.3 Hz, 2F).

#### 1-(3-(difluoromethyl)phenyl)-*N*-ethylpropan-2-amine (5c)



5c

Obtained in 72 % yield. The yield was determined by <sup>19</sup>F NMR integration relative to the internal standard (hexafluorobenzene). <sup>19</sup>F NMR (376 MHz, CDCl<sub>3</sub>)  $\delta$  -111.63 (d, *J*= 52.0 Hz, 2F). Determination of the yield and the compound characterization were performed using a purified mixture of the target product and its monofluoromethyl and trifluoromethyl analogs.

HRMS (ESI) *m/z* Calcd for C<sub>12</sub>H<sub>18</sub>F<sub>2</sub>N[M+H]<sup>+</sup> 214.1402; Found: 214.1402.

Methyl-(R)-2-((*tert*-butoxycarbonyl)amino)-3-(4-(difluoromethyl)phenyl)propanoate (5d)





Obtained in 46 % yield. The yield was determined by <sup>19</sup>F NMR integration relative to the internal standard (hexafluorobenzene). <sup>19</sup>F NMR (376 MHz, CDCl<sub>3</sub>)  $\delta$  -111.68 (d, *J*= 54.1 Hz, 2F). <sup>19</sup>F NMR data matches previously reported data (*30*). Determination of the yield and the compound characterization were performed using a purified mixture of the target product and its monofluoromethyl and trifluoromethyl analogs.

#### NMR Spectroscopy:

<sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) δ 7.44 (d, *J*= 7.7 Hz, 2H), 7.22 (d, *J*= 7.8 Hz, 2H), 6.62 (t, *J*= 56.5 Hz, 1H), 4.99 (d, *J*= 7.7 Hz, 1H), 4.61 (q, *J*= 6.9 Hz, 1H), 3.72 (s, 3H), 3.21-3.05 (m, 2H), 1.41 (s, 9H). <sup>19</sup>F NMR (376 MHz, CDCl<sub>3</sub>) δ -111.68 (d, *J*= 54.1 Hz, 2F).

#### (S)-3-(3-(Difluoromethyl)phenyl)-*N*-(1-(naphthalen-1-yl)ethyl)propan-1-amine (5e)



5e

Obtained in 69 % yield. The yield was determined by <sup>19</sup>F NMR integration relative to the internal standard (hexafluorobenzene). <sup>19</sup>F NMR (376 MHz, CDCl<sub>3</sub>)  $\delta$  -111.56 (d, *J*= 53.4 Hz, 2F). <sup>19</sup>F NMR data matches previously reported data (*30*). Determination of the yield and the compound characterization were performed using a purified mixture of the target product and its monofluoromethyl and trifluoromethyl analogs.



Obtained in 69 % yield. The yield was determined by <sup>19</sup>F NMR integration relative to the internal standard (hexafluorobenzene). The crude product was purified by GPC and flash column chromatography on silica gel (hexane/EtOAc= 10:0.5, Rf= 0.4) to afford the pure product as a colorless oil in 32 % isolated yield (23.2 mg).

HRMS (ESI) *m/z* Calcd for C<sub>17</sub>H<sub>24</sub>F<sub>2</sub>ONa[M+Na]<sup>+</sup> 305.1687; Found: 305.1686.

#### NMR Spectroscopy:

<sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) δ 7.52 (dd, *J*= 7.4, 2.1 Hz, 2H), 7.42 (q, *J*= 3.4 Hz, 3H), 2.64 (7, *J*= 6.9 Hz, 1H), 1.95 (s, 1H), 1.72-1.64 (m, 2H), 1.59-1.45 (m, 3H), 1.26 (dt, *J*= 13.3, 2.9 Hz, 1H), 1.00 (d, *J*= 6.8 Hz, 3H), 0.94 (t, *J*= 7.3 Hz, 4H), 0.77 (d, *J*= 6.4 Hz, 4H).

<sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>) δ 135.26 (t, *J*= 27.0 Hz), 129.59, 127.89, 126.55 (t, *J*= 6.7 Hz), 126.78-121.75 (m), 78.76 (dd, *J*= 27.0, 24.1 Hz), 45.47, 43.26 (d, *J*= 4.3 Hz), 34.63, 31.09, 27.44, 26.75 (t, *J*= 4.2 Hz), 23.24, 22.14, 20.21, 17.89.

<sup>19</sup>F NMR (376 MHz, CDCl<sub>3</sub>) δ -101.25 (d, *J*= 246.7 Hz, 1F), -103.29 (d, *J*= 248.5 Hz, 1F), -107.23(d, *J*= 248.5 Hz, 1F), -110.30 (d, *J*= 248.3 Hz, 1F).

#### 6-(2,5-Dimethylphenoxy)-1,1-difluoro-3,3-dimethyl-1-phenylhexan-2-one (5g)



5g

Obtained in 56 % yield. The yield was determined by <sup>19</sup>F NMR integration relative to the internal standard (hexafluorobenzene). The crude product was purified by GPC to afford the pure product as a colorless oil in 41 % isolated yield (37.2 mg).

HRMS (ESI) *m/z* Calcd for C<sub>22</sub>H<sub>26</sub>F<sub>2</sub>O<sub>2</sub>Na[M+Na]<sup>+</sup> 383.1793; Found: 383.1789.

#### **NMR Spectroscopy:**

<sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) δ 7.56-7.54 (m, 2H), 7.47-7.41 (m, 3H), 7.01 (d, *J*= 7.5 Hz, 1H), 6.66 (d, *J*= 7.4 Hz, 1H), 6.59 (s, 1H), 3.88 (t, *J*= 6.2 Hz, 2H), 2.31 (s, 3H), 2.17 (s, 3H), 1.90-1.86 (m, 2H), 1.66-1.58 (m, 2H), 1.26 (s, 6H).

<sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>) δ 204.12 (t, *J*= 29.4 Hz), 156.85, 136.45, 133.03 (d, *J*= 25.0 Hz), 130.63, 130.28, 128.51, 125.72 (t, *J*= 6.2 Hz), 123.55, 120.69, 119.79-114.68 (m), 111.83, 67.63, 47.32 (d, *J*= 1.8 Hz), 36.18 (d, *J*= 2.5 Hz), 24.85, 24.33 (t, *J*= 1.9 Hz), 21.39, 15.75.

<sup>19</sup>F NMR (376 MHz, CDCl<sub>3</sub>) δ -100.18 (s, 2F).

#### (E)-3-Benzylidene-1,1-difluoro-1-phenylnonan-2-ol (5h)



Obtained in 71 % yield. The yield was determined by <sup>19</sup>F NMR integration relative to the internal standard (hexafluorobenzene). The crude product was purified by GPC and flash column chromatography on silica gel (hexane/EtOAc= 10:1, Rf= 0.2) to afford the pure product as a colorless oil in 34 % isolated yield (30.0 mg). HRMS (ESI) m/z Calcd for C<sub>22</sub>H<sub>26</sub>F<sub>2</sub>ONa[M+Na]<sup>+</sup> 367.1844; Found: 367.1841.

#### **NMR Spectroscopy:**

<sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) δ 7.50-7.40 (m, 5H), 7.30 (t, *J*= 7.5 Hz, 2H), 7.23-7.19 (m, 1H), 7.09 (d, *J*= 7.2 Hz, 2H), 6.36 (s, 1H), 4.65 (td, *J*= 9.7, 4.0 Hz, 1H), 2.35-2.29 (m, 1H), 2.26 (d, *J*= 4.1 Hz, 1H), 1.89 (ddd, *J*= 14.2, 10.1, 4.7 Hz, 1H), 1.55 (s, 3H), 1.49-1.37 (m, 2H), 1.29-1.20 (m, 7H), 0.85 (t, *J*= 6.9 Hz, 3H).

<sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>) δ 138.15, 136.94, 133.98 (t, *J*= 25.8 Hz), 130.13, 130.01 (t, *J*= 1.7 Hz), 128.44, 128.15, 127.95, 126.75, 126.33 (t, *J*= 6.4 Hz), 121.69 (t, *J*= 249.4 Hz), 76.84 (t, *J*= 29.4 Hz), 31.42 , 29.64, 29.38, 28.70, 22.52, 14.03.

<sup>19</sup>F NMR (376 MHz, CDCl<sub>3</sub>) δ -105.75--107.38 (m, 2F).

# 4-(4-Chlorophenyl)-1-(5,5-difluoro-4-(4-fluorophenyl)-4-hydroxy-5-phenylpentyl)piperidin-4-yl benzoate (5i)



5i

Obtained in 30 % yield. The crude product was purified by flash column chromatography on silica gel (hexane/EtOAc= 3:2, Rf= 0.4) to afford the pure product as a yellow viscous oil (46.5 mg). HRMS (ESI) m/z Calcd for C<sub>35</sub>H<sub>34</sub>ClF<sub>3</sub>NO<sub>3</sub>[M+H]<sup>+</sup> 608.2174; Found:608.2167.

#### NMR Spectroscopy:

<sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) δ 7.97-7.95 (m, 2H), 7.56 (tt, *J*= 7.4, 1.4 Hz, 1H), 7.42 (t, *J*= 7.7 Hz, 2H), 7.37-7.29 (m, 7H), 7.22 (t, *J*= 7.6 Hz, 2H), 7.17-7.14 (m, 2H), 6.93 (t, *J*= 8.7 Hz, 2H), 2.85-2.67 (m, 3H), 2.55-1.97 (m, 9H), 1.64 (dddd, *J*= 10.4, 7.7, 5.0, 2.5 Hz, 1H), 1.49-1.39 (m, 1H), 1.31-1.26 (m, 1H).

<sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>) δ 164.52, 163.35, 160.90, 142.05, 136.83 (t, *J*= 2.5 Hz), 134.70 (t, *J*= 26.5 Hz), 133.50, 133.11, 130.59, 129.67 (d, *J*= 7.7 Hz), 129.45, 129.14, 128.71, 128.46, 127.33 (t, *J*= 6.5 Hz), 126.96, 126.18, 114.26 (d, *J*= 21.1 Hz), 79.76, 77.59 (dd, *J*= 53.5, 25.7 Hz), 58.52, 50.21, 47.45, 34.60 (t, *J*= 51.0 Hz), 20.68.

<sup>19</sup>F NMR (376 MHz, CDCl<sub>3</sub>) δ -105.81 (d, *J*= 242.3 Hz, 1F), -109.38 (d, *J*= 241.0 Hz, 1F), -116.86 (d, *J*= 12.4 Hz, 1F).



Obtained in 72 % yield. The yield was determined by <sup>19</sup>F NMR integration relative to the internal standard (hexafluorobenzene). The crude product was purified by flash column chromatography on silica gel (hexane/EtOAc= 10:1, Rf= 0.3) to afford the pure product as a colorless oil in 57 % isolated yield (44.9 mg). HRMS (ESI) m/z Calcd for C<sub>30</sub>H<sub>44</sub>F<sub>2</sub>ONa[M+Na]<sup>+</sup> 481.3252; Found: 481.3245.

#### NMR Spectroscopy:

<sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) δ 7.52 (dd, *J*= 5.7, 1.9 Hz, 2H), 7.43 (t, *J*= 6.3 Hz, 3H), 5.11-5.07 (m, 4H), 2.15-1.95 (m, 14H), 1.68-1.56 (m, 18H), 1.28 (s, 3H).

<sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>) 135.93 (d, *J*= 18.4 Hz), 135.30-134.89 (m), 134.20 (t, *J*= 27.0 Hz), 131.26, 129.73, 127.84, 126.86 (t, *J*= 6.7 Hz), 125.43-120.44 (m), 75.68 (t, *J*= 27.9 Hz), 39.70-39.65 (m), 35.39 (dt, *J*= 32.7, 1.7 Hz), 31.89, 26.73-21.42 (m), 20.35 (t, *J*= 2.9 Hz), 17.66, 15.97 (t, *J*= 2.4 Hz). <sup>19</sup>F NMR (376 MHz, CDCl<sub>3</sub>) δ -110.17 (d, *J*= 18.3 Hz, 2F).

#### tert-Butyl 4-(3,3-difluoro-3-(4-fluorophenyl)propyl)piperidine-1-carboxylate (8)



8

Obtained in 61 % yield. The yield was determined by <sup>19</sup>F NMR integration relative to the internal standard (hexafluorobenzene). The crude product was purified by flash column chromatography on silica gel (hexane/EtOAc= 10:1, Rf= 0.2) to afford the pure product as a yellow oil in 52 % isolated yield (47.0 mg). HRMS (ESI) *m/z* Calcd for C<sub>19</sub>H<sub>26</sub>F<sub>3</sub>NO<sub>2</sub>Na[M+Na]<sup>+</sup> 380.1808; Found: 380.1805.

#### **NMR Spectroscopy:**

<sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) δ 7.44 (dd, J= 8.7, 5.3 Hz, 2H), 7.10 (t, J= 8.6 Hz, 2H), 4.07 (s, 2H), 2.65 (t, J= 10.9 Hz, 2H), 2.18-2.06 (m, 2H), 1.62 (d, J= 13.5 Hz, 2H), 1.44 (s, 9H), 1.38-1.33 (m, 3H), 1.11-1.01 (m, 2H). <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>) δ 164.57, 162.10, 154.78, 133.56 (d, J= 3.5 Hz), 133.28 (d, J= 3.0 Hz), 127.09-126.88 (m), 122.74 (t, J= 242.4 Hz), 115.54, 115.32, 79.27, 36.34 (t, J= 27.6 Hz), 35.56, 31.85 (t, J= 2.1 Hz), 28.94 (t, J= 3.7 Hz), 28.41.

<sup>19</sup>F NMR (376 MHz, CDCl<sub>3</sub>) δ -95.96 (q, *J*= 15.1 Hz, 2F), -112.70 (s, 1F).



# <sup>13</sup>C NMR spectrum of 3c



# <sup>1</sup>H NMR spectrum of 3d



# <sup>19</sup>F NMR spectrum of 3d



# <sup>13</sup>C NMR spectrum of 3e



# <sup>1</sup>H NMR spectrum of 3g





# <sup>13</sup>C NMR spectrum of 3h







# <sup>13</sup>C NMR spectrum of 3q











# <sup>1</sup>H NMR spectrum of 3r







# <sup>13</sup>C NMR spectrum of 4d



# <sup>1</sup>H NMR spectrum of 4e



# <sup>19</sup>F NMR spectrum of 4e





# <sup>13</sup>C NMR spectrum of 4m



# <sup>1</sup>H NMR spectrum of 4n





# <sup>13</sup>C NMR spectrum of 4p



# <sup>1</sup>H NMR spectrum of 5a



# <sup>19</sup>F NMR spectrum of 5a



# <sup>13</sup>C NMR spectrum of 5b



ppm -50 -100 -150 -200 \$69

### <sup>1</sup>H NMR spectrum of 5c (mixture with substrate)



# <sup>1</sup>H NMR spectrum of 5d (mixture with byproduct)



# <sup>1</sup>H NMR spectrum of 5e (mixture with byproduct)


## <sup>1</sup>H NMR spectrum of 5f





# <sup>13</sup>C NMR spectrum of 5g



## <sup>1</sup>H NMR spectrum of 5h





## <sup>13</sup>C NMR spectrum of 5i







# <sup>13</sup>C NMR spectrum of 8



#### **References and Notes**

- Y. Zhou *et al.*, Next Generation of Fluorine-Containing Pharmaceuticals, Compounds Currently in Phase II–III Clinical Trials of Major Pharmaceutical Companies: New Structural Trends and Therapeutic Areas, *Chem. Rev.* 116, 422–518 (2016). doi:10.1021/acs.chemrev.5b00392
- 2. Y. Ogawa, E. Tokunaga, O. Kobayashi, K. Hirai, N. Shibata, Current Contributions of Organofluorine Compounds to the Agrochemical Industry, *iScience* 23, 101467 (2020). <u>doi:10.1016/j.isci.2020.101467</u>
- R. Berger, G. Resnati, P. Metrangolo, E. Weber, J. Hulliger, Organic fluorine compounds: a great opportunity for enhanced materials properties, *Chem. Soc. Rev.* 40, 3496–3508 (2011). <u>doi:10.1039/C0CS00221F</u>
- W. M. Henderson, J. W. Washington *et al.*, Per- and polyfluoroalkyl substances in the environment, *Science* 375, eabg9065 (2022). <u>doi:10.1126/science.abg9065</u>
- 5. <u>https://echa.europa.eu/documents/10162/f605d4b5-7c17-7414-8823-b49b9fd43aea</u>
- Y. Zafrani, S. Saphier, E. Gershonov, Utilizing the CF<sub>2</sub>H moiety as a H-bond-donating group in drug discovery, *Future Med. Chem.* 12, 361–365 (2020). doi:10.4155/fmc-2019-0309
- W. K. Hagmann, The Many Roles for Fluorine in Medicinal Chemistry, J. Med. Chem. 51, 4359– 4369 (2008). doi:10.1021/jm800219f
- F. M. Boeckler *et al.*, Principles and Applications of CF<sub>2</sub>X Moieties as Unconventional Halogen Bond Donors in Medicinal Chemistry, Chemical Biology, and Drug Discovery, *J. Med. Chem.* 66, 10202–10225 (2023). doi:10.1021/acs.jmedchem.3c00634
- 9. F. Zhao, W. Zhou, Z. Zuo, Recent Advances in the Synthesis of Difluorinated Architectures from Trifluoromethyl Groups, *Adv. Synth. Catal.* **364**, 234–267 (2022). <u>doi:10.1002/adsc.202101234</u>
- L. V. Hooker, J. S. Bandar, Synthetic Advantages of Defluorinative C–F Bond Functionalization, Angew. Chem. Int. Ed. 62, e202308880 (2023). <u>doi:10.1002/anie.202308880</u>
- T. Ahrens, J. Kohlmann, M. Ahrens, T. Braun, Functionalization of Fluorinated Molecules by Transition-Metal-Mediated C–F Bond Activation To Access Fluorinated Building Blocks, *Chem. Rev.* 115, 931–972 (2015). doi:10.1021/cr500257c
- 12. T. Fujita, K. Fuchibe, J. Ichikawa, Transition-Metal-Mediatedand-Catalyzed C–F Bond Activation by Fluorine Elimination, *Angew. Chem. Int. Ed.* **58**, 390–402 (2019). <u>doi:10.1002/anie.201805292</u>
- H. Wang, N. T. Jui, Catalytic Defluoroalkylation of Trifluoromethylaromatics with Unactivated Alkenes, J. Am. Chem. Soc. 140, 163–166 (2018). doi:10.1021/jacs.7b12590
- 14. V. Gouverneur *et al.*, Organophotoredox Hydrodefluorination of Trifluoromethylareneswith Translational Applicability to Drug Discovery, *J. Am. Chem. Soc.* **142**, 9181–9187 (2020). <u>doi:10.1021/jacs.0c03881</u>
- 15. J. Wang, Y. Wang, Y. Liang, L. Zhou, L. Liu, Z. Zhang, Late-Stage Modification of Drugs via Alkene Formal Insertion into Benzylic C–F Bond, Angew. Chem. Int. Ed. 62, e202215062 (2023). doi:10.1002/anie.202215062

- K. Chen, N. Berg, R. Gschwind, B. König, Selective Single C(*sp3*)–F Bond Cleavage in Trifluoromethylarenes: Merging Visible-Light Catalysis with Lewis Acid Activation, J. Am. Chem. Soc. 139, 18444–18447 (2017). doi:10.1021/jacs.7b10755
- 17. C. Liu, K Li, R. Shang, Arenethiolate as a Dual Function Catalyst for Photocatalytic Defluoroalkylation and Hydrodefluorination of Trifluoromethyls, *ACS Catal.* 12, 4103–4109 (2022).
   <u>doi:10.1021/acscatal.2c00592</u>
- N. Sugihara, K. Suzuki, Y. Nishimoto, M. Yasuda, Photoredox-Catalyzed C–F Bond Allylation of Perfluoroalkylarenes at the Benzylic Position, J. Am. Chem. Soc. 143, 9308–9313 (2021). doi:10.1021/jacs.1c03760
- 19. C. Luo, J. S. Bandar, Selective Defluoroallylation of Trifluoromethylarenes, J. Am. Chem. Soc. 141, 14120–14125 (2019). doi:10.1021/jacs.9b07766
- 20. S. E. Wright, J. S. Bandar, A Base-Promoted Reductive Coupling Platform for the Divergent Defluorofunctionalization of Trifluoromethylarenes, J. Am. Chem. Soc. 144, 13032–13038 (2022). doi:10.1021/jacs.2c05044
- W. Yue, R. Martin, α-Difluoroalkylation Benzyl Amines with Trifluoromethylarenes, *Angew. Chem. Int. Ed.* 62, e202310304 (2023). doi:10.1002/anie.202310304
- 22. Y. Yu *et al.*, Sequential C–F bond functionalizations of trifluoroacetamides and acetates via spin-center shifts, *Science* **371**, 1232–1240 (2021). <u>doi:10.1126/science.abg0781</u>
- M. W. Campbell, V. C. Polites, S. Patel, J. E. Lipson, J. Majhi, G. A. Molander, Photochemical C–F Activation Enables Defluorinative Alkylation of Trifluoroacetates and -Acetamides, *J. Am. Chem. Soc.* 143, 19648–19654 (2021). doi:10.1021/jacs.1c11059
- 24. C. Douvris, O. V. Ozerov, Hydrodefluorination of Perfluoroalkyl Groups Using Silylium-Carborane Catalysts, *Science* **321**, 1188–1190 (2008). <u>doi:10.1126/science.1159979</u>
- V. J. Scott, R. Celenligil-Cetin, O. V. Ozerov, Room-Temperature Catalytic Hydrodefluorination of C(*sp3*)-F Bonds, J. Am. Chem. Soc. 127, 2852–2853 (2005). doi:10.1021/ja0426138
- 26. W. Gu, M. R. Haneline, C. Douvris, O. V. Ozerov, Carbon-Carbon Coupling of C(*sp3*)–F Bonds Using Alumenium Catalysis, *J. Am. Chem. Soc.* **131**, 11203–11212 (2009). <u>doi:10.1021/ja903927c</u>
- 27. S. Yoshida, K. Shimomori, Y. Kim, T. Hosoya, Single C–F Bond Cleavage of Trifluoromethylarenes with an ortho-Silyl Group, *Angew. Chem. Int. Ed.* **55**, 10406–10409 (2016). <u>doi:10.1002/anie.201604776</u>
- 28. H. Amii, Y. Hatamoto, M. Seo, K. Uneyama, A New C-F Bond-Cleavage Route for the Synthesis of Octafluoro[2.2]paracyclophane, J. Org. Chem. 66, 7216–7218 (2001). doi:10.1021/jo015720i
- 29. G. K. Surya Prakash, Selective Late-Stage Hydrodefluorination of Trifluoromethylarenes: A Facile Access to Difluoromethylarenes, *Eur. J. Org. Chem.* 2322–2326 (2017). doi:10.1002/ejoc.201700396

- J. R. Box, M. E. Avanthay, D. L. Poole, A. J. J. Lennox, Electronically Ambivalent Hydrodefluorination of Aryl–CF<sub>3</sub> groups enabled by Electrochemical Deep-Reduction on a Ni Cathode, *Angew. Chem. Int. Ed.* 62, e202218195 (2023). doi:10.1002/anie.202218195
- 31. S. Mena, J. Bernad, G. Guirado, Electrochemical Incorporation of Carbon Dioxide into Fluorotoluene Derivatives under Mild Conditions, *Catalysts* **11**, 880 (2021). <u>doi:10.3390/catal11080880</u>
- 32. M. E. Avanthay, O. H. Goodrich, M. George, A. J. J. Lennox, Bromide-Mediated Silane Oxidation: A Convenient and Practical Counter-Electrode Process for Undivided Electrochemical Reductions, *ChemRxiv*, <u>doi:10.26434/chemrxiv-2023-w312v</u> (2023).
- 33. D. O'Hagan, Understanding organofluorine chemistry. An introduction to the C–F bond, *Chem. Soc. Rev.*,
  37, 308–319 (2008). doi:10.1039/B711844A
- 34. H. Iwamoto, H. Imiya, M. Ohashi, S. Ogoshi, Cleavage of C(*sp3*)–F Bonds in Trifluoromethylarenes Using a Bis(NHC)nickel(0) Complex, J. Am. Chem. Soc. 142, 19360–19367 (2020). <u>doi:10.1021/jacs.0c09639</u>
- 35. Although C(*sp3*)–F bond cleavages mediated by other metals, such as Ru (46), Nb (47), and Pd–Cu system (48), can also introduce only hydrogen.
- 36. D. Mandal, R. Gupta, A. K. Jaiswal, R. D. Young, Frustrated Lewis-Pair-Meditated Selective Single Fluoride Substitution in Trifluoromethyl Groups, J. Am. Chem. Soc. 142, 2572–2578 (2020). doi:10.1021/jacs.9b12167
- 37. Biphenyl metal complexes, such as lithium 4,4'-di-*tert*-butylbiphenylide, are known to possess strong radical-reducing properties. However, stable preparing these complexes with highly reductive potential is difficult.
- 38. M. Colella, A. Tota, Y. Takahashi, R. Higuma, S. Ishikawa, L. Degennaro, R. Luisi, A. Nagaki, Fluoro-Substituted Methyllithium Chemistry: External Quenching Method Using Flow Microreactors, *Angew. Chem. Int. Ed.* 59, 10924–10928 (2020). doi:10.1002/anie.202003831
- 39. G. Luo, Y. Luo, J. Qu, Direct nucleophilic trifluoromethylation using fluoroform: a theoretical mechanistic investigation and insight into the effect of alkali metal cations, *New J. Chem.* 37, 3274–3280 (2013). doi:10.1039/C3NJ00686G
- Y. Ashikari, R. Yoshioka, Y. Yonekura, D. E. Yoo, K. Okamoto, A. Nagaki, Flowmicro In-Line Analysis-Driven Design of Reactionsmediated by Unstable Intermediates: Flash Monitoring Approach, *Chem.Eur. J.* e202303774 (2024). doi:10.1002/chem.202303774
- 41. When the more coordinative diglyme or triglyme as a cosolvent with THF was employed in place of DME, the reaction rate decreased (Table S3, entry 50–57).
- 42. T. Saito, J. Wang, E. Tokunaga, S. Tsuzuki, N. Shibata, Direct nucleophilic trifluoromethylation of carbonyl compounds by potent greenhouse gas, fluoroform: Improving the reactivity of anionoid trifluoromethyl species in glymes, *Sci Rep* 8, 11501 (2018). <u>doi:10.1038/s41598-018-29748-1</u>

- 43. T. A. Scott, B. A. Ooro, D. J. Collins, M. Shatruk, A. Yakovenko, K. R. Dunbarc, H. Zhou, After 118 years, the isolation of two common radical anion reductants as simple, stable solids, *Chem. Commun.* 1, 65–67 (2009). doi:10.1039/B815272A
- 44. Y. Jiang, T. Kurogi, H. Yorimitsu, Reductive stereo- and regiocontrolled boryllithiation and borylsodiation of arylacetylenes using flow microreactors, *Nat. synth.* 3, 192–201 (2024). <u>doi:10.1038/s44160-023-00439-8</u>
- 45. C. L. Lynch *et al.*, 1,3,4-Trisubstituted Pyrrolidine CCR5 Receptor Antagonists: Modifications of the Arylpropylpiperidine Side Chains, *Bioorg. Med. Chem. Lett.* **13**, 119–123 (2003). <u>doi:10.1016/S0960-894X(02)00829-6</u>
- 46. T. Stahl, H. F. T. Klare, M. Oestreich, C(*sp3*)–F Bond Activation of CF<sub>3</sub>-Substituted Anilines with Catalytically Generated Silicon Cations: Spectroscopic Evidence for a Hydride-Bridged Ru–S Dimer in the Catalytic Cycle, *J. Am. Chem. Soc.* 135, 1248–1251 (2013). doi:10.1021/ja311398j
- T. G. Driver, Niobium-Catalyzed Activation of Aryl Trifluoromethyl Groups and Functionalization of C–H Bonds: An Efficient and Convergent Approach to the Synthesis of *N*-Heterocycles, *Angew. Chem. Int. Ed.* 2009, 48, 7974–7976. doi:10.1002/anie.200904344
- H. Dang, A. M. Whittaker, G. Lalic, Catalytic activation of a single C–F bond in trifluoromethyl arenes, *Chem. Sci.* 7, 505–509 (2016). <u>doi:10.1039/C5SC03415A</u>
- 49. H. J. Song, W. T. Jiang, Q. L. Zhou, M. Y. Xu, B. Xiao, Structure-Modified Germatranes for Pd-Catalyzed Biaryl Synthesis, *ACS Catal.* **8**, 9287–9291 (2018). <u>doi:10.1021/acscatal.8b02661</u>
- 50. K. Sasaki, D. Crich, Facile Amide Bond Formation from Carboxylic Acids and Isocyanates, *Org. Lett.* **13**, 2256–2259 (2011). doi:10.1021/ol200531k
- 51. G. Palombi, M. Zagami, NEW METHOD FOR SYNTHESIS OF FENFLURAMINE, AND NEW COMPOSITIONS COMPRISING IT, US 20180208543A1 (2018).
- 52. K. Govindan, N. Q. Chen, H. Y. Chen, S. C. C. Hsu, W. Y. Lin, The copper-catalyzed oxidative radical process of site selective C–N bond cleavage in twisted amides: batch and continuous-flow chemistry, *Catal. Sci. Technol.* 13, 1633–1639 (2023). doi:10.1039/D2CY02063G
- 53. J. B. Geri, M. M. W. Wolfe, N. K. Szymczak, The Difluoromethyl Group as a Masked Nucleophile: A Lewis Acid/Base Approach, *J. Am. Chem. Soc.* **140**, 9404–9408 (2018). <u>doi:10.1021/jacs.8b06093</u>
- 54. C. Charles *et al.*, PYRROLIDINE MODULATORS OF CHEM OKINE RECEPTOR ACTIVITY, WO2000059503 A1 (2000).
- 55. Gaussian 16, Revision C.01, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A. V. Marenich, J. Bloino, B. G. Janesko, R. Gomperts, B. Mennucci, H. P. Hratchian, J. V. Ortiz, A. F. Izmaylov, J. L. Sonnenberg, D. Williams-Young, F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V. G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K.

Throssell, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. J. Bearpark, J. J. Heyd, E. N. Brothers, K. N. Kudin, V. N. Staroverov, T. A. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. P. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, J. M. Millam, M. Klene, C. Adamo, R. Cammi, J. W. Ochterski, R. L. Martin, K. Morokuma, O. Farkas, J. B. Foresman, and D. J. Fox, Gaussian, Inc., Wallingford CT, 2016.

- 56. S. Grimme, J. Antony, S. Ehrlich, and H. Krieg, J. Chem. Phys. 132, 154104 (2010).
- 57. M. T. Cancès, B. Mennucci, and J. Tomasi, J. Chem. Phys. 107, 3032 (1997).
- 58. W. Miao, Y. Zhao, C. Ni, B. Gao, W. Zhang, Iron-Catalyzed Difluoromethylation of Arylzincs with Difluoromethyl 2-Pyridyl Sulfone, J. Hu, J. Am. Chem. Soc. 140, 880–883 (2018). doi:10.1021/jacs.7b1197
- 59. M. Schlosser, N. Brugger, W. Schmidt, N. Amrhein, β, β-Difluoro analogs of α-oxo-β-phenylpropionic acid and phenylalanine, *Tetrahedron*, **60**, 7731–7742 (2004). <u>doi:10.1016/j.tet.2004.06.086</u>
- 60. O. E. Okoromoba, J. Han, G. B. Hammond, B. Xu, Designer HF-Based Fluorination Reagent: Highly Regioselective Synthesis of Fluoroalkenes and *gem*-Difluoromethylene Compoundsfrom Alkynes, *J. Am. Chem. Soc.* 136, 14381–14384 (2014). <u>doi:10.1021/ja508369z</u>
- 61. L. An, Y. L. Xiao, S. Zhang, X. Zhang, Bulky Diamine Ligand Promotes Cross-Coupling of Difluoroalkyl Bromides by Iron Catalysis, *Angew. Chem. Int. Ed.* **57**, 6921–692 (2018). <u>doi:10.1002/anie.201802713</u>
- 62. M. Uno, S. Sumino, T. Fukuyama, M. Matsuura, Y. Kuroki, Y. Kishikawa, I. Ryu, Synthesis of 4,4-Difluoroalkenes by Coupling of α-Substituted α, α-Difluoromethyl Halides with Allyl Sulfones under Photoredox Catalyzed Conditions, J. Org. Chem. 84, 9330–9338 (2019). doi:10.1021/acs.joc.9b00901
- 63. F. W. Bollinger, J. B. Conn, Assignee: Merck and Co., Inc., Aug 17, 1972, DE 2104313 A
- 64. X. J. Tang, Z. Zhang, W. R. Dolbier, Jr., Direct Photoredox-Catalyzed Reductive Difluoromethylation of Electron-Deficient Alkenes, *Chem. Eur. J.* **21**, 18961–18965 (2015). <u>doi:10.1002/chem.201504363</u>
- 65. R. C. McAtee, J. W. Beatty, C. C. McAtee, C. R. J. Stephenson, Radical Chlorodifluoromethylation: Providing a Motif for (Hetero) arene Diversification, Org. Lett. 20, 3491–3495 (2018). doi: 10.1021/acs.orglett.8b01249
- 66. K. Choi, M. G. Mormino, E. D. Kalkman, J. Park, J. F. Hartwig, Palladium-Catalyzed Aryldifluoromethylation of Aryl Halides with Aryldifluoromethyl Trimethyl silanes, *Angew. Chem. Int. Ed.* 61, e2022082 (2022). doi:10.1002/anie.202208204
- 67. Z. Wei, W. Miao, C. Ni, J. Hu, Iron-Catalyzed Fluoroalkylation of Arylborates with Sulfone Reagents: Beyond the Limitation of Reduction Potential, *Angew. Chem. Int. Ed.* **60**, 13597–13602 (2021). <u>doi:10.1002/anie.202102597</u>
- 68. J. B. I. Sap *et al.*, [18F]Difluorocarbene for positron emission tomography, *Nature* 606, 102–108 (2022). doi:10.1038/s41586-022-04669-2
- 69. X. Gao, X. He, X. Zhang, Nickel-catalyzed difluoromethylation of (hetero) aryl bromides with BrCF<sub>2</sub>H, *Chin. J. Org. Chem.* **39**, 215–222 (2019). <u>doi:10.6023/cjoc201808014</u>
- 70. C. L. Manach *et al.*, Identification and Profiling of a Novel Diazaspiro[3.4]octaneChemical Series Active against Multiple Stages of the Human Malaria Parasite Plasmodium falciparumand Optimization Efforts, *J. Med. Chem.* 64, 2291–2309 (2021). <u>doi:10.1021/acs.jmedchem.1c00034</u>

- 71. X. Li, J. Zhao, M. Hu, D. Chen, C. Ni, L. Wang, J. Hu, Copper-mediated aerobic (phenylsulfonyl)difluoromethylation of arylboronic acids with difluoromethyl phenyl sulfone, *Chem. Commun.* 52, 3657–3660 (2016). doi:10.1039/C5CC10550A
- 72. G. K. S. Prakash, S. K. Ganesh, J. P. Jones, A. Kulkarni, K. Masood, J. K. Swabeck, G. A. Olah, Copper-Difluoromethylation of (Hetero)aryl Iodides β-Styryl Halides Mediated and with Chem. Tributyl(difluoromethyl)stannane, Angew. Int. Ed. 51, 12090-12094 (2012). doi:10.1002/anie.201205850
- 73. K. Hori, H. Motohashi, D. Saito, K. Mikami, Precatalyst Effects on Pd-Catalyzed Cross-Coupling Difluoromethylation of Aryl Boronic Acids, *ACS Catal.* 9, 417–421 (2019). <u>doi:10.1021/acscatal.8b03892</u>