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General Information 

Equipment 

GC analyses were performed on a SHIMADZU GC-2014 gas chromatograph (column, Rtx-200; 0.25 mm x 

30 m). GC yields were calculated by GC analyses with n-undecane as an internal standard using calibration 

lines derived from commercial compounds with internal standards. NMR spectra were recorded on JEOL 

JNM-ECZ400S spectrometers (400 MHz for 1H, using Me4Si as a standard (0.0 ppm); 100 MHz for 13C, using 

CHCl3 in CDCl3 as a standard (77.0 ppm); 376 MHz for 19F, using C6F6 as a standard (-162.9 ppm) in CDCl3 

as a standard). NMR yields were calculated by 19F NMR with C6F6 as an internal standard. EI mass spectra 

were recorded on JMS-T2000GC spectrometer. ESI mass spectra were recorded on Exactive Plus HPLC: 

UltiMate 3000. APCI mass spectra were recorded on Exactive Plus HPLC: UltiMate 3000. Some of the mass 

spectra were measured by the Instrumental Analysis Service at Hokkaido University. GPC separation was 

performed on Japan Analytical Industry Co., Ltd LC-9201. Flash chromatography was carried out on a silica 

gel (Kanto Chem. Co., Silica Gel N, spherical, neutral, 40-100 m). All batch reactions were carried out in 

flame-dried glassware under an argon atmosphere. 

 

Flow system 

Stainless steel (SUS304) T-shaped micromixers with inner diameters of 250 μm were manufactured by Sanko 

Seiki Co., Inc. Stainless steel (SUS316) microtube reactors with inner diameter of 1000 μm purchased from 

GL Sciences were used unless otherwise stated. The micromixers and microtube reactors were connected with 

stainless steel fittings (GL Sciences, 1/16 OUW). The flow microreactor system was immersed in a cryogenic 

mixture bath with dry ice and acetone to control the temperature. Solutions were continuously introduced to 

the flow microreactor system using syringe pumps (Harvard PHD2000), equipped with gastight syringes 

purchased from SGE. All reactions were carried out under an atmosphere of argon. 

 

Materials 

Dry tetrahydrofuran (THF), diethyl ether (Et2O), 1,2-dimethoxyethane (DME), and triglyme were purchased 

from Kanto Chemical Co., Inc. and used without further purification. Dry diglyme and Potassium were also 

purchased from Sigma-Aldrich. Naphthalene (Np) was purchased from FUJIFILM Wako Pure Chemical 

Corporation. Substrates, electrophiles, and some other reagents were purchased from Tokyo Chemical 

Industry Co., Ltd., FUJIFILM Wako Pure Chemical Corporation, Kanto Chemical Co., Inc., and Sigma-

Aldrich. Some compounds were synthesized by the reported procedure. 

 

 

Experimental Procedures 

 

Preparation of Metal Naphthalenide (MNp)  

Naphthalene (3.7 g, 28.6 mmol, 1.3 equiv) was dissolved in anhydrous THF (100.0 ml) (0.22 M). Metal (K, 

Li, Na, 22.0 mmol, 1.0 equiv) was added and the mixture was stirred for 2 h at ambient temperature until the 

solution became dark green. 

 

Fig. S1. Potassium Naphthalenide (KNp) 
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Procedure for preparation of starting materials and electrophiles 

 

General Procedure of desalination process 

Benzotrifluoride derivatives hydrochloride was dissolved in CH2Cl2 (20 mL) and slowly added sat. aq. 

NaHCO3 (20 mL), extracted. The combined organic layer was dried over Na2SO4 and concentrated under 

reduced pressure. Obtained benzotrifluoride derivatives used to react after drying. 

 

 

 

4-phenyl-benzotrifluoride 

 

4-bromo-benzotrifluoride (5.0 g, 22 mmol), phenylboronic acid (3.2 g, 26.6 mmol, 1.2 equiv.), Pd(OAc)2 (4.5 

mg, 1 mol%), KOH (3.7 g, 67 mmol, 3 eq.), and H2O (50 mL) were added to 100 mL two-necked round 

bottom flask and stirred overnight at 80 °C. After the reaction, the reaction mixture was extracted with EtOAc 

(3 x 5 mL), washed brine, and the organic layer was dried over anhydrous Na2SO4, and concentrated. The 

residue was purified by flash column chromatography (hexane/EtOAc= 10:1) to give the product. The NMR 

spectral data were identical to those reported in the literature (49). 
 

 

 

3,3-Dimethyl-1-[4-(trifluoromethyl)phenyl]-2-butanone 

 

To a 100 mL two-necked round bottom flask was added substrate (4.9 g, 30.4 mmol) in CH2Cl2 (30 mL), 

cooled at 0 °C, then, triethylamine (5.8 g, 57.3 mmol, 1.9 equiv) was added dropwise. Pivaloyl chloride was 

added dropwise for 2 hours keeping below 10 °C. The reaction mixture was washed with water (2 x 50 mL) 

and sat. aq. NH4Cl (2 x 50 mL). The combined organic layer was dried over Na2SO4 and concentrated under 

reduced pressure. The obtained solid was washed with hexane and filtration. The NMR spectral data were 

identical to those reported in the literature (50). 
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1-(3-(Trifluoromethyl)phenyl)-N-ethylpropan-2-amine (51) 

 

To a stirred suspension of NaOH (17.4 g, 3.5 equiv) in methanol (85 mL) was added dropwise ethylamine 

hydrochloride (35.3 g, 3.5 equiv) in methanol (80 mL), over 30 minutes. Following l-(3-

trifluoromethyl)phenyl-propan-2-one (24.8 g, 122.7 mmol) was added to the mixture. The mixture was stirred 

at 20 °C for 4.5 hours, then cooled to 0 °C. Solution of sodium borohydride (4.7 g, 1.0 equiv) in 1M sodium 

hydroxide (10 mL) was added dropwise keeping the below 10 °C, and then was stirred at 20 °C for 2 hours. 

The reaction mixture was methanol (270 mL) removed then water (100 mL) was added and the mixture was 

extracted with hexane (100 mL). The aqueous phase was eliminated and the organic phase was washed with 

water (3 x 100 mL). The combined organic layer was dried over Na2SO4 and concentrated under reduced 

pressure. The crude product was distilled under reduced pressure with a distillation of the vigreux column. 

The distillation heads were eliminated, and the bottom residue was purified through column chromatography 

(hexane/EtOAc= 10:1) on silica gel to yield free base fenfluramine as a colorless oil. 

NMR Spectroscopy: 
1H NMR (400 MHz, CDCl3) δ 7.48-7.35 (m, 4H), 2.95-2.85 (m, 1H), 2.82 (dd, J=13.2, 6.4 Hz, 1H), 2.76-2.68 

(m, 1H), 2.65-2.57 (m, 2H), 1.09-1.03 (m, 6H). 
13C NMR (100 MHz, CDCl3) δ 140.47, 132.68, 130.75, 130.43-130.28 (m), 128.69, 125.84 (t, J= 3.7 Hz), 

122.97 (dt, J= 7.5, 3.7 Hz), 54.41, 43.32, 41.47, 20.11, 15.38 (d, J= 3.2 Hz). 
19F NMR (376 MHz, CDCl3) δ -63.77 (s, 3F). 

 

 

 

Gemfibrozil chloride (52) 

 

To a 100 mL two-necked round bottom flask was added Gemfibrozil (17.6 mmol), dry CH2Cl2 (40.0 mL), and 

10 mol% of N, N-dimethyl formamide (DMF). The reaction mixture was cooled to 0 °C and stirred for 5 

minutes. Then oxalyl chloride (4.3 g, 33.9 mmol, 2.0 equiv) was added dropwise to the reaction mixture and 

stirred at ambient temperature overnight. The resulting mixture was concentrated under reduced pressure and 

used directly without further purification for the reaction. 
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Benzonic acid haloperidol ester (53) 

 

To a 50 mL two-necked round bottom flask was added Haloperidol (3.0 g, 7.8 mmol) in CH2Cl2 (30 mL). 

Ethyldiisopropylamine (DIEA) (2.0 mL, 11.7 mmol) and benzoyl chloride (1.4 mL, 11.7 mmol) were added, 

and then the reaction mixture was stirred at ambient temperature for 24 hours. The solution was quenched 

with sat. aq. NaHCO3 (100 mL), was extracted into CH2Cl2 (4 x 100 mL), and concentrated. The residue was 

purified through column chromatography (MeOH/dichloromethane= 10:1) on silica gel. The NMR spectral 

data were identical to those reported in the literature. 

 

 

 

2-(N-tert-Butoxycarbonyl-4-piperodonyl) ethyl iodide (54) 

 

To a 200 mL two-necked round bottom flask was added N-tert-Butoxycarbonyl-4-piperidineacetic acid 6 (5.1 

g, 21.0 mmol) in 1, 4-dioxane (100 mL) and dimethyl sulfide borane (9.8 mL, 5.0 equiv), and were stirred at 

50 °C for 2.5 hours. Then the reaction mixture was concentrated under reduced pressure. The residue was 

quenched with water (50 mL), and extracted with Et2O/EtOAc (200 mL, 1:1), washed with 1M aq. NaOH (50 

mL) and brine (50 mL). The combined organic layer was dried over Na2SO4 and concentrated under reduced 

pressure. Following the obtained crude product (4.6 g), Imidazole (1.9 g, 1.38 equiv), and triphenylphosphine 

(7.2 g, 1.38 equiv) were added to 200 mL two-necked round bottom flask and cooled to 0 °C. The reaction 

mixture was stirred and I2 (7.4 g, 1.48 equiv) was added dropwise. Then the reaction mixture was stirred at 

ambient temperature for 15 minutes and was added to Et2O (200 mL). The solution was washed with sat. aq. 

Na2SO4 (2 x 200 mL), sat. aq. CaSO4 (200 mL), and brine. The combined organic layer was dried over Na2SO4 

and concentrated under reduced pressure. The residue was purified by short-column chromatography (hexane) 

and concentrated under reduced pressure to afford the pure product as a brown oil in 70 % overall yield (4.92 

g). The NMR spectral data were identical to those reported in the literature. 
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General procedure for hydrodefluorination in the batch reactor. 

 

Method A (in the presence of methanol) 

To a 10 mL test tube were added benzotrifluoride (29.2 mg, 0.2 mmol), methanol (3.1–3.7 equiv), and THF 

(2 mL). To a stirred solution at -78 °C, and then metal naphthalenide (0.22 M in THF) was added dropwise. 

After stirring for 10 min, the reaction mixture was quenched with sat. aq. NH4Cl (5 mL). The organic layer 

was analyzed by gas chromatography with an undecane as an internal standard. 

Table S1. Hydrodefluorination using metal naphtalenides in the presence of methanol* 

 

entry metal 
yield of 3a 

/ % 

Recovery of 1a 

/ % 

1 Li trace 77 

2 Na 7 70 

3 K 3 53 

*Reaction conditions: 1a (0.2 mmol), MeOH (3.1–3.7 equiv), MNp (2.2 equiv), -78 °C, 10 min. Yields and conversions were 

determined by gas chromatography with an internal standard. 

 

Method B (in the absence of methanol) 

To a 10 mL test tube were added benzotrifluoride (29.2 mg, 0.2 mmol), and THF (2 mL). To a stirred solution 

at -78 °C, and then metal naphthalenide (0.22 M in THF) was added dropwise. After stirring for 10 sec, and 

then methanol (4.0–4.3 equiv) was added. The mixture was stirred for 10 min, the reaction mixture was 

quenched with sat. aq. NH4Cl (5 mL). The organic layer was analyzed by gas chromatography with an 

undecane as an internal standard. 

Table S2. Hydrodefluorination using metal naphtalenides in the absence of methanol* 

 

entry metal 
yield of 3a 

/ % 

Recovery of 1a 

/ % 

1 Li n.d. 55 

2 Na n.d. 54 

3 K trace 47 

*Reaction conditions: 1a (0.2 mmol), MeOH (4.0–4.3 equiv), MNp (2.2 equiv), -78 °C, 10 min. Yields and conversions were 

determined by gas chromatography with an internal standard. 
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Optimization of hydrodefluorination in the absence of methanol under the flow 

Scheme S1. 

 

A flow microreactor system consisting of two T-shaped micromixers (M1 and M2 (inner diameter ϕ= 250 

μm)), two microtube reactors (R1 and R2), and three tube precooling units (P1, P2, and P3 (inner diameter 

ϕ= 1000 μm, length L= 100 cm)) was used. The flow microreactor system was cooled by a cooling bath. A 

solution of benzotrifluoride (1a) (0.10 M in solvent) (flow rate: 7.5 mL/ min) and a solution of metal 

naphtalenide (MNp) (0.22 M in THF) (flow rate: 7.5 mL/ min) were introduced to M1 by syringe pumps. 

The resulting solution was passed through R1 and was mixed with a solution of methanol (0.45 M in solvent) 

(flow rate: 5.0 mL/ min) in M2. The resulting solution was passed through R2 (inner diameter ϕ= 1000 μm). 

After a steady state was reached, the outcoming solution was collected for 20 seconds in a vessel containing 

4 mL of sat. aq. NH4Cl. The yields of difluoromethyl benzene (3a) were determined by gas chromatography 

with an undecane as an internal standard. The optimizations are summarized in Table S3. 

 

Table S3.  

entry metal 
proton 

source 
R1  R2 tR1 tR2 solvent T 

yield 

of 3a 

recovery 

of 1a 

yield 

of 4q 

 /equiv /equiv 
ϕ 1 

/μm 

L1 

/cm 

L2 

/cm 
/sec /sec 

/volume 

ratio 
/°C /% /% /% 

1 Li/ 2.2 MeOH/3.0 250 3.5 200 0.0069 4.7 THF -60 n.d. 28 n.d. 

2 Li/ 2.2 MeOH/3.0 1000 3.5 200 0.11 4.7 THF -60 n.d. 20 n.d. 

3 Li/ 2.2 MeOH/3.0 1000 12.5 200 0.39 4.7 THF -60 n.d. 19 n.d. 

4 Li/ 2.2 MeOH/3.0 1000 50 200 1.6 4.7 THF -60 n.d. 19 n.d. 

5 Li/ 2.2 MeOH/3.0 1000 200 200 6.3 4.7 THF -60 n.d. 19 n.d. 

6 Na/ 2.2 MeOH/3.0 250 3.5 200 0.0069 4.7 THF -60 32 10 n.d. 

7 Na/ 2.2 MeOH/3.0 1000 3.5 200 0.11 4.7 THF -60 29 10 n.d. 

8 Na/ 2.2 MeOH/3.0 1000 12.5 200 0.39 4.7 THF -60 20 17 n.d. 

9 Na/ 2.2 MeOH/3.0 1000 50 200 1.6 4.7 THF -60 20 26 n.d. 

10 Na/ 2.2 MeOH/3.0 1000 200 200 6.3 4.7 THF -60 trace 19 n.d. 
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11 K/ 2.2 MeOH/3.0 250 3.5 200 0.0069 4.7 THF -60 68 14 n.d. 

12 K/ 2.2 MeOH/3.0 1000 3.5 200 0.11 4.7 THF -60 70 15 n.d. 

13 K/ 2.2 MeOH/3.0 1000 12.5 200 0.39 4.7 THF -60 66 14 n.d. 

14 K/ 2.2 MeOH/3.0 1000 50 200 1.6 4.7 THF -60 66 14 n.d. 

15 K/ 2.2 MeOH/3.0 1000 200 200 6.3 4.7 THF -60 60 13 n.d. 

16 K/ 2.1 MeOH/3.0 250 3.5 200 0.0069 4.7 THF -78 60 20 3 

17 K/ 2.2 MeOH/3.0 250 3.5 200 0.0069 4.7 THF -78 75 9 6 

18 K/ 2.5 MeOH/3.0 250 3.5 200 0.0069 4.7 THF -78 72 3 10 

19 K/ 3.0 MeOH/3.0 250 3.5 200 0.0069 4.7 THF -78 61 5 17 

20 K/ 2.2 MeOH/1.5 250 3.5 200 0.0069 4.7 THF -78 20 35 trace 

21 K/ 2.2 MeOH/2.0 250 3.5 200 0.0069 4.7 THF -78 56 22 3 

22 K/ 2.2 MeOH/5.0 250 3.5 200 0.0069 4.7 THF -78 69 13 - 

23 K/ 2.2 TFE/1.5 250 3.5 200 0.0069 4.7 THF -78 51 27 trace 

24 K/ 2.2 TFE/2.0 250 3.5 200 0.0069 4.7 THF -78 50 32 trace 

25 K/ 2.2 TFE/3.0 250 3.5 200 0.0069 4.7 THF -78 41 42 trace 

26 K/ 2.2 AcOH/1.5 250 3.5 200 0.0069 4.7 THF -78 31 42 trace 

27 K/ 2.2 AcOH/2.0 250 3.5 200 0.0069 4.7 THF -78 29 50 trace 

28 K/ 2.2 AcOH/3.0 250 3.5 200 0.0069 4.7 THF -78 19 59 trace 

29 K/ 2.2 MeOH/3.0 250 3.5 50 0.0069 1.2 THF -78 51 trace 10 

30 K/ 2.2 MeOH/3.0 250 3.5 100 0.0069 2.4 THF -78 63 10 trace 

31 K/ 2.2 MeOH/3.0 250 3.5 300 0.0069 7.1 THF -78 66 13 5 

32 K/ 2.2 MeOH/3.0 250 3.5 400 0.0069 9.4 THF -78 62 8 4 

34 K/ 2.2 MeOH/3.0 250 3.5 200 0.0069 4.7 
THF/DME 

/10:1 
-78 74 trace 9 

35 K/ 2.2 MeOH/3.0 500 3.5 200 0.027 4.7 
THF/DME 

/10:1 
-78 73 5 trace 

36 K/ 2.2 MeOH/3.0 1000 3.5 200 0.11 4.7 
THF/DME 

/10:1 
-78 77 4 trace 

37 K/ 2.2 MeOH/3.0 1000 12.5 200 0.39 4.7 
THF/DME 

/10:1 
-78 69 3 trace 

38 K/ 2.2 MeOH/3.0 1000 25 200 0.97 4.7 
THF/DME 

/10:1 
-78 71 trace trace 

39 K/ 2.2 MeOH/3.0 1000 50 200 1.6 4.7 
THF/DME 

/10:1 
-78 71 6 trace 

40 K/ 2.2 MeOH/3.0 1000 100 200 3.1 4.7 
THF/DME 

/10:1 
-78 67 3 trace 

41 K/ 2.2 MeOH/3.0 1000 200 200 6.3 4.7 
THF/DME 

/10:1 
-78 68 trace trace 

42 K/ 2.2 MeOH/3.0 250 3.5 200 0.0069 4.7 THF† -78 64 15 trace 

43 K/ 2.2 MeOH/3.0 500 3.5 200 0.027 4.7 THF† -78 62 17 trace 
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44 K/ 2.2 MeOH/3.0 1000 3.5 200 0.11 4.7 THF† -78 60 16 trace 

45 K/ 2.2 MeOH/3.0 1000 12.5 200 0.39 4.7 THF† -78 58 15 trace 

46 K/ 2.2 MeOH/3.0 1000 25 200 0.97 4.7 THF† -78 57 12 trace 

47 K/ 2.2 MeOH/3.0 1000 50 200 1.6 4.7 THF† -78 55 13 trace 

48 K/ 2.2 MeOH/3.0 1000 100 200 3.1 4.7 THF† -78 54 13 trace 

49 K/ 2.2 MeOH/3.0 1000 200 200 6.3 4.7 THF† -78 48 12 trace 

50 K/ 2.2 MeOH/3.0 250 3.5 200 0.0069 4.7 

THF/ 

diglyme 

/10:1 

-78 50 trace 15 

51 K/ 2.2 MeOH/3.0 500 3.5 200 0.027 4.7 

THF/ 

diglyme 

/10:1 

-78 67 5 10 

52 K/ 2.2 MeOH/3.0 1000 3.5 200 0.11 4.7 

THF/ 

diglyme 

/10:1 

-78 73 trace trace 

53 K/ 2.2 MeOH/3.0 1000 12.5 200 0.39 4.7 

THF/ 

diglyme 

/10:1 

-78 75 trace trace 

54 K/ 2.2 MeOH/3.0 250 3.5 200 0.0069 4.7 

THF/ 

triglyme 

/10:1 

-78 46 4 14 

55 K/ 2.2 MeOH/3.0 500 3.5 200 0.027 4.7 

THF/ 

triglyme 

/10:1 

-78 60 9 12 

56 K/ 2.2 MeOH/3.0 1000 3.5 200 0.11 4.7 

THF/ 

triglyme 

/10:1 

-78 74 trace 4 

57 K/ 2.2 MeOH/3.0 1000 12.5 200 0.39 4.7 

THF/ 

triglyme 

/10:1 

-78 71 trace 4 

58 K/ 2.2 MeOH/3.0 250 3.5 200 0.0069 4.7 
THF/DME 

/10:1 
-20 30 24 trace 

59 K/ 2.2 MeOH/3.0 500 3.5 200 0.027 4.7 
THF/DME 

/10:1 
-20 26 26 trace 

60 K/ 2.2 MeOH/3.0 1000 3.5 200 0.11 4.7 
THF/DME 

/10:1 
-20 15 30 trace 

61 K/ 2.2 MeOH/3.0 1000 12.5 200 0.39 4.7 
THF/DME 

/10:1 
-20 trace 25 trace 

62 K/ 2.2 MeOH/3.0 1000 25 200 0.97 4.7 
THF/DME 

/10:1 
-20 trace 22 trace 
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63 K/ 2.2 MeOH/3.0 1000 50 200 1.6 4.7 
THF/DME 

/10:1 
-20 trace 19 trace 

64 K/ 2.2 MeOH/3.0 1000 100 200 3.1 4.7 
THF/DME 

/10:1 
-20 trace 31 trace 

65 K/ 2.2 MeOH/3.0 1000 200 200 6.3 4.7 
THF/DME 

/10:1 
-20 trace 31 trace 

66 K/ 2.2 MeOH/3.0 250 3.5 200 0.0069 4.7 
THF/DME 

/10:1 
-40 54 22 trace 

67 K/ 2.2 MeOH/3.0 500 3.5 200 0.027 4.7 
THF/DME 

/10:1 
-40 54 22 trace 

67 K/ 2.2 MeOH/3.0 1000 3.5 200 0.11 4.7 
THF/DME 

/10:1 
-40 44 24 trace 

68 K/ 2.2 MeOH/3.0 1000 12.5 200 0.39 4.7 
THF/DME 

/10:1 
-40 45 22 trace 

69 K/ 2.2 MeOH/3.0 1000 25 200 0.97 4.7 
THF/DME 

/10:1 
-40 38 24 trace 

70 K/ 2.2 MeOH/3.0 1000 50 200 1.6 4.7 
THF/DME 

/10:1 
-40 38 22 trace 

71 K/ 2.2 MeOH/3.0 1000 100 200 3.1 4.7 
THF/DME 

/10:1 
-40 22 33 trace 

72 K/ 2.2 MeOH/3.0 1000 200 200 6.3 4.7 
THF/DME 

/10:1 
-40 20 27 trace 

73 K/ 2.2 MeOH/3.0 250 3.5 200 0.0069 4.7 
THF/DME 

/10:1 
-60 71 12 trace 

74 K/ 2.2 MeOH/3.0 500 3.5 200 0.027 4.7 
THF/DME 

/10:1 
-60 73 15 trace 

75 K/ 2.2 MeOH/3.0 1000 3.5 200 0.11 4.7 
THF/DME 

/10:1 
-60 73 14 trace 

76 K/ 2.2 MeOH/3.0 1000 12.5 200 0.39 4.7 
THF/DME 

/10:1 
-60 72 13 trace 

77 K/ 2.2 MeOH/3.0 1000 25 200 0.97 4.7 
THF/DME 

/10:1 
-60 72 14 trace 

78 K/ 2.2 MeOH/3.0 1000 50 200 1.6 4.7 
THF/DME 

/10:1 
-60 68 13 trace 

79 K/ 2.2 MeOH/3.0 1000 100 200 3.1 4.7 
THF/DME 

/10:1 
-60 58 7 trace 

80 K/ 2.2 MeOH/3.0 1000 200 200 6.3 4.7 
THF/DME 

/10:1 
-60 49 6 trace 

†5.0 equiv of 1,2-dimethoxyethane was used for the benzotrifluoride.  
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In-line IR monitoring of generation of difluoromethyl benzyl anion 2a 

 

A flow microreactor system consisting of two T-shaped micromixers M1 (inner diameter ϕ= 250 μm), PTFE 

tube R1 (inner diameter ϕ= 1000 μm, length L= 10 cm)), two tube precooling units P1 and P2 (inner diameter 

ϕ= 1000 μm, length L= 100 cm), and IR unit was used. The flow microreactor system was cooled at -20 °C 

or -78 °C by a cooling bath. A solution of benzotrifluoride (1a) (0.10 M in THF) (flow rate: 7.5 mL/ min) and 

a solution of potassium naphtalenide (KNp) (0.22 M in THF) (flow rate: 7.5 mL/ min) were introduced to M1 

by syringe pumps. Then, a solution was passed through R1 and IR. After a steady state was reached, IR 

measurement was started. 

  (A) PhCF2H                                 (B) KNp 

 

(C) PhCF2K + PhCF3                          (D) PhCF2K + PhCF3 (1200 cm-1 corrected to zero) 

 

Fig. S2. In-line IR of PhCF2H, KNp, PhCF3 and reactive intermediate at -20 °C. 
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(A) PhCF2H                                 (B) KNp 

 

(C) PhCF2K + PhCF3                          (D) PhCF2K + PhCF3 (1200 cm-1 corrected to zero) 

 

Fig. S3. In-line IR of PhCF2H, KNp, PhCF3 and reactive intermediate at -78 °C. 
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DFT calculation studies 

DFT calculation studies have been performed with a Gaussian16 program package to estimate the FT-IR 

spectra of benzotrifluoride (PhCF3), its hydrodefluorination product (PhCF2H), and the reactive intermediate 

(55). We have employed B3LYP density functional and 6-31G+(d) basis set, in combination with the 

dispersion force correction model according to Grimme's D3 method (56) and the IEFPCM solvation model 

for THF (57).  

 

Table S4. Summary of the calculated frequencies and energies for the optimized geometries of relevant 

species 

structure 

characteristic 

vibrational frequency 

(cm−1) 

Ezero (hartree) G298 (hartree) 

PhCF3 1317 -569.227756 -569.262995 

PhCF2H 

(conformer A) 

1381 -469.964233 -469.997953 

PhCF2H 

(conformer B) 

1423 -469.965395 -469.998575 

PhCF2K 1524, 1640 -1069.299657 -1069.337557 

THF - -232.347890 -232.374573 

PhCF2K(thf)4 1524, 1640 -1998.765184 -1998.842716 

K+(naphthalene)•– 1402, 1526 -985.696956 -985.734795 

naphthalene - -385.773840 -385.803767 

K+ - -599.834426 -599.849602 

F– - -99.978235 -99.992394 

 

 

Table S5. Optimized ground-state geometry of PhCF3  

 

C                 -2.14480000    1.21170000    0.00180000 

 C                 -0.74840000    1.21670000   -0.02100000 

 C                 -0.05500000    0.00110000   -0.03490000 

 C                 -0.74700000   -1.21560000   -0.02110000 

 C                 -2.14330000   -1.21240000    0.00180000 

 C                 -2.84230000   -0.00070000    0.01350000 

 H                 -2.68590000    2.15360000    0.00830000 
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 H                 -0.20390000    2.15550000   -0.03310000 

 H                 -0.20120000   -2.15370000   -0.03320000 

 H                 -2.68320000   -2.15500000    0.00840000 

 H                 -3.92870000   -0.00140000    0.02960000 

 C                  1.44710000    0.00050000   -0.00520000 

 F                  1.98210000   -1.08250000   -0.62880000 

 F                  1.93520000   -0.01890000    1.27110000 

 F                  1.98320000    1.10050000   -0.59670000 

 

 

Table S6. Optimized Ground State Geometry of the simplified reactive intermediate (PhCF2H_1) 

 

C                 -1.91124252    1.21202119   -0.04456122 

 C                 -0.52018777    1.21281324    0.08901138 

 C                  0.17518937   -0.00114375    0.15408806 

 C                 -0.52408950   -1.21349976    0.09819610 

 C                 -1.91500664   -1.20953206   -0.03526381 

 C                 -2.61049195    0.00213816   -0.10664131 

 H                 -2.44664024    2.15577703   -0.10192190 

 H                  0.02260564    2.15196557    0.13350668 

 H                  0.01584590   -2.15403405    0.14964331 

 H                 -2.45337546   -2.15201080   -0.08532136 

 H                 -3.69218554    0.00341861   -0.21096602 

 C                  1.66835239   -0.00447028    0.35348369 

 F                  2.24253375   -1.10834312   -0.25323014 

 F                  2.24529899    1.11075099   -0.22841365 

 H                  1.98811488   -0.01674772    1.39997614 
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Table S7. Optimized Ground State Geometry of the simplified reactive intermediate (PhCF2H_2) 

 

C                  2.08534968   -1.08350662    0.00440905 

 C                  0.70195341   -1.29163317    0.00731613 

 C                 -0.16816346   -0.19689611    0.00333170 

 C                  0.34182618    1.10948659   -0.00347944 

 C                  1.72152413    1.31422134   -0.00624293 

 C                  2.59438385    0.21789627   -0.00233294 

 H                  2.76011707   -1.93495870    0.00751884 

 H                  0.30413872   -2.30362324    0.01248221 

 H                 -0.33922503    1.95583720   -0.00641141 

 H                  2.11807207    2.32575943   -0.01137219 

 H                  3.66885872    0.38063028   -0.00437924 

 C                 -1.64847267   -0.42401461    0.00522870 

 F                 -2.24209751    0.19179092    1.09941825 

 F                 -2.23997552    0.16136629   -1.10679828 

 H                 -1.94371099   -1.47538209    0.01920043 

 

 

Table S8. Optimized Ground State Geometry of the simplified reactive intermediate  

 

C                  2.87982095    1.18861474   -0.20862282 

 C                  1.49014342    1.20660646   -0.06724787 

 C                  0.75356785    0.00612490    0.01275204 

 C                  1.46431826   -1.21107249   -0.05244264 

 C                  2.85355680   -1.22519253   -0.19325131 

 C                  3.57349713   -0.02616936   -0.27585731 

 H                  3.42506738    2.12881131   -0.26187277 

 H                  0.96388687    2.15547983   -0.01619434 

 H                  0.91717436   -2.14770189    0.00875138 

 H                  3.37837870   -2.17747916   -0.23539400 
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 H                  4.65471398   -0.03863682   -0.38868141 

 C                 -0.72658200    0.01780255    0.02527907 

 F                 -1.15611676   -1.07850909    0.90616479 

 F                 -1.14139082    1.17681594    0.82289304 

 K                 -3.49429408   -0.02871160   -0.53219917 

 

 

Table S9. Optimized Ground State Geometry of the simplified reactive intermediate (THF) 

 

C                 -1.19067069    0.45967233   -0.00000010 

 O                  0.00000036    1.26206451   -0.00000030 

 C                  1.19067088    0.45967188   -0.00000059 

 C                  0.77478834   -1.02733370    0.00000081 

 C                 -0.77478868   -1.02733366    0.00000019 

 H                 -1.78017675    0.72061133    0.88838738 

 H                 -1.78017683    0.72061094   -0.88838764 

 H                  1.78017604    0.72060940   -0.88838911 

 H                  1.78017724    0.72061072    0.88838672 

 H                  1.17004705   -1.54175609   -0.88124601 

 H                  1.17004633   -1.54175423    0.88124904 

 H                 -1.17004718   -1.54175467   -0.88124751 

 H                 -1.17004787   -1.54175452    0.88124767 

 

 

Table S10. Optimized Ground State Geometry of the simplified reactive intermediate  

 
C                  5.79211170    0.02663312    0.46896259 
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 C                  4.39629237    0.00549321    0.50791272 

 C                  3.65942250   -0.88923549   -0.29876918 

 C                  4.38112468   -1.76534288   -1.13877367 

 C                  5.77668845   -1.74266454   -1.17283404 

 C                  6.49572535   -0.84390820   -0.37326281 

 H                  6.33487123    0.72383073    1.10447370 

 H                  3.86366117    0.68438146    1.16724340 

 H                  3.83543939   -2.46493834   -1.76605855 

 H                  6.30792521   -2.43349476   -1.82472864 

 H                  7.58232627   -0.82485303   -0.40387623 

 C                  2.18664610   -0.81459978   -0.36960415 

 F                  1.68157223   -2.17387416   -0.52595712 

 F                  1.70906940   -0.49794117    0.98243491 

 K                 -0.49172296    0.14155231   -0.79559406 

 O                 -2.16481762   -2.06204454   -1.21371300 

 C                 -3.26084242   -2.32197281   -0.30903226 

 C                 -1.53285036   -3.31418836   -1.59214374 

 C                 -3.01157051   -3.72579749    0.24026198 

 H                 -3.26089181   -1.53493550    0.45034333 

 H                 -4.20670257   -2.27837238   -0.86878692 

 C                 -2.39066638   -4.42783533   -0.97875728 

 H                 -1.48366759   -3.35821396   -2.68562477 

 H                 -0.51247086   -3.31315528   -1.19080303 

 H                 -3.92797071   -4.20576859    0.59794522 

 H                 -2.29332431   -3.68917192    1.06754238 

 H                 -3.17654344   -4.73957408   -1.67740917 

 H                 -1.79768800   -5.30901578   -0.71552247 

 O                 -1.62001646   -0.04324983    1.83109507 

 C                 -1.25183917   -1.24815665    2.54962143 

 C                 -1.31996438    1.10691855    2.64994504 

 C                 -0.58343024   -0.79705626    3.86091765 

 H                 -2.15460417   -1.84580861    2.72192316 

 H                 -0.56603959   -1.81707845    1.91305800 

 C                 -0.17739975    0.65501813    3.55563678 

 H                 -1.06176916    1.93140852    1.98081746 

 H                 -2.21094325    1.38317921    3.23528688 

 H                  0.26681787   -1.43222334    4.12671323 

 H                 -1.30175689   -0.82505998    4.68895812 

 H                  0.76704707    0.67680477    3.00227027 

 H                 -0.07856232    1.27343313    4.45367209 
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 O                 -2.78178902    1.70191328   -1.50767139 

 C                 -3.91442020    0.92894493   -1.97237677 

 C                 -3.24313677    2.56210867   -0.45008136 

 C                 -4.98118052    0.98010569   -0.84997713 

 H                 -4.28715589    1.36598578   -2.90807171 

 H                 -3.55032533   -0.08239361   -2.17474172 

 C                 -4.26113616    1.70973228    0.30407926 

 H                 -2.36983517    2.85689114    0.13576115 

 H                 -3.71014904    3.46375255   -0.87837002 

 H                 -5.32278709   -0.01856388   -0.56233524 

 H                 -5.85675213    1.54988711   -1.17966808 

 H                 -3.73165878    0.99822614    0.94626508 

 H                 -4.94100768    2.30555916    0.92182274 

 O                  0.17880390    2.83835111    0.02649396 

 C                  0.18035603    3.76512754   -1.07262348 

 C                  1.50971505    2.89374132    0.57417027 

 C                  1.54338289    3.57210110   -1.76464406 

 H                 -0.68396416    3.53291593   -1.69987098 

 H                  0.07277679    4.78895732   -0.68148389 

 C                  2.44613578    2.97899350   -0.64494123 

 H                  1.59672710    3.78419238    1.21604032 

 H                  1.65342999    1.99603405    1.17813931 

 H                  1.92752419    4.51718382   -2.16139834 

 H                  1.45536589    2.87096896   -2.60098000 

 H                  3.32152233    3.60194860   -0.43566622 

 H                  2.79566610    1.97920309   -0.91664931 

 

 

Table S11. Optimized Ground State Geometry of the simplified reactive intermediate  

 

C                  2.14944810   -1.14211421   -0.69383404 

 C                  0.95318360   -0.88216790   -1.40527154 

 C                 -0.27563174   -0.62198939   -0.72612517 

 C                 -0.27509194   -0.61519950    0.73075424 

 C                  0.95412863   -0.86947450    1.41141861 
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 C                  2.14991306   -1.13572778    0.70147860 

 H                 -1.49792544   -0.34708007   -2.49295445 

 H                  3.06705487   -1.34941013   -1.24156450 

 H                  0.95364160   -0.89521894   -2.49429384 

 C                 -1.49412975   -0.33754923   -1.40363307 

 C                 -1.49293334   -0.32381063    1.40649537 

 H                  0.95562749   -0.87159123    2.50051549 

 H                  3.06794938   -1.33792558    1.25039663 

 C                 -2.68386320   -0.05265498    0.69806599 

 C                 -2.68444728   -0.05948962   -0.69687551 

 H                 -1.49590648   -0.32315921    2.49586219 

 H                 -3.60043222    0.15863841    1.24610875 

 H                 -3.60146388    0.14650492   -1.24618734 

 K                  0.96568410    2.16106886   -0.00803809 

 

 

Table S12. Optimized Ground State Geometry of the simplified reactive intermediate (Naph-0) 

 

C                 -0.00000000    2.43739124    0.70981639 

 C                  0.00000000    1.24617498    1.40549179 

 C                 -0.00000000    0.00000000    0.71774994 

 C                  0.00000000   -0.00000000   -0.71774994 

 C                  0.00000000    1.24617498   -1.40549179 

 C                  0.00000000    2.43739124   -0.70981639 

 H                  0.00000000   -1.24433104    2.49338250 

 H                 -0.00000000    3.38227422    1.24702970 

 H                  0.00000000    1.24433104    2.49338250 

 C                 -0.00000000   -1.24617498    1.40549179 

 C                 -0.00000000   -1.24617498   -1.40549179 

 H                  0.00000000    1.24433104   -2.49338250 

 H                  0.00000000    3.38227422   -1.24702970 

 C                 -0.00000000   -2.43739124   -0.70981639 

 C                 -0.00000000   -2.43739124    0.70981639 

 H                  0.00000000   -1.24433104   -2.49338250 

 H                 -0.00000000   -3.38227422   -1.24702970 

 H                 -0.00000000   -3.38227422    1.24702970 
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Defluorinative functionalization in the presence of the benzoyl chloride 

Scheme S2. 

 

A flow microreactor system consisting of two T-shaped micromixers (M1 and M2 (inner diameter ϕ= 250 

μm)), two microtube reactors (R1 and R2), and three tube precooling units (P1, P2, and P3 (inner diameter 

ϕ= 1000 μm, length L= 100 cm)) was used. The flow microreactor system was cooled at -78 °C by a cooling 

bath. A solution of benzotrifluoride (1a) (0.10 M in THF/1,2-dimethoxyethane (DME)= 10/1) (flow rate: 7.5 

mL/ min) and a solution of benzoyl chloride (0.45 M in THF/1,2-dimethoxyethane (DME)= 10/1) (flow rate: 

5.0 mL/ min) were introduced to M1 by syringe pumps. The resulting solution was passed through R1 (inner 

diameter ϕ= 1000 μm, length L= 50 cm) and was mixed with a solution of potassium naphtalenide (KNp) 

(0.22 M in THF) (flow rate: 7.5 mL/ min) in M2. The resulting solution was passed through R2 (inner diameter 

ϕ= 1000 μm, length L= 200 cm). After a steady state was reached, the outcoming solution was collected for 

20 seconds in a vessel containing 4 mL of sat. aq. NH4Cl. The yield of 3h and recovery of 1a were determined 

by 19F NMR integration relative to the internal standard (hexafluorobenzene). However, this system did not 

give a corresponding compound 3h, and substrate 1a was quantitatively recovered. 
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General procedure of defluorinative functionalization of benzotrifluoride under flow microreactor 

system 

 

A flow microreactor system consisting of two T-shaped micromixers (M1 and M2 (inner diameter ϕ= 250 

μm)), two microtube reactors (R1 and R2), and three tube precooling units (P1, P2, and P3 (inner diameter 

ϕ= 1000 μm, length L= 100 cm)) was used. The flow microreactor system was cooled at -78 °C by a cooling 

bath. A solution of benzotrifluoride (1a) (0.10 M in THF/1,2-dimethoxyethane (DME)= 10/1) (flow rate: 7.5 

mL/ min) and a solution of potassium naphtalenide (KNp) (0.22 M in THF) (flow rate: 7.5 mL/ min) were 

introduced to M1 by syringe pumps. The resulting solution was passed through R1 (inner diameter ϕ= 1000 

μm, length L= 3.5 cm) and was mixed with a solution of electrophile (0.45 M in THF/1,2-dimethoxyethane 

(DME)= 10/1) (flow rate: 5.0 mL/ min) in M2. The resulting solution was passed through R2 (inner diameter 

ϕ= 1000 μm, length L= 200 cm). After a steady state was reached, the outcoming solution was collected for 

20 seconds in a vessel containing 4 mL of sat. aq. NH4Cl. The yields of corresponding difluoromethyl arenes 

(4) were determined by 19F NMR integration relative to the internal standard (hexafluorobenzene). The 

reaction mixture was extracted with EtOAc (3 x 5 mL), and was washed with brine. The combined organic 

layers were dried over Na2SO4, and filtered, concentrated under vacuum. Then, the crude product was purified 

by flash column chromatography on silica gel to give a product. 
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General procedure of hydrodefluorination of aryl bearing fluorine atoms under flow microreactor 

system 

 

A flow microreactor system consisting of two T-shaped micromixers (M1 and M2 (inner diameter ϕ= 250 

μm)), two microtube reactors (R1 and R2), and three tube precooling units (P1, P2, and P3 (inner diameter 

ϕ = 1000 μm, length L= 100 cm)) was used. The flow microreactor system was cooled at -78 °C by a cooling 

bath. A solution of benzotrifluoride derivatives (1) (0.10 M in THF/1,2-dimethoxyethane (DME)= 10/1) (flow 

rate: 7.5 mL/ min) and a solution of potassium naphtalenide (KNp) (0.22 M in THF) (flow rate: 7.5 mL/ min) 

were introduced to M1 by syringe pumps. The resulting solution was passed through R1 and was mixed with 

a solution of methanol (0.45 M in THF/1,2-dimethoxyethane (DME)= 10/1) (flow rate: 5.0 mL/ min) in M2. 

The resulting solution was passed through R2 (inner diameter ϕ= 1000 μm, length L= 200 cm). After a steady 

state was reached, the outcoming solution was collected for 20 seconds in a vessel containing 4 mL of sat. 

aq. NH4Cl. The yields of corresponding difluoromethyl arenes (4) were determined by 19F NMR integration 

relative to the internal standard (hexafluorobenzene). The reaction mixture was extracted with EtOAc (3 x 5 

mL), and was washed with brine. The combined organic layers were dried over Na2SO4, and filtered, 

concentrated under vacuum. Then, the crude product was purified by flash column chromatography on silica 

gel to give a product. The optimizations are summarized in Fig. S4. 
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Fig. S4. Scope of substrates of hydrodefluorination. 

Using THF/diglyme (10:1) instead of THF/DME in parentheses. *The yield of 3a was determined by gas chromatography 

with an undecane as an internal standard. †Quench was carried out by methanol instead of sat. aq. NH4Cl.  
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Defluorinative functionalization products characterizations 

 

Difluoromethyl benzene (3a) 

 

3a 

Obtained in 77 % yield (Maximum yield). Yields were determined by GC analysis (tR 6.0 min) (initial oven 

temperature, 50 °C (5 min); temperature increase rate, 10 °C/min (25 min); final temperature, 300 °C) using 

an internal standard (undecane). The NMR spectral data were identical to those reported in the literature (30). 

 

 

 

Deuterated difluoromethyl benzene (3b) 

 

3b 

Obtained in 74 % yield. The yield was determined by 19F NMR integration relative to the internal standard 

(hexafluorobenzene). 19F NMR (376 MHz, CDCl3) δ -112.40 (s, 2F). 19F NMR data matches previously 

reported data (58). The identity of the product was further confirmed by GCMS analysis. 
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2,2-Difluoro-1,1,2-triphenylethanol (3c) 

 

3c 

Obtained in 66 % yield. The yield was determined by 19F NMR integration relative to the internal standard 

(hexafluorobenzene). The reaction mixture was purified by flash column chromatography (hexane/EtOAc= 

10:1, Rf= 0.4) to afford the pure product as a white solid. 

NMR Spectroscopy: 
1H NMR (400 MHz, CDCl3) δ 7.47-7.44 (m, 4H), 7.32 (t, J= 7.3 Hz, 1H), 7.28-7.25 (m, 4H), 7.20 (t, J= 7.7 

Hz, 2H), 7.07 (d, J= 7.6 Hz, 2H), 2.78 (s, 1H).  
13C NMR (100 MHz, CDCl3) δ 141.50, 134.22 (t, J= 26.2 Hz), 129.51, 127.99 (d, J= 4.7 Hz), 127.76, 127.71, 

127.38 (t, J= 6.4 Hz), 127.00, 123.20 (t, J= 255.8 Hz), 80.85 (t, J= 28.9 Hz).  
19F NMR (376 MHz, CDCl3) δ -102.57 (s, 2F). 

 

 

 

1,2-Diphenyl-2,2-difluoroethanol (3d) 

 

3d 

Obtained in 71 % yield. The crude product was purified by flash column chromatography on silica gel 

(hexane/EtOAc= 10:1, Rf= 0.2) to afford the pure product as a white solid (126.7 mg). 

NMR Spectroscopy: 
1H NMR (400 MHz, CDCl3) δ 7.40-7.17 (m, 10H), 5.04 (t, J= 10.1 Hz, 1H), 2.63 (s, 1H).  
13C NMR (100 MHz, CDCl3) δ 135.70, 133.65 (t, J= 25.9 Hz), 129.96, 128.61, 127.83 (t, J= 9.2 Hz), 126.23 

(t, J= 6.3 Hz), 123.55, 121.0, 118.61, 76.85 (t, J= 30.7 Hz).  
19F NMR (376 MHz, CDCl3) δ -108.09 (d, J= 9.1 Hz, 2F). 
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2,2-Difluoro-2-phenylacetic acid ethyl ester (3e) 

 

3e 

Obtained in 55 % yield. The yield was determined by 19F NMR integration relative to the internal standard 

(hexafluorobenzene). The reaction mixture was purified by flash column chromatography (hexane/EtOAc= 

10:1, Rf= 0.5) to afford the pure product as a colorless oil. 

 NMR Spectroscopy: 
1H NMR (400 MHz, CDCl3) δ 7.63-7.60 (m, 2H), 7.52-7.43 (m, 3H), 4.30 (q, J= 7.1 Hz, 2H), 1.30 (t, J= 7.1 

Hz, 3H).  
13C NMR (100 MHz, CDCl3) δ 164.21 (t, J= 35.4 Hz), 132.77 (t, J= 25.5 Hz), 130.95 (d, J= 2.2 Hz), 128.61, 

125.40 (t, J= 6.3 Hz), 113.35 (t, J= 251.9 Hz), 63.11, 13.84. 
19F NMR (376 MHz, CDCl3) δ -105.07 (s, 2F).  

 

 

 

2,2-Difluoro- 2-(phenyl)acetaldehyde (3f) 

 

3f 

Obtained in 48 % yield. The yield was determined by 19F NMR integration relative to the internal standard 

(hexafluorobenzene). 19F NMR (376 MHz, CDCl3) δ -112.66 (s, 2F). 19F NMR data matches previously 

reported data (59). The identity of the product was further confirmed by GCMS analysis. 

 

 

 

 

 

 

 

 

50.0 75.0 100.0 125.0 150.0 175.0 200.0
0

25

50

75

100

%

127

77

51

107 15663 10174 88 129119 138 167 196179 184



S27 

 

N-Phenyl-2-phenyl-2,2-difluoroacetamide (3g) 

 

3g 

Obtained in 83 % yield. The yield was determined by 19F NMR integration relative to the internal standard 

(hexafluorobenzene). The crude product was purified by flash column chromatography on silica gel 

(hexane/EtOAc= 10:1, Rf= 0.3) to afford the pure product as a white solid. 

NMR Spectroscopy: 
1H NMR (400 MHz, CDCl3) δ 8.09 (s, 1H), 7.69-7.67 (m, 2H), 7.59-7.56 (m, 2H), 7.53-7.45 (m, 3H), 7.36 (t, 

J= 8.0 Hz, 2H), 7.19 (t, J= 7.5 Hz, 1H).  
13C NMR (100 MHz, CDCl3) δ 161.80 (t, J= 30.8 Hz), 136.00, 132.55 (t, J= 25.4 Hz), 131.08 (t, J= 1.9 Hz), 

129.20, 128.68, 125.63, 125.56 (t, J= 5.3 Hz), 120.11, 114.76 (t, J= 254.3 Hz).  
19F NMR (376 MHz, CDCl3) δ -103.58 (s, 2F). 

 

 

 

2,2-Difluoro-1,2-diphenylethane-1-one (3h) 

 

3h 

Obtained in 55 % yield. The yield was determined by 19F NMR integration relative to the internal standard 

(hexafluorobenzene). The reaction mixture was purified by flash column chromatography (hexane/EtOAc= 

10:1, Rf= 0.5) to afford the pure product as a yellow oil in 66 % isolated yield (115.2 mg). 

NMR Spectroscopy: 

1H NMR (400 MHz, CDCl3) δ 8.04-8.02 (m, 2H), 7.63-7.57 (m, 3H), 7.50-7.43 (m, 5H). 

13C NMR (100 MHz, CDCl3) δ 188.89 (t, J= 30.8 Hz), 134.19, 133.03 (t, J= 25.0 Hz), 132.02, 130.88 (d, J= 

1.7 Hz), 130.22 (t, J= 2.9 Hz), 128.79, 128.60, 125.54 (t, J= 5.8 Hz), 116.86 (t, J= 253.2 Hz). 
19F NMR (376 MHz, CDCl3) δ -98.76 (s, 2F). 
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(1,1-Difluoroethyl)benzene (3i) 

 

3i 

Obtained in 76 % yield. The yield was determined by 19F NMR integration relative to the internal standard 

(hexafluorobenzene). 19F NMR (376 MHz, CDCl3) δ -88.62 (q, J= 17.5 Hz, 2F). 19F NMR data matches 

previously reported data (60). The identity of the product was further confirmed by GCMS analysis. 

 

 

 

 

(1,1-Difluorononyl)benzene (3j) 

 

3j 

Obtained in 71 % yield. The yield was determined by 19F NMR integration relative to the internal standard 

(hexafluorobenzene). 19F NMR (376 MHz, CDCl3) δ -96.27 (t, J= 16.1 Hz, 2F). 19F NMR data matches 

previously reported data (61). The identity of the product was further confirmed by GCMS analysis. 

 

 

 

 

 

 

50.0 75.0 100.0 125.0 150.0 175.0
0

10

20

30

40

50

%

127

142

77
51

10165 123917857 141114 157 181
190

171

50.0 75.0 100.0 125.0 150.0 175.0 200.0 225.0 250.0
0

25

50

75

100

%

127

122

91 24055 77 16910969 19751 147 220183136 211 254



S29 

 

1,1-Difluoro-1-phenyl-3-butene (3k) 

 

3k 

Obtained in 41 % yield. The yield was determined by 19F NMR integration relative to the internal standard 

(hexafluorobenzene). 19F NMR (376 MHz, CDCl3) δ -96.20 (t, J= 16.4 Hz, 2F). 19F NMR data matches 

previously reported data (62). The identity of the product was further confirmed by GCMS analysis. 

 

 

 

 

(Difluoroiodomethyl)benzene (3l) 

 

3l 

Obtained in 65 % yield. The yield was determined by 19F NMR integration relative to the internal standard 

(hexafluorobenzene). 19F NMR (376 MHz, CDCl3) δ -38.06 (s, 2F). 19F NMR data matches previously 

reported data (63). The identity of the product was further confirmed by GCMS analysis. 
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S30 

 

(Bromodifluoromethyl)benzene (3m) 

 

3m 

Obtained in 56 % yield. The yield was determined by 19F NMR integration relative to the internal standard 

(hexafluorobenzene). 19F NMR (376 MHz, CDCl3) δ -44.74 (s, 2F). 19F NMR data matches previously 

reported data (64). The identity of the product was further confirmed by GCMS analysis. 

 

 

 

 

(Chlorodifluoromethyl)benzene (3n) 

 

3n 

Obtained in 80 % yield. The yield was determined by 19F NMR integration relative to the internal standard 

(hexafluorobenzene). 19F NMR (376 MHz, CDCl3) δ -49.78 (s, 2F). 19F NMR data matches previously 

reported data (65). The identity of the product was further confirmed by GCMS analysis. 
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S31 

 

Diethyl difluoro(phenyl)methylphosphonate (3o) 

 

3o 

Obtained in 48 % yield. The yield was determined by 19F NMR integration relative to the internal standard 

(hexafluorobenzene). The crude product (0.25 mmol scale) was purified by GPC to afford the pure product as 

yellow oil in 55 % isolated yield (36.8 mg). 

NMR Spectroscopy: 
1H NMR (400 MHz, CDCl3) δ 7.62 (dd, J= 8.0, 0.9 Hz, 2H), 7.49-7.44 (m, 3H), 4.26-4.09 (m, 2H), 1.31 (t, 

J= 7.1 Hz, 3H).  

13C NMR (100 MHz, CDCl3) δ 132.78-132.21 (m), 130.75 (t, J= 1.9 Hz), 128.39, 126.24-126.09 (m), 121.71-

114.30 (m), 64.74 (d, J= 6.7 Hz), 16.28 (d, J= 5.6 Hz). 
19F NMR (376 MHz, CDCl3) δ -109.72 (d, J= 120.6 Hz, 2F).  

 

 

 

(Difluoro(trimethylsilyl)methyl)benzene (3p) 

 

3p 

Obtained in 85 % yield. The yield was determined by 19F NMR integration relative to the internal standard 

(hexafluorobenzene). 19F NMR (376 MHz, CDCl3) δ -113.44 (s, 2F). 19F NMR data matches previously 

reported data (66). The identity of the product was further confirmed by GCMS analysis. 
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S32 

 

Tributhyl(difluoro(phenyl)methyl)stannane (3q) 

 

3q 

Obtained in 63 % yield. The yield was determined by 19F NMR integration relative to the internal standard 

(hexafluorobenzene). The crude product was purified by GPC to afford the pure product as yellow oil.  

HRMS (ESI) m/z Calcd for C19H32F2SnNa[M+Na]+ 441.1395; Found: 441.1385. 

NMR Spectroscopy: 
1H NMR (400 MHz, CDCl3) δ 7.41-7.37 (m, 2H), 7.33-7.28 (m, 3H), 1.54-1.22 (m, 13H), 1.01-0.97 (m, 5H), 

0.86 (d, J= 14.6 Hz, 9H).  
13C NMR (100 MHz, CDCl3) δ 141.69 (t, J= 16.8 Hz), 136.04 (d, J= 293.8 Hz), 128.41, 128.16 (t, J= 2.7 Hz), 

123.23 (t, J= 8.3 Hz), 28.53 (d, J= 1.5 Hz), 27.22 (d, J= 1.8 Hz), 13.59 (d, J= 1.6 Hz), 9.94 (d, J= 3.4 Hz). 
19F NMR (376 MHz, CDCl3) δ -97.53--98.29 (m, 2F).  

 

Note: The title compound was unstable and decomposed after several days of storage at ambient temperature. 

 

 

 

((Difluorophenylmethyl)thio)benzene (3r) 

 

3r 

Obtained in 80 % yield. The yield was determined by 19F NMR integration relative to the internal standard 

(hexafluorobenzene). The crude product was purified by flash column chromatography on silica gel (hexane 

only, Rf= 0.5) to afford the pure product as a white solid. 

NMR Spectroscopy: 

1H NMR (400 MHz, CDCl3) δ 7.63-7.61 (m, 2H), 7.57 (dd, J= 7.7, 1.3 Hz, 2H), 7.45-7.35 (m, 6H).  

13C NMR (100 MHz, CDCl3) δ 136.36, 135.89 (t, J= 25.0 Hz), 130.56, 129.87, 128.97, 128.32, 127.58, 127.45, 

125.37 (t, J= 4.8 Hz).  
19F NMR (376 MHz, CDCl3) δ -72.99 (s, 2F).  

 

 

 

 

 

 

 

 



S33 

 

1-(Difluoromethyl)-4-methylbenzene (4a) 

 

4a 

Obtained in 84 % yield (Maximum yield). The yield was determined by 19F NMR integration relative to the 

internal standard (hexafluorobenzene). 19F NMR (376 MHz, CDCl3) δ -110.80 (d, J= 57.4 Hz, 2F). 19F NMR 

data matches previously reported data (67). The identity of the product was further confirmed by GCMS 

analysis. 

 

 

 

 

1-(Difluoromethyl)-2-methylbenzene (4b) 

 

4b 

Obtained in 75 % yield (Maximum yield). The yield was determined by 19F NMR integration relative to the 

internal standard (hexafluorobenzene). 19F NMR (376 MHz, CDCl3) δ -114.21 (d, J= 54.1 Hz, 2F). 19F NMR 

data matches previously reported data (67). The identity of the product was further confirmed by GCMS 

analysis. 
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S34 

 

1-(Difluoromethyl)-3-methoxybenzene (4c) 

 

4c 

Obtained in 87 % yield (Maximum yield). The yield was determined by 19F NMR integration relative to the 

internal standard (hexafluorobenzene). 19F NMR (376 MHz, CDCl3) δ -111.74 (d, J= 53.8 Hz, 2F). 19F NMR 

data matches previously reported data (30). The identity of the product was further confirmed by GCMS 

analysis. 

 

 

 

 

4-(Difluoromethyl)-1,1’-biphenyl (4d) 

 

4d 

Obtained in 42 % yield (Maximum yield). The yield was determined by 19F NMR integration relative to the 

internal standard (hexafluorobenzene). The reaction mixture was purified by flash column chromatography 

(hexane/EtOAc= 10:1, Rf= 0.4) to afford the pure product as a white solid. 

NMR Spectroscopy: 
1H NMR (400 MHz, CDCl3) δ 7.67 (d, J= 8.1 Hz, 2H), 7.61-7.57 (m, 4H), 7.48-7.45 (m, 2H), 7.41-7.37 (m, 

1H), 6.70 (t, J= 56.5 Hz, 1H). 
13C NMR (100 MHz, CDCl3) δ 143.66 (d, J= 1.9 Hz), 140.15, 133.16 (t, J= 22.1 Hz), 128.90, 127.89, 127.42, 

127.23, 126.01 (t, J= 5.8 Hz), 114.72 (t, J= 238.4 Hz). 
19F NMR (376 MHz, CDCl3) δ -111.56 (d, J= 57.2 Hz, 2F). 
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S35 

 

N-(4-(difluoromethyl)phenyl)pivalamide (4e) 

 

4e 

Obtained in 63 % yield (Maximum yield). The yield was determined by 19F NMR integration relative to the 

internal standard (hexafluorobenzene). The reaction mixture was purified by flash column chromatography 

(hexane/EtOAc= 10:1, Rf= 0.2) to afford the pure product as a white solid. 

HRMS (ESI) m/z Calcd for C12H15F2NONa[M+Na]+ 250.1014; Found: 250.1010. 

NMR Spectroscopy: 
1H NMR (400 MHz, CDCl3) δ 7.64 (d, J= 8.6 Hz, 2H), 7.47 (d, J= 8.6 Hz, 2H), 6.61 (t, J= 56.6 Hz, 1H), 1.33 

(s, 9H).  

13C NMR (100 MHz, CDCl3) δ 176.81, 140.15, 129.86 (t, J= 22.7 Hz), 126.37 (t, J= 6.0 Hz), 119.72, 114.51 

(t, J= 238.0 Hz), 39.69, 27.51.  
19F NMR (376 MHz, CDCl3) δ -110.82 (d, J= 56.7 Hz, 2F).  

 

 

 

1-(Difluoromethyl)-4-vinylbenzene (4f) 

 

4f 

Obtained in 40 % yield (Maximum yield). The yield was determined by 19F NMR integration relative to the 

internal standard (hexafluorobenzene). 19F NMR (376 MHz, CDCl3) δ -111.54 (d, J= 57.1 Hz, 2F). 19F NMR 

data matches previously reported data (68). The identity of the product was further confirmed by GCMS 

analysis. 
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S36 

 

4-(Difluoromethyl)benzeneacetonitrile (4g) 

 

4g 

Obtained in 58 % yield (Maximum yield). The yield was determined by 19F NMR integration relative to the 

internal standard (hexafluorobenzene). 19F NMR (376 MHz, CDCl3) δ -112.19 (d, J= 53.7 Hz, 2F). 19F NMR 

data matches previously reported data (69). The identity of the product was further confirmed by GCMS 

analysis. 

 

 

 

 

Ethyl 4-(difluoromethyl)benzene acetate (4h) 

 

4h 

Obtained in 51 % yield (Maximum yield). The yield was determined by 19F NMR integration relative to the 

internal standard (hexafluorobenzene). 19F NMR (376 MHz, CDCl3) δ -111.56 (d, J= 55.6 Hz, 2F). 19F NMR 

data matches previously reported data (70). The identity of the product was further confirmed by GCMS 

analysis. 
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S37 

 

3-(Difluoromethyl)-2-methoxypyridine (4i) 

 

4i 

Obtained in 59 % yield (Maximum yield). The yield was determined by 19F NMR integration relative to the 

internal standard (hexafluorobenzene). 19F NMR (376 MHz, CDCl3) δ -117.74 (d, J= 57.1 Hz, 2F). The 

identity of the product was further confirmed by GCMS analysis. 

HRMS (APCI) m/z Calcd for for C7H8F2NO[M+H]+ 160.0569; Found: 160.0568. 

 

 

Note: The title compound could not be isolated due to highly volatile. 

 

 

1-(Difluoromethyl)-4-fluorobenzene (4j) 

 

4j 

Obtained in 84 % yield (Maximum yield). The yield was determined by 19F NMR integration relative to the 

internal standard (hexafluorobenzene). 19F NMR (376 MHz, CDCl3) δ -110.65 (d, J= 55.8 Hz, 2F), -110.6 (s, 

1F). 19F NMR data matches previously reported data (30). The identity of the product was further confirmed 

by GCMS analysis. 
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S38 

 

1-(Difluoromethyl)-2-fluorobenzene (4k) 

 

4k 

Obtained in 81 % yield (Maximum yield). The yield was determined by 19F NMR integration relative to the 

internal standard (hexafluorobenzene). 19F NMR (376 MHz, CDCl3) δ -115.19 (d, J= 55.9 Hz, 2F), -120.96 

(s, 1F). 19F NMR data matches previously reported data (71). The identity of the product was further confirmed 

by GCMS analysis. 

 

 

 

 

1-(Difluoromethyl)-3-(trifluoromethyl)benzene (4l) 

 
4l 

Obtained in 57 % yield (Maximum yield). The yield was determined by 19F NMR integration relative to the 

internal standard (hexafluorobenzene). 19F NMR (376 MHz, CDCl3) δ -63.98 (s, 3F), -112.89 (d, J= 55.9 Hz, 

2F). 19F NMR data matches previously reported data (72). The identity of the product was further confirmed 

by GCMS analysis. 
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S39 

 

3-(3-(difluoromethyl)phenyl)propan-1-ol (4m) 

 

4m 

Obtained in 72 % yield (Maximum yield). The yield was determined by 19F NMR integration relative to the 

internal standard (hexafluorobenzene). The reaction mixture was purified by flash column chromatography 

(hexane/EtOA = 3:1, Rf= 0.1) to afford the pure product as a colorless oil. 

HRMS (EI) m/z Calcd for C10H12F2O[M]+ 186.0851; Found: 186.0852. 

NMR Spectroscopy: 
1H NMR (400 MHz, CDCl3) δ 7.36 (dq, J= 13.2, 6.9 Hz, 4H), 6.63 (t, J= 56.5 Hz, 1H), 3.69 (t, J= 6.1 Hz, 

2H), 2.77 (t, J= 7.8 Hz, 2H), 1.95-1.88 (m, 2H), 1.30 (s, 1H).  

13C NMR (100 MHz, CDCl3) δ 142.53, 134.45 (t, J= 22.1 Hz), 130.85, 128.75, 125.45 (t, J= 6.2 Hz), 123.14 

(t, J= 5.9 Hz), 114.83 (t, J= 238.9 Hz), 62.02, 32.91 (d, J= 214.8 Hz), -0.02.  
19F NMR (376 MHz, CDCl3) δ -111.59 (d, J= 52.3 Hz, 2F). 

 

 

 

3-(Difluoromethyl)aniline (4n) 

 

4n 

Obtained in 69 % yield (Maximum yield). The yield was determined by 19F NMR integration relative to the 

internal standard (hexafluorobenzene). The reaction mixture was purified by flash column chromatography 

(hexane/EtOAc= 10:1, Rf= 0.1) to afford the pure product as a yellow oil. 

HRMS (ESI) m/z Calcd for for C7H8F2N[M+H]+ 144.0619; Found: 144.0618. 

NMR Spectroscopy: 
1H NMR (400 MHz, CDCl3) δ 7.22 (t, J= 7.7 Hz, 1H), 6.88-6.75 (m, 3H), 6.55 (td, J= 56.6, 1.3 Hz, 1H), 3.79 

(s, 1H), 1.57 (s, 1H). 
13C NMR (100 MHz, CDCl3) δ129.67, 117.13 (t, J= 1.8 Hz), 115.57 (t, J= 6.4 Hz), 114.77, 112.39, 111.56 (t, 

J= 6.2 Hz), 77.20. 
19F NMR (376 MHz, CDCl3) δ -111.86 (d, J= 57.1 Hz, 2F). 

 

 

 

 

 

 



S40 

 

2-(Difluoromethyl)aniline (4o) 

 

4o 

Obtained in 46 % yield (Maximum yield). The yield was determined by 19F NMR integration relative to the 

internal standard (hexafluorobenzene). 19F NMR (376 MHz, CDCl3) δ -114.56 (d, J= 55.5 Hz, 2F). 19F NMR 

data matches previously reported data (73). The identity of the product was further confirmed by GCMS 

analysis. 

 

 

 

 

2-(3-(difluoromethyl)phenyl)ethan-1-amine (4p) 

 

4p 

Obtained in 75 % yield (Maximum yield). The yield was determined by 19F NMR integration relative to the 

internal standard (hexafluorobenzene). The reaction mixture was purified by flash column chromatography 

(methanol only, Rf= 0.1) to afford the pure product as a white solid. 

HRMS (ESI) m/z Calcd for C9H12F2N[M+H]+ 172.0932; Found: 172.0931. 

NMR Spectroscopy: 
1H NMR (400 MHz, CDCl3) δ 7.41-7.31 (m, 4H), 6.63 (t, J= 56.5 Hz, 1H), 2.99 (t, J= 6.9 Hz, 2H), 2.80 (t, J= 

6.9 Hz, 2H), 1.26 (s, 2H).  
13C NMR (100 MHz, CDCl3) δ 140.58, 134.50 (t, J= 22.1 Hz), 131.20 (d, J= 1.9 Hz), 128.80, 125.81 (t, J= 

5.8 Hz), 123.42 (t, J= 6.2 Hz), 114.76 (t, J= 238.8 Hz), 43.35, 39.88. 
19F NMR (376 MHz, CDCl3) δ -111.61 (d, J= 58.0 Hz, 2F). 
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S41 

 

(Fluoromethyl)benzene (4q) 

 

4q 

Obtained in 64 % yield (Maximum yield). Yields were determined by GC analysis (tR 6.7 min) (initial oven 

temperature, 50 °C (5 min); temperature increase rate, 10 °C/min (25 min); final temperature, 300 °C) using 

an internal standard (undecane). The NMR spectral data were identical to those reported in the literature (30). 

 

 

 

 3-(2-(Difluoromethyl)-10H-phenothiazin-10-yl)-N, N-dimethylpropan-1-amine (5a) 

 

5a 

Obtained in 80 % yield. The crude product was purified by flash column chromatography on silica gel 

(hexane/Acetone/Et3N= 91:6:3, Rf= 0.1) to afford the pure product as a yellow oil (70.2 mg). 

NMR Spectroscopy: 
1H NMR (400 MHz, CDCl3) δ 7.19-7.12 (m, 3H), 7.02 (d, J= 9.1 Hz, 2H), 6.96-6.90 (m, 2H), 6.58 (t, J= 56.5 

Hz, 1H), 3.94 (t, J= 7.0 Hz, 2H), 2.40 (t, J= 7.0 Hz, 2H), 2.21 (s, 6H), 1.94 (t, J= 7.0 Hz, 2H). 
13C NMR (100 MHz, CDCl3) δ 145.67, 144.59, 133.43 (t, J= 22.2 Hz), 128.43, 128.41, 127.45, 127.42, 124.28, 

122.80, 119.56 (t, J= 6.6 Hz), 116.94, 115.72, 114.57, 112.12 (t, J= 5.9 Hz), 57.02, 45.50 (d, J= 17.2 Hz), 

25.04. 
19F NMR (376 MHz, CDCl3) δ -111.49 (d, J= 57.4 Hz, 2F). 

 

 

 

 

 

 

 

 

 

 

 

 



S42 

 

3-(3-(Difluoromethyl)phenyl)-1,1-dimethylurea (5b) 

 

5b 

Obtained in 54 % yield. The yield was determined by 19F NMR integration relative to the internal standard 

(hexafluorobenzene). The crude product was purified by flash column chromatography on silica gel 

(hexane/EtOAc= 10:1, Rf= 0.2) to afford the pure product as a white solid in 53 % isolated yield (28.2 mg). 

HRMS (ESI) m/z Calcd for C10H12F2N2ONa[M+Na]+ 237.0810; Found: 237.0806. 

NMR Spectroscopy: 
1H NMR (400 MHz, CDCl3) δ 7.59 (s, 1H), 7.49 (dd, J= 8.1, 1.0 Hz, 1H), 7.36 (t, J= 7.9 Hz, 1H), 7.17 (d, J= 

7.5 Hz, 1H), 6.60 (t, J= 56.5 Hz, 1H), 6.43 (s, 1H), 3.05 (s, 6H). 
13C NMR (100 MHz, CDCl3) δ 155.43, 139.37 (d, J= 99.2 Hz), 134.94 (t, J= 22.1 Hz), 129.05 (d, J= 60.6 Hz), 

123.75-120.57 (m), 119.73 (t, J= 6.2 Hz), 116.82 (q, J= 8.2 Hz), 113.62 (d, J= 239.0 Hz), 36.39. 
19F NMR (376 MHz, CDCl3) δ -111.93 (d, J= 53.3 Hz, 2F). 

 

 

 

1-(3-(difluoromethyl)phenyl)-N-ethylpropan-2-amine (5c) 

 

5c 

Obtained in 72 % yield. The yield was determined by 19F NMR integration relative to the internal standard 

(hexafluorobenzene). 19F NMR (376 MHz, CDCl3) δ -111.63 (d, J= 52.0 Hz, 2F). Determination of the yield 

and the compound characterization were performed using a purified mixture of the target product and its 

monofluoromethyl and trifluoromethyl analogs. 

HRMS (ESI) m/z Calcd for C12H18F2N[M+H]+ 214.1402; Found: 214.1402. 

 

 

 

 

 

 

 

 

 

 



S43 

 

 

Methyl-(R)-2-((tert-butoxycarbonyl)amino)-3-(4-(difluoromethyl)phenyl)propanoate (5d) 

 

5d 

Obtained in 46 % yield. The yield was determined by 19F NMR integration relative to the internal standard 

(hexafluorobenzene). 19F NMR (376 MHz, CDCl3) δ -111.68 (d, J= 54.1 Hz, 2F). 19F NMR data matches 

previously reported data (30). Determination of the yield and the compound characterization were performed 

using a purified mixture of the target product and its monofluoromethyl and trifluoromethyl analogs. 

NMR Spectroscopy: 
1H NMR (400 MHz, CDCl3) δ 7.44 (d, J= 7.7 Hz, 2H), 7.22 (d, J= 7.8 Hz, 2H), 6.62 (t, J= 56.5 Hz, 1H), 4.99 

(d, J= 7.7 Hz, 1H), 4.61 (q, J= 6.9 Hz, 1H), 3.72 (s, 3H), 3.21-3.05 (m, 2H), 1.41 (s, 9H). 
19F NMR (376 MHz, CDCl3) δ -111.68 (d, J= 54.1 Hz, 2F). 

 

 

 

(S)-3-(3-(Difluoromethyl)phenyl)-N-(1-(naphthalen-1-yl)ethyl)propan-1-amine (5e) 

 

5e 

Obtained in 69 % yield. The yield was determined by 19F NMR integration relative to the internal standard 

(hexafluorobenzene). 19F NMR (376 MHz, CDCl3) δ -111.56 (d, J= 53.4 Hz, 2F). 19F NMR data matches 

previously reported data (30). Determination of the yield and the compound characterization were performed 

using a purified mixture of the target product and its monofluoromethyl and trifluoromethyl analogs. 
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(2S,5R)-1-(Difluoro(phenyl)methyl)-2-isopropyl-5-methylcyclohexan-1-ol (5f) 

 

5f 

Obtained in 69 % yield. The yield was determined by 19F NMR integration relative to the internal standard 

(hexafluorobenzene). The crude product was purified by GPC and flash column chromatography on silica 

gel (hexane/EtOAc= 10:0.5, Rf= 0.4) to afford the pure product as a colorless oil in 32 % isolated yield 

(23.2 mg). 

HRMS (ESI) m/z Calcd for C17H24F2ONa[M+Na]+ 305.1687; Found: 305.1686. 

NMR Spectroscopy: 
1H NMR (400 MHz, CDCl3) δ 7.52 (dd, J= 7.4, 2.1 Hz, 2H), 7.42 (q, J= 3.4 Hz, 3H), 2.64 (7, J= 6.9 Hz, 1H), 

1.95 (s, 1H), 1.72-1.64 (m, 2H), 1.59-1.45 (m, 3H), 1.26 (dt, J= 13.3, 2.9 Hz, 1H), 1.00 (d, J= 6.8 Hz, 3H), 

0.94 (t, J= 7.3 Hz, 4H), 0.77 (d, J= 6.4 Hz, 4H). 
13C NMR (100 MHz, CDCl3) δ 135.26 (t, J= 27.0 Hz), 129.59, 127.89, 126.55 (t, J= 6.7 Hz), 126.78-121.75 

(m), 78.76 (dd, J= 27.0, 24.1 Hz), 45.47, 43.26 (d, J= 4.3 Hz), 34.63, 31.09, 27.44, 26.75 (t, J= 4.2 Hz), 

23.24, 22.14, 20.21, 17.89. 
19F NMR (376 MHz, CDCl3) δ -101.25 (d, J= 246.7 Hz, 1F), -103.29 (d, J= 248.5 Hz, 1F), -107.23(d, J= 

248.5 Hz, 1F), -110.30 (d, J= 248.3 Hz, 1F). 

 

 

6-(2,5-Dimethylphenoxy)-1,1-difluoro-3,3-dimethyl-1-phenylhexan-2-one (5g) 

 

5g 

Obtained in 56 % yield. The yield was determined by 19F NMR integration relative to the internal standard 

(hexafluorobenzene). The crude product was purified by GPC to afford the pure product as a colorless oil in 

41 % isolated yield (37.2 mg). 

HRMS (ESI) m/z Calcd for C22H26F2O2Na[M+Na]+ 383.1793; Found: 383.1789. 

NMR Spectroscopy: 
1H NMR (400 MHz, CDCl3) δ 7.56-7.54 (m, 2H), 7.47-7.41 (m, 3H), 7.01 (d, J= 7.5 Hz, 1H), 6.66 (d, J= 7.4 

Hz, 1H), 6.59 (s, 1H), 3.88 (t, J= 6.2 Hz, 2H), 2.31 (s, 3H), 2.17 (s, 3H), 1.90-1.86 (m, 2H), 1.66-1.58 (m, 2H), 

1.26 (s, 6H). 
13C NMR (100 MHz, CDCl3) δ 204.12 (t, J= 29.4 Hz), 156.85, 136.45, 133.03 (d, J= 25.0 Hz), 130.63, 130.28, 

128.51, 125.72 (t, J= 6.2 Hz), 123.55, 120.69, 119.79-114.68 (m), 111.83, 67.63, 47.32 (d, J= 1.8 Hz), 36.18 

(d, J= 2.5 Hz), 24.85, 24.33 (t, J= 1.9 Hz), 21.39, 15.75. 
19F NMR (376 MHz, CDCl3) δ -100.18 (s, 2F). 
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(E)-3-Benzylidene-1,1-difluoro-1-phenylnonan-2-ol (5h) 

 

5h 

Obtained in 71 % yield. The yield was determined by 19F NMR integration relative to the internal standard 

(hexafluorobenzene). The crude product was purified by GPC and flash column chromatography on silica gel 

(hexane/EtOAc= 10:1, Rf= 0.2) to afford the pure product as a colorless oil in 34 % isolated yield (30.0 mg). 

HRMS (ESI) m/z Calcd for C22H26F2ONa[M+Na]+ 367.1844; Found: 367.1841. 

NMR Spectroscopy: 
1H NMR (400 MHz, CDCl3) δ 7.50-7.40 (m, 5H), 7.30 (t, J= 7.5 Hz, 2H), 7.23-7.19 (m, 1H), 7.09 (d, J= 7.2 

Hz, 2H), 6.36 (s, 1H), 4.65 (td, J= 9.7, 4.0 Hz, 1H), 2.35-2.29 (m, 1H), 2.26 (d, J= 4.1 Hz, 1H), 1.89 (ddd, J= 

14.2, 10.1, 4.7 Hz, 1H), 1.55 (s, 3H), 1.49-1.37 (m, 2H), 1.29-1.20 (m, 7H), 0.85 (t, J= 6.9 Hz, 3H). 
13C NMR (100 MHz, CDCl3) δ 138.15, 136.94, 133.98 (t, J= 25.8 Hz), 130.13, 130.01 (t, J= 1.7 Hz), 128.44, 

128.15, 127.95, 126.75, 126.33 (t, J= 6.4 Hz), 121.69 (t, J= 249.4 Hz), 76.84 (t, J= 29.4 Hz), 31.42 , 29.64, 

29.38, 28.70, 22.52, 14.03. 
19F NMR (376 MHz, CDCl3) δ -105.75--107.38 (m, 2F). 

 

 

4-(4-Chlorophenyl)-1-(5,5-difluoro-4-(4-fluorophenyl)-4-hydroxy-5-phenylpentyl)piperidin-4-yl 

benzoate (5i) 

 

5i 

Obtained in 30 % yield. The crude product was purified by flash column chromatography on silica gel 

(hexane/EtOAc= 3:2, Rf= 0.4) to afford the pure product as a yellow viscous oil (46.5 mg). 

HRMS (ESI) m/z Calcd for C35H34ClF3NO3[M+H]+ 608.2174; Found:608.2167. 

NMR Spectroscopy: 
1H NMR (400 MHz, CDCl3) δ 7.97-7.95 (m, 2H), 7.56 (tt, J= 7.4, 1.4 Hz, 1H), 7.42 (t, J= 7.7 Hz, 2H), 7.37-

7.29 (m, 7H), 7.22 (t, J= 7.6 Hz, 2H), 7.17-7.14 (m, 2H), 6.93 (t, J= 8.7 Hz, 2H), 2.85-2.67 (m, 3H), 2.55-1.97 

(m, 9H), 1.64 (dddd, J= 10.4, 7.7, 5.0, 2.5 Hz, 1H), 1.49-1.39 (m, 1H), 1.31-1.26 (m, 1H). 
13C NMR (100 MHz, CDCl3) δ 164.52, 163.35, 160.90, 142.05, 136.83 (t, J= 2.5 Hz), 134.70 (t, J= 26.5 Hz), 

133.50, 133.11, 130.59, 129.67 (d, J= 7.7 Hz), 129.45, 129.14, 128.71, 128.46, 127.33 (t, J= 6.5 Hz), 126.96, 

126.18, 114.26 (d, J= 21.1 Hz), 79.76, 77.59 (dd, J= 53.5, 25.7 Hz), 58.52, 50.21, 47.45, 34.60 (t, J= 51.0 Hz), 

20.68. 
19F NMR (376 MHz, CDCl3) δ -105.81 (d, J= 242.3 Hz, 1F), -109.38 (d, J= 241.0 Hz, 1F), -116.86 (d, J= 12.4 

Hz, 1F). 
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(9E,13E)-1,1-Difluoro-2,6,10,14,18-pentamethyl-1-phenylnonadeca-5,9,13,17-tetraen-2-ol (5j) 

 

5j 

Obtained in 72 % yield. The yield was determined by 19F NMR integration relative to the internal standard 

(hexafluorobenzene). The crude product was purified by flash column chromatography on silica gel 

(hexane/EtOAc= 10:1, Rf= 0.3) to afford the pure product as a colorless oil in 57 % isolated yield (44.9 mg). 

HRMS (ESI) m/z Calcd for C30H44F2ONa[M+Na]+ 481.3252; Found: 481.3245. 

NMR Spectroscopy: 
1H NMR (400 MHz, CDCl3) δ 7.52 (dd, J= 5.7, 1.9 Hz, 2H), 7.43 (t, J= 6.3 Hz, 3H), 5.11-5.07 (m, 4H), 2.15-

1.95 (m, 14H), 1.68-1.56 (m, 18H), 1.28 (s, 3H). 
13C NMR (100 MHz, CDCl3) 135.93 (d, J= 18.4 Hz), 135.30-134.89 (m), 134.20 (t, J= 27.0 Hz), 131.26, 

129.73, 127.84, 126.86 (t, J= 6.7 Hz), 125.43-120.44 (m), 75.68 (t, J= 27.9 Hz), 39.70-39.65 (m), 35.39 (dt, 

J= 32.7, 1.7 Hz), 31.89, 26.73-21.42 (m), 20.35 (t, J= 2.9 Hz), 17.66, 15.97 (t, J= 2.4 Hz). 
19F NMR (376 MHz, CDCl3) δ -110.17 (d, J= 18.3 Hz, 2F). 

 

 

 

tert-Butyl 4-(3,3-difluoro-3-(4-fluorophenyl)propyl)piperidine-1-carboxylate (8) 

 

8 

Obtained in 61 % yield. The yield was determined by 19F NMR integration relative to the internal standard 

(hexafluorobenzene). The crude product was purified by flash column chromatography on silica gel 

(hexane/EtOAc= 10:1, Rf= 0.2) to afford the pure product as a yellow oil in 52 % isolated yield (47.0 mg). 

HRMS (ESI) m/z Calcd for C19H26F3NO2Na[M+Na]+ 380.1808; Found: 380.1805. 

NMR Spectroscopy: 
1H NMR (400 MHz, CDCl3) δ 7.44 (dd, J= 8.7, 5.3 Hz, 2H), 7.10 (t, J= 8.6 Hz, 2H), 4.07 (s, 2H), 2.65 (t, J= 

10.9 Hz, 2H), 2.18-2.06 (m, 2H), 1.62 (d, J= 13.5 Hz, 2H), 1.44 (s, 9H), 1.38-1.33 (m, 3H), 1.11-1.01 (m, 2H). 
13C NMR (100 MHz, CDCl3) δ 164.57, 162.10, 154.78, 133.56 (d, J= 3.5 Hz), 133.28 (d, J= 3.0 Hz), 127.09-

126.88 (m), 122.74 (t, J= 242.4 Hz), 115.54, 115.32, 79.27, 36.34 (t, J= 27.6 Hz), 35.56, 31.85 (t, J= 2.1 Hz), 

28.94 (t, J= 3.7 Hz), 28.41. 
19F NMR (376 MHz, CDCl3) δ -95.96 (q, J= 15.1 Hz, 2F), -112.70 (s, 1F). 

 

 

 

 



S47 

 

19F NMR spectrum of crude of 3b 

 
1H NMR spectrum of 3c 
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13C NMR spectrum of 3c 

 
19F NMR spectrum of 3c 
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1H NMR spectrum of 3d 

 
13C NMR spectrum of 3d 
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19F NMR spectrum of 3d 

 
1H NMR spectrum of 3e 
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13C NMR spectrum of 3e 

 
19F NMR spectrum of 3e 
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1H NMR spectrum of 3g 

 
13C NMR spectrum of 3g 
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19F NMR spectrum of 3g 

 
1H NMR spectrum of 3h 
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13C NMR spectrum of 3h 

 
19F NMR spectrum of 3h 
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1H NMR spectrum of 3o 

 
13C NMR spectrum of 3o 
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19F NMR spectrum of 3o 

 
1H NMR spectrum of 3q 
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13C NMR spectrum of 3q 

 
19F NMR spectrum of 3q 
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1H NMR spectrum of 3r 

 
13C NMR spectrum of 3r 
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19F NMR spectrum of 3r 

 
1H NMR spectrum of 4d 
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13C NMR spectrum of 4d 

 

19F NMR spectrum of 4d 
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1H NMR spectrum of 4e 

 
13C NMR spectrum of 4e 
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19F NMR spectrum of 4e 

 
1H NMR spectrum of 4m 
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13C NMR spectrum of 4m 

 
19F NMR spectrum of 4m 
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1H NMR spectrum of 4n 

 
13C NMR spectrum of 4n 
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19F NMR spectrum of 4n 

 
1H NMR spectrum of 4p 
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13C NMR spectrum of 4p 

 
19F NMR spectrum of 4p 
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1H NMR spectrum of 5a 

 

13C NMR spectrum of 5a 
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19F NMR spectrum of 5a 

 

1H NMR spectrum of 5b 
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13C NMR spectrum of 5b 

 
19F NMR spectrum of 5b 
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1H NMR spectrum of 5c (mixture with substrate) 

 

19F NMR spectrum of 5c (mixture with substrate) 
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1H NMR spectrum of 5d (mixture with byproduct) 

 

19F NMR spectrum of 5d (mixture with byproduct) 
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1H NMR spectrum of 5e (mixture with byproduct) 

 

19F NMR spectrum of 5e (mixture with byproduct) 
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1H NMR spectrum of 5f 

 

13C NMR spectrum of 5f 
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19F NMR spectrum of 5f 

 
1H NMR spectrum of 5g 
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13C NMR spectrum of 5g 

 
19F NMR spectrum of 5g 
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1H NMR spectrum of 5h 

 

13C NMR spectrum of 5h 
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19F NMR spectrum of 5h 

 

1H NMR spectrum of 5i 
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13C NMR spectrum of 5i 

 
19F NMR spectrum of 5i 
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1H NMR spectrum of 5j 

 

13C NMR spectrum of 5j 
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19F NMR spectrum of 5j 

 

1H NMR spectrum of 8 
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13C NMR spectrum of 8 

 
19F NMR spectrum of 8 
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