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Abstract

The advancement of deep learning in chemistry has resulted in state-of-the-art mod-

els that incorporate an increasing number of concepts from standard quantum chem-

istry, such as orbitals and Hamiltonians. With an eye towards the future development

of these deep learning approaches, we present here what we believe to be the first work

focused on assigning labels to orbitals, namely energies and characterizations, given

the real-space descriptions of these orbitals from standard electronic structure theories

such as Hartree-Fock. In addition to providing a foundation for future development,

we expect these models to have immediate impact in automatizing and interpreting the

results of advanced electronic structure approaches for chemical reactivity and spec-

troscopy.
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1 Introduction

The development of deep learning techniques in quantum chemistry is remarkable and has

been the subject of various reviews.1–5 However, despite the novel nature of these techniques,

accuracy has often increased in these methods through the development of “physics informed”

architectures6 that integrate ideas from classical quantum chemistry. For example, Aldossary

and coworkers outline four “generations” of machine-learned potentials2 with later genera-

tions (e.g., ANI-17 and PhysNet8) incorporating the concept of partial charges from standard

force field development to capture long-range effects. A similar progression has taken place

in the application of deep learning to electronic structure theory, with state-of-the-art ap-

proaches such as SchnOrb,9 OrbNet,10,11 DeepH,12 and the recent model of Ceriotti and

coworkers13 making explicit reference to the concepts of orbitals and Hamiltonians, being

reminiscent of semiempirical models such as AM114 and PM3.15

Despite this work, relatively little focus has been given to predicting properties (e.g.,

energies or character) of orbitals themselves. It is evident why this might be the case: orbital

properties are (with some exceptions16) vague, unobservable properties that only serve as

intermediates in the calculation of the energy and other chemical features. Nevertheless, in

the same way that much effort has gone into the development of atomic charges7,8,17—also

inherently unobservable quantities that only serve as useful intermediates for calculation—

the properties of orbitals themselves may also be worth considering. We outline several

motivations.

The first and most pressing motivation is that much as partial charges are necessary for

capturing long-range effects, orbitals are needed to calculate the kinetic energy. Indeed,

although Kohn-Sham density functional theory appears at face value to do away with the

molecular orbital picture entirely by means of the Hohenberg-Kohn theorem,18 it still must

evaluate the kinetic energy in an orbital-driven fashion identical to Hartree-Fock.19 This

fact remains the principal reason for the O(N3) scaling of (local) KS-DFT, and developing
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kinetic energy functionals to avoid this cost, enabling an “orbital-free” DFT, remains an

active area of research.20 Nevertheless, a straightforward way to avoid this scaling in KS-

DFT would simply be to predict the Kohn-Sham orbitals themselves without calculation.

Building models to understand orbital properties such as the energy stands as an important

intermediary goal in this direction.

Secondly, orbital features—although intermediate quantities—are generally of some use.

The foremost example is that of the HOMO and LUMO energies, which correspond to the

ionization potential and electron affinity of a system by means of Koopmans’ theorem.21,22

Indeed, it is this area which has seen the most work in predicting orbital characteristics,23–27

with physical quantities such as ionization potentials and excitation energies being the focus

of these approaches. Additionally, orbital properties (e.g., shape, size, and energy) are critical

in how chemists understand and discuss chemistry: molecular orbitals serve as a fundamental

and transferable concept for describing the behavior of molecules, and if models are to ever

understand chemistry they will probably need to understand molecular orbitals themselves.

Moreover, understanding the shape of molecular orbitals has practical purposes for calcu-

lations: methods such as the complete active space self-consistent field theory (CASSCF)

method depend on an “active space” of orbitals and electrons which rely on human-annotated

labels (e.g., π, π∗, bonding, antibonding).28 Automating these human-annotated labels has

the potential to accelerate greatly the calculation and interpretation of these highly accurate

methods.

Given these motivations, we present what we believe to be the first work focused on

assigning labels to orbitals themselves given input from ab initio calculations. Specifically,

we aim to develop functions:

f(ϕ) → lϕ, (1)

where lϕ is a label corresponding to either an orbital energy (e.g., from KS-DFT) or a
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human-annotated description (e.g., bonding or antibonding). We develop new datasets for

both of these tasks, the QMOrb dataset, consisting of full Molden files29 for the entire QM9

dataset,30 and the TMOrb dataset, consisting of generated metal-ligand bonding and anti-

bonding orbitals for a wide range of transition metals. Additionally, we compare two models

for achieving these separate tasks: (a) a grid-based approach in which orbital properties are

computed from their real space values on a voxel grid, and (b) a force-field like approach

in which orbital properties are computed from their projection onto different atomic basis

functions. We compare these approaches and present initial results.

2 Data

As stated, the QMOrb dataset consists of Molden file outputs for the entire QM9 database.

In this initial work we have carried out restricted Hartree-Fock (RHF) calculations in the

minimal STO-3G basis in PySCF.31 In all, this dataset consists of over seven million orbitals.

In this preliminary manuscript, we use only a fraction of these orbitals for training, looking

at a random selection of 3000 molecules in the QM9 dataset, resulting in an orbital dataset

of only 159,350 orbitals. The labels for this dataset consist of the orbital energies from

RHF STO-3G. We are now in the process of generating similar data with double-zeta and

triple-zeta basis sets.

The TMOrb dataset consists of constructed transition metal orbitals that are characteristic

of four generally human-annotated labels: metal valence orbitals, ligand valence orbitals,

metal-ligand bonding orbitals, and metal-ligand antibonding orbitals. Orbitals of these types

are generated and assigned labels through the following process:

1. Project the restricted open-shell Hartree-Fock (ROHF)32 Fock matrix F separately into

the space of metal valence orbitals and ligand (i.e., non-metal) valence orbitals, then

diagonalize the Fock matrix in these subspaces to form the canonical metal valence
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orbitals {ϕM} and ligand valence orbitals {ϕL}. These orbitals are given the labels

“metal valence” and “ligand valence,” respectively.

2. Looping over the space of {ϕM} and {ϕL}, project the Fock operator into the space

of one ligand orbital ϕL and one metal orbital ϕM , then diagonalize within this space.

If there is a stabilization of the bonding orbital energy greater than 0.05 Hartree with

respect to the initial orbitals, the canonical orbitals within this space are added to the

dataset and given the labels “metal-ligand bonding” and “metal-ligand antibonding,”

respectively.

Geometries for the procedure above were taken from the large dataset of Kulik and cowork-

ers of 4865 first-row transition metal octahedral complexes.33 Calculations were undertaken

with ROHF in a modified version of the “minao” basis in PySCF, generated by taking the

first contracted functions from cc-pVTZ,34–36 and excluding the addition of the 4s orbital

from calculations. Converged calculations resulted in a final dataset of 3702 first-row tran-

sition metal complexes. As there are naturally many more ligand orbitals than metal-ligand

bonding and antibonding orbitals, the metal-ligand bonding and antibonding orbitals were

added to the dataset with an equal number of randomly selected ligand metal orbitals for a

total dataset of 41,952 orbitals: 10,488 each of metal valence, ligand valence, metal-ligand

bonding, and metal-ligand antibonding.
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3 Methods
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Figure 1: A sketch of our model which learns orbital features from voxel CUBE data. The
large CUBE files are fed into convolutional channels which are used to predict metal, ligand,
bonding, and antibonding character.

Two broad methods are considered for the learning of orbital labels. Figure 1 shows the first

of these methods, in which orbital properties are predicted from their featurization via the

standard CUBE format generally used to visualize molecular orbitals. This data consists of

vectors (fi, x, y, z), where fi is the value of the ith orbital ϕi at the coordinate (x, y, z) on

a 80 × 80 × 80 grid spanning the molecule. This is the most straightforward approach, as

data of this type is already visualized directly by users of electronic structure codes to assign

qualitative labels (e.g., bonding or antibonding). Additionally, the voxel-like nature of the

input data allows for the use of standard convolutional techniques. For these data, we train

a 3D convolutional neural network with an architecture composed of two 3D convolutional

layers followed by three fully-connected layers. The standard Rectified Linear Unit (ReLU)

nonlinear activation function is used between layers. Model training is performed by using

the Adam optimization algorithm37 with a learning rate of η = 10−5.
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Figure 2: A sketch of our model which learns orbital features from projections of molecu-
lar orbitals onto atom-centered basis functions with different radial diffusion (n), angular
momentum (l), and Cartesian direction (m) characteristics. These features are then prepro-
cessed and fed into separate feed-forward networks for energy prediction.

However, the CUBE-based approach shown in Figure 1 presents challenges, mainly those

of (a) storing the CUBE data, and (b) overcoming the problem of rotational invariance,

which is not well-captured by the voxel format. Thus we also propose the alternative ap-

proach presented in Figure 2, in which atom-centered features of the orbitals cαnlm are obtained

via projection of the orbitals onto atom-centered basis functions of different radial diffusion

(n), angular momentum (l), and cartesian direction (m):

cαnlm =

∫
r

Y α
nlm(r)ϕ(r)dr (2)

where α represents a single atom in the molecule. These inputs are then fed into a prepro-

cessing layer in which the different components of the angular momentum are summed over

to construct atom-centered rotationally invariant features dαnl (i.e., the “SO(3) Preprocessing”

layer in Figure 2):

dαnl =
∑
m

(cαnlm)
2 (3)

These features are then fed into element-specific feed-forward networks to predict the molec-
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ular orbital energy:

E(ϕ) =
∑
α

f ξ(α)(dαnl(ϕ)) (4)

where ξ(α) is the atomic number of atom α.

This approach is inspired by developed methods for the machine learning of density func-

tionals,38,39 mainly the work of Dick and Fernandez-Serra.38 A total of 14 basis functions are

employed for each of l ∈ {s, p, d}, resulting in a total of 37 dαnl features for each atom.38,39

However, we note that here it is much more efficient to implement these models compared to

density functional applications as the molecular orbitals are described naturally in an atomic

orbital basis, whereas the density projections must be found via quadrature.

4 Results

We present first results of the atomic feature model in estimating molecular orbital energies

and then results in labeling molecular orbitals. Note that these are just initial results to

introduce the procedures, larger models trained on the entirety of the dataset are ongoing

in our group.
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4.1 Predicting Orbital Energies

Figure 3: Results of training the element-based model (Equation 4) on predicting orbital
energies in the QMOrb dataset. Left: examples of different types of molecular orbitals in
the QMOrb dataset: core, valence doubly occupied, and virtual. Right: Validation mean
absolute error of the model as a function of the training step.

The results of the atomic feature model (Equation 4) in estimating the energies of QM9

molecular orbitals are shown in Figure 3. Each of the 5 element networks (one for each of

C,H,O,N,F in QM9) consists of a deep feed-forward network of six layers with 20 nodes each

employing the Gaussian error linear unit (GELU) activation function,40 resulting in a model

with roughly 12k parameters. In addition, separate models are constructed for predicting

the energies of doubly occupied and virtual orbitals, bringing the total number of parameters

to 24k. Constructing separate models for doubly occupied and virtual orbitals is necessary

due to symmetry breaking in HF.

The training curve, optimized with the Adam optimizer37 with both learning rate (or step

size) and weight decay set to 10−3, is shown in Figure 3. At training end, a mean absolute

error of 0.108 Ha is achieved on the holdout validation set of a randomly selected 20% of

the data. While the performance of this preliminary model (with only a small fraction of

the total data and no interaction between atoms, see Equation 4) is evidently not useful for

9

https://doi.org/10.26434/chemrxiv-2024-cvhtp ORCID: https://orcid.org/0000-0003-0208-5274 Content not peer-reviewed by ChemRxiv. License: CC BY-NC-ND 4.0

https://doi.org/10.26434/chemrxiv-2024-cvhtp
https://orcid.org/0000-0003-0208-5274
https://creativecommons.org/licenses/by-nc-nd/4.0/


predictive techniques, it shows that the featurization can efficiently capture the differences

between occupied, virtual, and core orbitals on a diverse set of molecules.

4.2 Predicting Orbital Characteristics

Figure 4: Results of model training on the task of assigning orbital labels to different types
of constructed metal-ligand orbitals. Left: The four different types of orbital labels available
in the training data. Right: Training accuracies on the holdout validation set of data for
both the atom-based approach (top) and grid-based approach (bottom).

Next, we show the performance of our models in labeling different types of molecular orbitals

for a wide array of octahedral transition metal complexes; examples of each category for the

complex Mn(OH2)6 are shown on the left of Figure 4. As one can see, the constructed

ligand orbital and metal orbital cleanly rotate into a bonding and antibonding orbital pair.

The performance of both the atom-based and grid-based models in correctly labeling these

different categories is shown on the right of Figure 4.

For this task, we employed a simpler version of the atom-based model which consists of a
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single network that is shared between all transition metal atoms, with no networks for non-

transition metal atoms (and with one less layer than the QMOrb model, resulting in a model

with about 2000 parameters). This featurization is centered on the transition metal, and

thus provides an efficient basis for identifying bonding and antibonding character compared

to the grid-based approach. A prediction accuracy of 90% is achieved in a small number of

training steps, again showing the capability of this featurization in discriminating between

different types of orbitals.

The grid-based model also achieves good results on this task. While evidently a less effi-

cient featurization of the input data (i.e., with a lack of rotational invariance and uncentered

on the transition metal), the model surpasses the accuracy of the atom-based approach,

achieving a validation accuracy of 97%. This result suggests that while the atom-centered

approach may be more efficient, the grid-based approach is ultimately more expressive in

capturing orbital character, at least with the current preliminary implementations of these

models.

5 Conclusion and Future Work

Given the growing status of deep learning in quantum chemistry, models are needed that

understand the concept and characteristics of molecular orbitals. Towards this goal, we have

here presented what we believe to be the first work focused on assigning labels, specifically

energy and bonding character, to molecular orbitals from electronic structure calculations.

We have presented two new datasets for this task: QMOrb, which consists of Molden output

files from RHF calculations for the entire QM9 set of organic molecules, and TMOrb, which

consists of thousands of automatically constructed bonding and antibonding orbitals for a

diverse set of first-row octahedral transition metal complexes.

For these two tasks of (a) learning orbital energies, and (b) learning orbital characteristics,
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we have presented two complementary approaches: (a) a grid-based approach, which learns

orbital labels from their characterization by CUBE files (i.e., a real-space voxel description),

and (b) an atom-centered approach that predicts orbital labels from their projection onto

different atom-centered basis functions. These two approaches provide complementary trade-

offs, with the atom-centered approach serving as a more efficient and rotationally invariant

description, while the grid-based approach is likely to be more expressive given the real-

space nature of the orbitals. This distinction is marked in the different performance of these

models on the classification task, with the atom-centered approach reaching high accuracy

(90% accuracy) more quickly while the CUBE-based approach is ultimately more accurate

(97% accuracy).

For the predictions of orbital energies, the atom-centered approach achieves a mean ab-

solute error of 0.108 Ha, which while not useful for practical applications, shows that it can

broadly identify between different sets of important orbital types (e.g., valence, virtual, and

core orbitals). We emphasize that this error is a preliminary result, and future efforts will

be focused on training the model by using the entire dataset of over 7M orbitals and scaling

up the model by including interactions between atomic features. Additionally, the perfor-

mance of the CUBE-based approach for energy prediction will be tested and compared.

However, we hope that these current results have shown this field to be a promising region

of development.

This approach, once finalized, will be helpful to perform quantum chemistry calculations,

especially multireference ones, on large data sets of chemical reactions and electronic exci-

tations. We expect that the training of these larger models will take 3-4 months of further

development.
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