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Transferability, especially in the context of model generalization, is a paradigm of all scientific disciplines.
However, the rapid advancement of machine learned model development threatens this paradigm, as it can
be difficult to understand how transferability is embedded (or missed) in complex models developed using
large training data sets. Two related open problems are how to identify, without relying on human intuition,
what makes training data transferable; and how to embed transferability into training data. To solve both
problems for ab initio chemical modelling, an indispensable tool in everyday chemistry research, we introduce
a transferability assessment tool (TAT) and demonstrate it on a controllable data-driven model for developing
density functional approximations (DFAs). We reveal that human intuition in the curation of training data
introduces chemical biases that can hamper the transferability of data-driven DFAs. We use our TAT to
motivate three transferability principles; one of which introduces the key concept of transferable diversity.
Finally, we propose data curation strategies for general-purpose machine learning models in chemistry that
identify and embed the transferability principles.

I. INTRODUCTION

For the past half-century, Density Functional Theory
(DFT)1,2 has made an unparalleled impact across a range
of scientific and engineering disciplines. Nowadays, this
impact is greater than ever, as evidenced by the large
portion of the world’s supercomputing power being con-
sumed by DFT simulations3,4. In recent years, machine
learning (ML) is transforming nearly all scientific disci-
plines, and DFT is no exception5,6. The use of DFT
in tandem with statistical learning is ever growing7–11,
and recent advancements in ML-based DFT12 signal the
beginning of a race to discover the DFT ‘holy grail’ or
at least a highly effective surrogate thereof – holding
promise to revolutionize the entire field of chemistry13.
Building on this momentum, ML of density functional
approximations (DFAs) is enabling rapid advances in the
predictive quality of quantum chemistry, by enhancing
the practical cost and quality benefits of DFT by empir-
ical strategies based on “big data” training sets14,15.
The assumption that a DFA is transferable is implicit

in every DFA developed for general use, and this cul-
ture of universal density functionals has been readily
adopted by the machine-learned DFA (ML-DFA) com-
munity. While it has long been understood that DFAs
tend to perform better on some chemistries (e.g. ‘typi-
cal’ organic bonds), and worse on others (e.g. transition
metal bonds), the very nature of data-driven develop-
ment (e.g. for ML-DFAs or empirical DFAs) more heav-
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ily weights performance on training sets, whereas the tra-
ditional strategy tends to rely more on universal limits
like homogeneous electron gases that are less likely to
bias to specific realistic systems. There is thus an ur-
gent need to understand how transferability is embedded
in training data, so that ML-DFAs developed using the
training data can be relied upon to extrapolate (transfer)
to new systems outside the training data and any initial
tests – something that is demonstrably not guaranteed
in ML-DFAs.17 Understanding how to embed transfer-
ability first requires an understanding of how to identify
transferability.
To solve both these problems, this work will introduce

a transferability assessment tool that involves training
DFAs on a test set A, and assessing the performance of
that functional on test set B, abbreviated to B@A (or
[test set]@[training set]), more details given in Section II.
Achieving high performance on A@A is often straight-
forward, as we can always increase model flexibility by
adding more parameters. However, the true challenge
lies in ensuring that the (ML-)DFA is transferable to B
(i.e. B@A), meaning it genuinely learns (and may thus
extrapolate) rather than simply memorizes patterns in
A. This task prompts a range of questions.

First, a key and outstanding problem is how do we
create A to enbed transferability of our ML-DFA
model to a wide range of chemical physics?

Is more always more? (i.e. does increasing the size
of set A always improve B@A?)

Can we quantify how difficult test set B is for a
model trained on A? (e.g. can we quantify the in-
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FIG. 1. a) Errors for XYG-DFAs with 1–7 parameters applied to subsets covering reaction and barrier chemistry – line colour
indicates the test set and dot colour the training set. b) Optimal values for XYG2 (2-parameter double hybrid DFA) for Reac-
tions and Barriers subsets of the GMTKN55 database16 (full details of the benchmark sets can be found in Section VC). The
contours show the MAD in kcal/mol relative to the optimal value for Reactions (left) and Barriers (right). c) Transferability
matrices between selected benchsets for XYG1, XYG4 and XYG7 (double hybrids with varying parameter number). d) Box-
plots with XYG7 (one with BLYP and other with PBE semilocal parts) errors for a large organic database (Org=GMTKN55
excluding NCI16) with parameters trained on the whole database and on the T100 benchset (designed from our transferability
principles). e) Periodic tables showing the elements (green) included in GMTKN55 and T100.

tuition that training a model on atomisation ener-
gies of alkanes better predicts atomisation energies
of alkenes than transition metal barrier heights?);

Can we quantify the ‘distance’ or difficulty level
between training set A and test set B?

Does the inclusion of well-known or well-studied
chemical structures in A enhance or limit the
model’s transferability to unseen chemistry?

After all, the ultimate goal of DFT simulations is not
just to confirm and rationalize what we already know
from experiments but to accurately predict (transfer to)
unseen chemistry and unperformed experiments13.

In using the transferability assessment tool (TAT) to
explore the above questions, we show that simply ex-
panding the number and/or type of chemical systems in
a given training set is insufficient to improve an ML-DFA
in general (Section III). By contrast, we reveal three
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transferability principles that do embed transferability in
a benchmark set (benchset for brevity), taken together,
and that may therefore be used in the curation of better
training benchsets. Most importantly, we introduce the
concept of transferable diversity to our training set de-
sign – meaning we aim for our training set to yield good
transferability to a diverse range of chemical behaviours.
We use these principles to design the T100 benchset (fi-
nal part of Section III). Ultimately, this work leaves us
positioned to recommend a strategy, detailed in the Con-
clusions, for the development of new benchsets that are
designed to embed transferability into ML-DFAs.

The following sections will delve into specific details.
For now, it suffices to mention that we use a double-
hybrid functional form18,19, defined by one18 to seven20

parameters to controllably train our DFAs. In this way,
we generate thousands of data-driven DFAs, to effec-
tively illustrate the utility and analytic power of our TAT.
Some key findings of our study are presented in Fig. 1.
Fig. 1(a) focuses on our model’s efficacy in predicting
reaction energies and barrier heights – crucial for calcu-
lating thermodynamics and kinetics, respectively16. We
train our DFAs on reaction energies and test on bar-
rier heights (Barriers@Reactions), and then reverse
the sets (Reactions@Barriers, full details of the bench-
mark sets can be found in Section VC). From Fig. 1(a)
it is clear that our model excels in transferring from re-
action energies to barrier heights (thermodynamic to ki-
netic parameters), but not the other way around. The
reason for this asymmetry becomes apparent when we
look at the shapes of the cost functions for our two-
parameter model and compare the values at their respec-
tive minima to those at each other’s minima, as shown
in Fig. 1(b).

Fig. 1(c) introduces the transferability matrix TB@A,
a unitless measure precisely defined as how well a given
model trained on arbitrary A performs for arbitrary
B (B@A) relative to the accuracy limit of that model
for A@A. Unlike in Fig. 1(a), which focuses solely on
the transferability between reaction energies and bar-
rier heights, Fig. 1(c) includes multiple classes of organic
chemical processes16. The matrix provides insights into:
(i) transferability for each TB@A pair; (ii) asymmetry in
transferabilities, as shown by differences in TB@A and
TA@B values; (iii) the rate at which transferability de-
creases with the increasing number of parameters for dif-
ferent B@A pairs; (iv) the chemical classes most trans-
ferable to and most transferable from. Transferability
matrices are thus a key foundation of our TAT.

Fig 1(d) demonstrates that two different flavours of our
seven-parameter model20, trained on the T100 benchset
(of 100 processes carefully curated around transferabil-
ity principles of reaction, elemental and transferable di-
versity), perform as well as their accuracy limits when
tested on the extensive 910 process Org set, which is
the “general-main group thermochemistry, kinetics and
noncovalent interactions” (GMTKN55) set of 1505 pro-
ceeses, but excluding the 595 non-covalent interactions

(NCI) to avoid the need for a dispersion correction.
Supp. Table S1 shows transferabilities between Org and
GMTKN55. This confirms that transferability princi-
ples effectively enhance the model’s applicability to larger
datasets. Fig 1(e) further highlights the greater ele-
mental diversity in our small T100 compared to large
GMTKN55, as it covers a far broader range of groups
in the periodic table, despite being fifteen times smaller.

II. TRANSFERABILITY ASSESSMENT TOOL

To measure transferability from A to B, we introduce
a two-set error MADB@A, which is the mean absolute
deviation (MAD) on test set B for a DFA trained on A.
We then formulate a unitless transferability matrix:

TB@A =
MADB@A + η

MADB@B + η
≥ 1 . (1)

η = 0.01 kcal/mol regularizes results for small energies.
By definition, TB@B = TA@A = 1 (the case of perfect
transferability) and minimization principles dictate that
TB@A ≥ 1, with larger values indicating poorer trans-
ferability. Because it involves a ratio, the transferability
matrix ensures that errors are normalized by both diffi-
culty, and system size, averaged across the benchset. It
thereby complements traditional metrics like MADs.
TB@A quantifies the performance of a model (DFA)

trained on A when applied to B, normalized by the
model’s inherent accuracy limit for B. Because differ-
ent kinds of chemistry are sensitive to different kinds
of model ingredients, the transferability matrix therefore
encodes similarities and differences in the chemistry con-
tained within sets, in a way that is directly relevant to
modelling. For example, TA@B > TA@C indicates that
C is ‘closer’ (in terms of chemistry modelled) to A than
B is to A. TB@A > TA@B indicates that B is more sen-
sitive to errors than A, and thus A is likely to contain
a broader range of chemistry. Finally, TB@A > TC@A

indicates the chemistry contained in A is more useful for
C than B, but not that it is closer.
To use our TAT, we also need to pick a DFA form

that can help us to elucidate properties of benchsets.
To that end, we use a double hybrid (DH) family of
parametrised DFAs, called XYGp

20 (named after the
original authors21), that were designed to systematically
switch off empiricism as the number of parameters is de-
creased, without losing key underlying physics. Here,
p is the number of empirical parameters varying from
one22 to seven20 (see Methods for the functional forms).
We focus on results for one- (XYG1), four- (XYG4) and
seven-parameter (XYG7) models to represent minimal,
middle and maximal levels of empiricism, but sometimes
we explore other numbers of parameters when it is sen-
sible. Along this way we generate hundreds of DFAs for
the purpose of analyzing benchsets’ transferability.

The DH form is chosen for its generality, as it sits at
the top of the current DFA Jacob’s ladder (a hierarchy
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Mindless molecules

Mindful molecules

FIG. 2. a) Mean absolute deviation (MAD, log scale) for GMTKN55@subset, where subset is a subset of GMTKN55. The
order reflects the MAD and absolute difference between XYG3 and XYG7. b) Errors for DFAs with 1–7 parameters applied
to subsets covering mindless and mindful construction of benchmark set. Some example mindless and mindful molecules are
shown at right.

of DFAs based on their mathematical complexity)23,24.
This allows our DH forms to reduce to functional forms
from lower rungs of the ladder during parameter opti-
mization. We use Hartree-Fock (HF) orbitals to calcu-
late all energy terms, to prevent uncontrolled error can-
cellation of functional- and density-driven errors when
building data-driven DFAs22,25.

By varying the level of empiricism, we are able to emu-
late varying degrees of “machine learning”, without run-
ning into issues of genuine machine learning. A typical
machine-learned DFA (ML-DFA) may be thought of as
an empirical DFA with a very flexible functional form and
a very large number of empirical parameters, that are de-
termined by optimising to a training benchset. This flex-
ibility comes at a cost, however, as one (typically) needs
to choose12,26,27: (i) the input features, (ii) a neural net-
work (NN) architecture, (iii) a map from NN output to a
corresponding DFA, and (iv) benchsets for training, val-
idation and testing. These variables make direct and re-
producible tests of transferability tedious and difficult to
control. But, by keeping (i–iii) fixed in our case (i.e. em-
ulated by a chosen XYGp form), and varying (iv) we can
focus on the effect of training data in a controlled way.
By also varying the number of parameters, p, we are able

to focus on properties of the benchsets, and not the spe-
cific DFA employed, and thus expect any understanding
or improvements to benchsets to carry over to ML-DFAs.
That is, for present state-of-art deep learned functionals,
the XYGp model provides a controllable framework that
can be used to understand and improve benchsets for
uncontrolled fits.

Before concluding this section, we also stress that the
transferability matrix concept is not restricted to the
MAD, but may be defined for any true metric. For exam-
ple, Goerigk and Grimme argue28 that their WTMAD-2
metric (a weighted average that seeks to equalise weak
and strong interactions) is better than MAD for assess-
ing DFAs. By simply replacing MAD by WTMAD-
2 in eq. (1) we are able define a TAT for WTMAD-
2 that is directly comparable to its MAD counterpart,
due to normalisation. Alternately, one might use errors
in, e.g., dipole moment in place of relative energies or
some other true metric instead of MAD or WTMAD-
2. We can even define a transferability matrix between
MAD and WTMAD-2 (or any pair of metrics), by eval-
uating the ratio of WTMAD-2@MAD and WTMAD-
2@WTMAD-2 (and vice versa), where the “@’” indicates
we optimized XYGp using MAD or WTMAD-2. Testing
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these cross-transferabilities on GMTKN55 reveals that
TWTMAD-2@MAD and TMAD@WTMAD-2 never exceed 1.01
within XYGp, so MAD and WTMAD-2 are nearly per-
fectly transferable. We thus consider only MAD for the
remainder of this work.

We are now ready to apply the TAT to real data, for
the purpose of revealing limitations of existing protocols,
and uncovering key principles that enhance transferabil-
ity and performance across diverse systems.

III. RESULTS

Before beginning a detailed analysis of transferabil-
ity, consider a “minimally-empirical” approach in which
a DFA is designed around several fundamental con-
straints, and then optimised over a small number of pro-
cesses to determine any remaining parameters. Follow-
ing Becke’s29 lead and original XYGp

21, we settle on 3
parameters. The 3-parameter XYG form (i.e. XYG3)
approximately satisfies various constraints by construc-
tion.21 Training on the 21 ionisation potentials in the
benchset G21IP30 fills in the missing gaps.
At first sight, this seems like an effective strategy: it

yields MADGMTKN55@G21-IP = 1.91 kcal/mol across
the entire GMTKN55 organic benchset, not far from
the optimal MADGMTKN55@GMTKN55 = 1.84 kcal/mol
achieved by full optimization of the three XYG3 pa-
rameters over GMTKN55. Using Eq. (1), we find a
transferability matrix element of TGMTKN55@G21IP =
1.91+0.01
1.84+0.01 = 1.04, indicating G21IP’s high transferability
to GMTKN55.

We shall see in the following sections that the construc-
tion of G21IP that makes it appear as a good candidate
for training can be quantified. Deeper analysis, enabled
by our TAT, reveals that its success here is an artifact
of our choice to use XYG3; and that G21IP is not a
good training set in general. We will show that the TAT
enables us to identify and quantify nuances of transfer-
ability (or its lack) in different benchsets; and thereby lets
us propose three principles that help to embed transfer-
ability in training sets. Ultimately, a benchset optimized
for transferability will be proposed.

Identifying transferability: concepts learned from organic
chemistry

Our goal is motivate transferability principles that can
be applied more broadly. As a first step, let us use the
key concepts introduced in Section II to delve into the
details of Fig. 1(a-c), focusing on identifying and un-
derstanding transferability within the large GMTKN55
organic chemistry database.

Fig. 1(a) shows that training barrier heights (194 pro-
cesses16) on reaction energies (243 processes16) performs
nearly as well as training on barriers themselves. How-
ever, reaction energies perform poorly when trained on

barriers, suggesting either barriers are easier to learn or
that reactions are better for training. Fig. 1(b) explains
this result and lets us pick the right conclusion for the
case of a two-parameter XYG2 (the parameters being
exact exchange fraction and MP2 correlation fractions).
Errors in Barriers are rather insensitive to changes in
parameters, meaning that picking sub-optimal parame-
ters does not lead to major additional errors. Not so for
errors in Reactions, where curvature is much sharper
and, consequently, changing parameters rapidly worsens
results. Therefore Barriers are easier to learn than Re-
actions.

The TB@A transferability matrices in Fig. 1(c) for
XYG1, XYG4, and XYG7 show how transferability
rapidly worsens as the number of model parameters in-
creases, characteristic of over-fitting. In the 1-parameter
case, many TB@A values are close to 1.0, indicating high
transferability. Conversely, in the 7-parameter model,
numerous entries exceed 3, implying performance three
times worse than optimal. The upper 4 × 4 block high-
lights transferabilities among four test subsets: Reac-
tions, Barriers, NCI, and Basic16 (everything else,
such as atomization energies, ionization potentials, pro-
ton/electron affinities, etc.). The block reveals that Re-
actions is the most transferable training set, indicated
by the smallest values in its column. Conversely, Ba-
sic appears to be the most challenging to transfer to, as
evidenced by the largest values in its row. In the Sup-
plementary Information (SI), we show TB@A by further
breaking down GMTKN55’s subsets (Supp. Figs S7–S9).
Interestingly, within XYG1, reaction sets are more trans-
ferable to barriers than different barrier sets are to each
other (Supp. Fig. S7).

Furthermore, Fig. 1(c) , with TB@A for multiples sets
(see Supp. Fig. S12 for the corresponding MADB@A fig-
ures), already challenges the obvious, and so far dom-
inant in data-driven DFA development, strategy of in-
creasing the size of datasets. Diet100 (with 100 pro-
cesses) does a much better job as a training set than
any of the larger (∼ 250 processes) ‘chemistry’ subsets;
and performs nearly as well as GMTKN55 at predict-
ing Reactions, Barriers and Basis. Unfortunately, the
way Diet100 was constructed offers no useful insights
for improving transferability principles, although it does
convincingly confirm that quality is more important than
quantity.

Fortunately, GMTKN55 comprises 55 subsets (34 of
which are in Org), each representing (more-or-less) dif-
ferent types of chemistry and enabling numerous transfer-
ability analyses. E.g., we observe strong transferability
of reaction energies between smaller and larger molecules
(see Supp. Fig. S11), and we can measure the transfer-
ability between relative energies of charged versus neu-
tral species (see Supp. Fig. S10). Furthermore, we can
leverage GMTKN55’s diversity to develop a better un-
derstanding of transferability and use it to create the
T100 set, explicitly engineered for high transferability,
as hinted at in Fig. 1(d) and (e). We will revisit the last
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two panels of Fig. 1 after elaborating on the essential
principles that inform this set’s design.

Transferability principle 1: Reduce human bias in the
training set to embed genuine reaction diversity

Consider a hypothetical experiment involving two dis-
tinct groups: chemistry students and art students. Given
a molecular editor and specific drawing rules (e.g., use
no more than 16 spheres in total and stick to the col-
ors white, gray, blue, etc.), the optimized structures and
benchmarked energies from their drawings would form
the basis for two different empirical density function-
als (’Art’ and ’Chemistry’ functionals). We will show
that functionals trained on the art students’ molecules
would easily outperform those based on the chemistry
students’ designs. The latter group’s chemical intuition
is to blame, as it introduces unexpected biases in the
data.

To begin, let us play a game where we optimize our
DFA models for each of the 55 subsets within GMTKN55
and then assess how well each of the 55 resulting DFAs
transfers to the full GMTKN55 database. Fig. 2(a) shows
the key results from this game, displaying MADs for
GMTKN55@subset from each of the 55 subsets, us-
ing 3- and 7-parameter models, XYG3 (as employed in
our example using G21IP) and XYG7 (the most em-
pirical DFA in the XYG family). In most cases, MAD
for XYG3 and XYG7 are vastly different, and even when
they are not, MAD are very large. These indicators of
poor transferability reflect the fact that different sub-
sets capture different chemistry and do not represent the
whole GMTKN55 in this specific transferability context.

Returning to our opening example, we see that G21IP
performs well with XYG3 but poorly with XYG7 – its
transferability is strongly influenced by the number of
free parameters (Supp. Fig. S2 further highlights this
point when both XYG3 and XYG7 are applied to non-
covalent interactions). In the case of XYG3, G21IP was
able to discriminate a good functional space from a bad
(i.e. poorly transferable) one, but that was not the case
when the number of parameters increased to 7. Indeed,
G21IP is not unique in that regard – transferability
for XYG7 is almost always worse than XYG3. Increas-
ing parameters elevates the risk of overfitting challenging
us to identify datasets whose transferability remains ro-
bust despite additional parameters. While regularization
strategies applied to a DFA form (through e.g., physi-
cal constraints) can enhance its transferability31,32, our
TAT has a different focus that complements this regular-
ization strategy. Namely, Eq. (1) allows us to see how
transferability varies with different training sets for any
optimizable DFA form, enabling us to identify general
principles for the design of training sets with improved
transferability.

Transferability principle 1 is revealed by the standout
performer in Fig. 2(a): MB16-4333, which yields low er-

rors with just 43 data points (W4-11 has 140). What
is special about MB16-43? It is the only subset in
GMTKN55 that is not biased toward chemical intuition
or the limited chemical space it spans. Simply put, un-
like the remaining 54 subsets, its structures have not been
manually drawn by humans before undergoing geometry
optimizations. Rather, MB16-43 avoids unnoticed hu-
man bias via “mindless” (more accurately, a clever ran-
dom strategy) construction of molecules – we shall hence-
forth denote it as Mindless to stress this feature.
Fig. 2(b) shows that DFAs trained on Mindless (43

processes) predict good energies for a similarly-sized
more Mindful (DARC+ISO34 with 48 processes cov-
ering Dies-Adler and isomerisation reaction energies16)
selection of data. But, the reverse is not true – Mind-
less@Mindful has up to six-fold increases in errors com-
pared to Mindless@Mindless. Our results thus con-
firm that mindless benchmarking achieves its goal of
“[making] use of random elements constrained by system-
atic and controllable specifications to avoid unsystematic
and uncontrolled criteria”.33 The small size of Mindless
again stresses the importance of quality over quantity.

Furthermore, the transferability captured by Mind-
less is independent of both the Mindful dataset
(Supp. Fig. S15) and the semilocal part of our func-
tional (Supp. Fig. S16). We therefore see that Mind-
less captures genuine diversity of chemical interactions
– i.e., it achieves transferability principle 1. In simpler
terms, Mindless (art students) molecules yield far bet-
ter functionals here than Mindful (chemistry students)
ones.
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Transferability principle 2: Span the periodic table to
embed elemental diversity

Modern technologies rely on most stable elements in
the periodic table.36 By contrast, two thirds of processes
in GMTKN55 contain only C, H, N, O or F. This high-
lights a second limitation of the training data we have
considered so far – a lack of elemental diversity. Im-
proving elemental diversity is the most intuitive of the
transferability principles, yet we shall see it still throws
up some surprises.

Before beginning our analysis, it is worth highlight-
ing some recent work17 that shows how vitally impor-
tant diversity in training benchsets can be. Zhao et al17

revealed that DM21 (trained on organic chemistry sets
and some exact limits) cannot even converge to a self-
consistent solution in multiple transition metal systems,
including atoms. The difficulty of extrapolating from or-
ganic chemistry to TMs is intuitive to anyone familiar
with DFA development, although such a dramatic fail-
ure of DM21 is still surprising. On the other hand, our
TAT matrices show that transferability rapidly decreases
with the number of parameters, making the catastrophi-
cally poor extrapolation of DM21, with its roughly half a
million parameters, more foreseeable. Nevertheless, the
question remains: how can we avoid such catastrophes?

GMTKN55 completely excludes transition metals
[Fig. 1(e) shows the elements of the periodic table that
GMTKN55 covers], so we turn to TMC151,34 a 151-
process benchset based around transition metal (TM)
chemistry, to introduce some inorganic chemistry into
our game and supplement the results of GMTKN55. De-
spite the sparsity of TM benchmarking (151 versus 1505
processes) we are nonetheless able to develop an under-
standing of transferability between main group and TM
chemistry by using the TAT to explore relationships be-
tween (subsets of) TMC151 and GMTKN55.

Fig. 3 reveals that training on main group elements is
not a good strategy for predicting transition metal chem-
istry, or vice versa, even in the simple XYG2 model (cho-
sen because it can be visualised). The optimal parame-
ters for TM sets live in a different region of the parameter
space compared to those for the main group sets. Trans-
ferability from TMC151 (denoted TM to stress its focus
on transition metals) to Org (i.e. GMTKN55 excluding
NCIs) is very poor, as can be seen from the contour plots
(for XYG2) and inset transferability matrix (for XYG7).
Simply adding the two sets (TM+Org) improves results
in general, but still has transferability issues for bothOrg
Barriers and TM Barriers (see inset). Note, while the
optimal parameter space in Fig. 3 may seem surprising at
first, the differences between the optimal spaces of stan-
dard double hybrids and those applied to Hartree-Fock
orbitals, which we use here, are often notable22. Having
the MP2 correlation fraction over 1 in Fig. 3 is neither
unexpected nor an issue, given that MP2 is generally not
exact and that its errors can cancel that of DFA.

In view of the extremely poor transferability of DFAs

trained on TMs to Org, adding elemental diversity (e.g.,
molecules with 3d elements) to a main-group training set
could ruin the good accuracy of DFAs for Org (further
highlighted in Supp. Fig. S23). However, as we shall soon
see, this risk is completely eliminated once the training
set is diversified in a manner that explicitly favors trans-
ferability. Thus, what we seek in a training set is not
just elemental diversity, as this can come with drawbacks.
Instead, what we want in the training set and what we
advocate for is a balance between genuine reaction di-
versity, elemental diversity and transferable (chemical)
diversity – to be defined soon. Mindless gave us our
first hint that human intuition may be counterproduc-
tive to such a goal. We will now proceed to show how it
can be achieved more systematically.
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FIG. 4. Transferability energy (log scale – note, some outliers
are below the plot) of the 34 subsets of Org tranined on
different benchsets, for a 7-parameter XYG-DFA. Beeswarm
plots37 show the 34 benchsets, horizontal lines and numbers
indicate the median, boxes indicate the 1st–3rd quartiles.

Transferability principle 3: Embed transferable diversity to
maximize transferability

After adding some TM into the game, we are ready to
return to the last two panels of Fig. 1, where we showed
some results for our new benchset, T100. The most im-
portant feature of T100 is that it is explicitly designed
around three transferability principles: 1) it randomly se-
lects chemical processes from TMC151+GMTKN55
to yield genuine reaction diversity; 2) it includes a bias
in construction toward genuine elemental diversity; 3)
it is optimized to improve average transferability in the
XYG1, XYG4 and XYG7 functional forms, giving us a
final ML-DFA that is explicitly designed to give good
transferability. The principles behind the first two have
already been discussed. Full details are in Methods and
SI Sec. S2.
Importantly, the third design feature for T100 pro-

vides an implicit definition of transferable diversity: a
benchset has transferable diversity if an approach trained
on it is transferable to (i.e. performs well on) other
benchsets. Despite being (or because it is!) the least in-
tuitive of the three transferability principles, transferable
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diversity is the most important principle. It tells us that
simply increasing the number of processes or elements in
a benchset is not enough to improve its usefulness as a
training set. We need to make sure that what we add will
improve training. Put more explicitly, transferable diver-
sity is the property that “chemistries” are appropriately
weighted or proportioned in the benchset, so as to im-
prove predictions without accidental bias. For example,
Mindless clearly has good transferable diversity, despite
having significantly less elemental diversity than T100.

The boxplots in Fig. 1(d) indicate that XYG7 trained
solely on the 100 chemical processes in T100 performs
nearly as well as when trained on all 910 Org processes.
This holds for both the BLYP-based XYG7 model used
in T100 creation; and a PBE-based XYG7 variant that
has not been seen during the construction of T100. The
differences between the two are described in Methods.
Fig. 1(e) shows that T100 covers a far broader range
of periodic table groups than GMTKN55, despite the
two containing similar numbers of elements. Figs 1(d,e)
thus reveal the effectiveness of embedding transferability
principles into data curation.

The results shown in Fig. 4 highlight that the T100
optimisation strategy has very useful consequences for
the transferability energy cost,

∆MADB@A := MADB@A −MADB@B ≥ 0 . (2)

∆MADB@A yields the difference in energy between ac-
tual and optimal performance when a DFA is transferred
from a training set to a test set and thus supplements
TB@A by quantifying the energy cost of using the ‘wrong’
instead of optimal parameters. In Fig. 4, B is any of the
34 subsets of Org while A (listed below each figure) is
the training benchset, used to optimise XYG7. We see
that both BH76 and our old friend G21IP provide poor
training data, leading to excess errors of over 1 kcal/mol
in 75% of subsets. Thus, the poor results of Figure 2(a)
are not caused by a small number of outliers, but are
systematic.

By contrast, T100 actually out performs GMTKN55
when applied to diverse organic chemistry, albeit as a
consequence of our choice to sample by set. This is de-
spite being optimized to balance transferability between
main group and TM chemistry [remember the periodic
tables for the two sets shown in Fig. 1(e)]. Indeed, 70%
of benchsets are predicted to within 2 kcal/mol of their
optimal (self-trained) values. Nonetheless, T100, as a
sample of GMTKN55 and TMC151 designed for enhanc-
ing transferability in training, cannot be compared to the
extensive GMTKN55 database for method testing.

Table I reports results for 7-parameter DFAs tested
on a diverse list of example benchsets; and reveals that,
XYG7(@T100) = 0.853EHF

x −0.024ELDA
x +0.161EB88

x −
0.036ELDA

c + 0.490ELYP
c + 0.461EMP2ss

c + 0.749EMP2os
c ,

introduces only modest errors compared to a very high
target – the best possible result for each set (@Self, that
is MADB@B). Interestingly, this DFA has more exact
exchange and MP2 correlation than other double hy-

TABLE I. MAD (kcal/mol) for different datasets (rows) of the
XYG7 functional trained on the datasets given in columns.
Results shown for BLYP- and r2SCAN-based XYG7.

Set @Self @T100 @Mindless @Mindful
BLYP

S66 0.18 0.34 0.33 0.32
W4-11 2.58 4.58 6.85 57.38
Water27 0.08 0.82 4.82 6.08
BH76 1.41 3.70 3.11 4.96
OrgDiff 5.41 7.59 8.87 37.24
ISOL24 0.36 1.36 1.65 0.86
TMB 1.21 4.83 5.75 4.37

r2SCAN
S66 0.21 0.41 0.36 0.71

W4-11 2.41 3.46 4.43 32.25
Water27 0.06 1.36 0.98 5.35
BH76 1.77 3.13 3.10 4.77
OrgDiff 6.11 7.89 7.70 18.06
ISOL24 0.51 2.17 1.52 0.94
TMB 1.85 5.06 5.50 5.65

brids,18,21,38 in part because we use HF orbitals as in-
puts22. High amounts of exact exchange and MP2 cor-
relation also enable XYG@T100 to give high accuracy
for self-interaction-error (SIE) related problems which
are typically challenging even for double hybrids22 (see
Figs S24 and S25 for further examples for the related
SIE4x4 set). However, XYG7@T100 is less accurate
for transition metal barriers (TMB), yielding four times
larger MAD than XYG7@TMB. Going back to Fig. 4,
training on mindless benchmarks (@Mindless) is a little
worse on average, but still better than using @Mindful
molecules. Results for r2SCAN (with different optimal
parameters) follow a similar trend.

The accuracy limit and focus on difficult cases

Finally, the TAT also lets us evaluate the accuracy
limit of double hybrids – that is the A@A case, which
is the best possible results for a specific kind of prob-
lem given the double hybrid functional form. We remind
the reader that XYG7(A) is optimized over all seven pa-
rameters, so represents the best possible pure (i.e. not
range-separated) double hybrid for a given benchset A.
Therefore, MADA@A indicates the smallest possible er-
ror from our XYG7 double hybrid family and dictates its
accuracy limit.
Fig. 5 explores the accuracy limits of double hy-

brid functional forms by showing the distribution of
absolute errors for various benchsets, with a focus on
difficult cases34,39. It reports a selection of optimal
(self-optimized A@A cases) and non-optimal (A@B
cases) DFAs, to reveal that the overwhelming major-
ity of organic processes can be predicted with good
(< 1 kcal/mol; chemical) or ok (1–7 kcal/mol; useful)
accuracy, so long as they are trained on a good reference
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FIG. 5. Fraction of proccesses with good (< 1 kcal/mol), ok (1–7 kcal/mol) and bad (> 7 kcal/mol) errors, MADB@A. Includes
selected optimal (B = A) and suboptimal (B ̸= A) combinations. Some example difficult molecules are illustrated to the left
(Org) and right (TM).

benchset (here, Org or T100).
But, Fig. 5 also reveals that difficult cases, partic-

ularly in transition metals, remain elusive. A quarter
(24%) of difficult organic (OrgDiff)39 and half (53%) of
difficult transition metal (TMDiff)34 processes exceed
acceptable error margins, even with the optimal DFAs.
Supp. Fig. S26 reveals that errors cannot be explained by
spin-contamination or low-quality benchmarks. Despite
generally excellent performance on main group chemistry,
current DFA strategies are simply not ready to address
true chemical diversity (mechanism and elements) with
standard functional types even when using ingredients
from all rungs of Jacob’s ladder23,24.
Moreover, DFAs trained on these difficult cases per-

form poorly on the full Org, especially compared to the
almost “best case scenario” of T100 as a training set.
Furthermore, this poor performance is reciprocal – us-
ing T100 as a training set for OrgDiff or TMDiff also
significantly worsens prediction.

There is a plus side, however, as difficult cases for DFAs
are often also difficult cases for the (very expensive) cre-
ation of benchmarking data. The accuracy limit suggests
that benchmark quality (and thus cost) may therefore
carefully be relaxed in some difficult cases.

IV. DISCUSSION AND CONCLUSIONS

This work provides an alternative conceptual frame-
work for identifying and understanding chemical di-
versity, as it pertains to model transferability. Cen-
tral to our results is the transferability assessment tool
(TAT), and the scenario where one dataset serves as
a training set and another as a test set, and then
their roles are reversed. This (indeed simple) consid-
eration, encoded in the TAT matrix, uncovers criti-
cal insights into the suitability of various training sets,
shifting the paradigm from intuition-based to rigor-
ously evidence-based methodology in empirical electronic
structure method development. The TAT, in tandem
with the XYGp protocol, provides a wealth of analytic

information about the training and testing of data-driven
DFAs. We can use it to identify what chemistry is hard
to learn, what kinds of processes are useful to train on,
and to answer many of the questions posed in the intro-
duction.
The main conclusion from our work is that follow-

ing transferability principles to embed transferability in
data curation is crucial for the construction of general-
purpose models in chemistry. By following these prin-
ciples, a training benchset should embed genuine chem-
ical and elemental diversity; in such proportions within
the benchset that they improve transferability (i.e. with
good transferable diversity). The evidence presented here
therefore suggests the following strategy for better con-
struction, optimization and refinement of benchsets that
can be used to train complex, data-driven DFAs:

1. Human input/bias should be reduced in the cre-
ation of training (and test) sets, in favour of ran-
domness in chemical construction;

2. Elemental diversity of training sets should be im-
proved, possibly via lower quality benchmarks;

3. Training sets and DFAs should be optimized and re-
fined with an explicit bias toward improving trans-
ferability, by testing transferability matrices during
their construction.

Our work has revealed that both Mindless (=
MB16-43, Figs 2 and 4) and T100 (Figs 1, 3–5) make
large steps in the right direction: Mindless eschews pre-
determined chemistry and T100 embeds diversity and
transferability, both by design. The mindless strategy
can be (i) adapted to other cases (e.g., mindless ioniza-
tion potential or barrier height benchsets); (ii) further
extended by introducing randomness in the selection of
mindless potential energy surface points, which are not
confined to local minima; (iii) biased toward elemental
and transferable diversity [as done for T100, eq. (5) be-
low] to construct entirely new benchsets. Furthermore,
we envision that using TAT within active learning frame-
works can aid in directing learning towards the most
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significant regions of chemical space for use in training.
In practice, this could be achieved by using the TAT to
choose which datapoints go into the training – an active
learning extension to the creation of our T100.
The catastrophic failure of DM21 for some TMs17

clearly highlights why embedding transferability at the
training benchset stage is vitally important. By con-
trast, the success of Mindless and T100 as training
sets for diverse chemistry highlights how we can poten-
tially do much better with more careful selection of train-
ing data. Embedding transferable diversity by using the
transferability principles therefore becomes imperative
for machine-learned DFAs. Otherwise, better interpo-
lation on chemistry seen in training risks poorer extrap-
olation to (prediction of) chemistry unseen in training.
It is also worth stressing that the TAT may be applied

to embed transferability into any empirical model, and
especially those for which the level of empiricism can be
controlled. This includes models based on wave function
theories (at one extreme) and machine learning of ‘clas-
sical’ energies from molecular geometries (at the other
extreme). Work along these lines should be pursued.

Finally, it is important to note that transferability
principles are important to consider even for models that
explicitly target a specific type of chemistry problem (e.g.
DFAs optimized for organic barriers or materials chem-
istry). Despite their narrower goals, such approaches im-
plicitly assume that the training benchset contains suffi-
cient diversity to enable predictions of similar problems;
and that the diversity is appropriately weighted. The
low transferability between subsets of Barriers reveals
that these assumptions are not guaranteed. Embedding
transferable diversity into training benchsets, even for
narrowly-focussed problems, enables higher confidence in
their predictive reliability.

V. METHODS

A. XYG DFAs

All XYGp functionals considered in this work have the
same fundamental functional form,

Exc =a1E
HF
x + a2E

LDA
x + a3E

(m)GGA
x

+ a4E
LDA
c + a5E

(m)GGA
c + a6E

MP2ss
x + a7E

MP2os
x ,

(3)

where Ex(c) indicate exchange (correlation) energy ap-

proximations, EHF
x is the exact HF exchange energy and

E
MP2ss(os)
c indicate the same-spin and opposite-spin parts

of the MP2 energy. E
(m)GGA
x and E

(m)GGA
c denote GGA

or meta-GGA exchange and correlation.
The DFA of Eq. 3 is thus defined by a seven-component

vector, a⃗. XYG7 allows flexible choice of all seven com-
ponents. For XYGp<7, the components of the vector are
determined by the following rules:

p = 1: Choose exact exchange fraction, α, and set
a1 := α, a2 := a4 := 0, a3 := 1 − α, a5 :=
1− α2, a6 := a7 := α2

p = 2: Choose exact exchange fraction, α, and
MP2 fraction, β, and set a1 := α, a2 :=
a4 := 0, a3 := 1 − α, a5 := 1 − β,
a6 := a7 := β;

p = 3: Choose free a1, a3 and a6, and set a2 :=
a4 := 0, a5 := 1− a6, a7 := a6;

p = 4: Choose free a1, a2, a3 and a6, and set a4 :=
0, a5 := 1− a6, a7 := a6;

p = 5: Choose all except a4 := 0 and a7 := a6;
p = 6: Choose all except a7 := a6.

Unless otherwise specified, throughout this work we
use Becke’s (B88)40 exchange GGA and Lee, Yang

and Parr’s (LYP)41 correlation GGA for E
(m)GGA
x and

E
(m)GGA
c , respectively (BLYP). The optimal DFA for set

A is then defined via,

XYGp(A) = arg min
XYGp

MAD(XYGp on A) (4)

where XYGp indicates all possible variants of Eq. (3) con-
sistent with the number, p, of parameters (using BLYP
as GGAs); and MAD(DFA on set) indicates the mean
absolute deviation of energies computed using DFA, av-
eraged across all processes in set. We thereby obtain,
MADB@A := MAD(XYGp(A) on B)
The results for two other combinations — PBE ex-

change + PBE correlation42; and r2SCAN exchange +
r2SCAN correlation43 — are given in the SI. The main
conclusions of our work do not change once we replace
the BLYP-based GGAs with their PBE-/r2SCAN-based
counterparts in Eq. 3.

B. Computational details

All HF and DFT calculations were conducted with
Orca 5.0.044. We used def2-QZVPPD for GMTKN55
and def2-QZVP for TMC151. For costly cases, def2-
QZVP(P) or def2-TZVP(P) were used. Further details,
including the description of our robust minimizer for ob-
taining the XYGp parameters, are in Sec. S1 of the SI.
Orbitals were computed using unrestricted Hartree-Fock
(UHF) theory in all cases.

C. Special benchmark sets

Mostly we use the categories from GMTKN55 and
TMC151 or preexisting subsets (e.g. Diet10045). We
also have some special benchset (and aliases to stress im-
portant features):

Mindless is an alias for MB16-4316,33, to stress its
most important feature;
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Mindful combines DARC and ISO34 sets16; cho-
sen to represent chemical intuition-based counter-
part of Mindless;

Org indicates GMTKN55 with the non-covalent in-
teraction (NCI) subsets excluded, to focus on typ-
ical organic chemistry;

Org difficult=OrgDiff is the P30-5 ‘poison’ sub-
set of GMTKN55, from Ref. 39;

Org X indicates a subset from GMTKN55;

TM is an alias for TMC151, to stress its focus on
transition metal chemistry;

TM difficult=TMDiff is a subset of TMC151
composed of TMD + two MOR41 reactions + six
TMB barriers, all identified as difficult in Ref. 34;

TM X indicates a subset from TMC151;

TM+Org is the combination of Org and TMC151;

T100 is a subset of TMC151+GMKTN55 de-
signed to embed transferable diversity principles.

Interestingly, there is a perfect transferability between
Org. and the NCI subset of GMTKN55 - TB@A for this
pair never exceeds 1.01 for the used XYG models. For
further descriptions of the used (sub)sets, please see Ta-
ble S2 in the SI.

T100 construction

To construct T100 we first ‘mindlessly’ breed twenty
“pretty transferable” (denoted PT1...20) subsets of the
combined GMTKN55 and TMC151 (TM+Org) bench-
set, each with 100 processes. Survival is dictated by a
genetic approach similar to that used to construct Diet
sets, with breeding success based on transferability of
XYG7.

45 Full details are in Section S2 of the SI. Then,
we obtain T100 by selecting the best one, using:

T100 =argmin
PTk

[
1
3

∑
p∈1,4,7

T̄p(PTk)− 0.03Nel(PTk)
]
.

(5)

Here, T̄p(PTk) = 1
58

∑
B∈TM+Org TB@PTk;XYGp is the

average transferability from PTk to all 58 subsets of
GMTKN55 and TMC151, using XYGp. Averaging over
p ∈ 1, 4, 7 helps to avoid ‘accidental’ transferability for
any specific number of parameters. Biasing to a larger
number, Nel(PTk), of unique elements in PTk helps
to avoid over-representation of main group chemistry,
which is 10 times more common than TM chemistry in
TM+Org.
We use BLYP (Becke exchange40 and Lee-Yang-Parr

correlation41) in Eq. (3) for both the breeding and op-
timisation stages, which means the transferable diver-
sity of T100 is biased toward BLYP. In principle, other

functional choices might lead to other sets. Nevertheless,
Supp. Fig. S27 reveal that training PBE- and r2SCAN-
based XYGp on BLYP’s T100 gives them transferability
similar to DFAs trained on the full GMTKN55 benchset.
T100 also works for a different functional form – that of
B3LYP,29 which excludes MP2 contributions entirely (see
Supp. Fig. S28). It follows that transferable diversity fea-
tures of T100 are largely independent of functional form
choice.

D. Code availability

The code is provided on the GitHub repository https:
//github.com/vuckovic-lab/transferability for
this work (see “read.ipynb” notebook for explanations
on how to generate the data from the code).
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