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Abstract 

Over the past twenty years, metal-organic frameworks (MOFs) have emerged as extensively developed 
porous class of materials and are increasingly recognized as promising candidates for membrane-based 
CO2 separation. This potential primarily stems from the ability to deliberately customize their structure 
and functionalities to enhance interactions with guest molecules. In this study, we explore the use of MOF-
525, a porphyrin-based MOF, as a nanofiller in a mixed matrix membrane (MMM) composed of 6FDA-
DAM (6FDA: 2,2-bis(3,4-dicarboxyphenyl)hexafluoropropane dianhydride; DAM: 2,4,6-trimethyl-1,3-
diaminobenzene) polymer for CO2/N2 and CO2/CH4 separations. This particular MOF is chosen because of 
the possibility to metalate its porphyrin ring to tailor the interaction between the CO2 molecule and the 
MOF framework. As a result, the CO2/N2 and CO2/CH4 separation performance of the MMM loaded with 
metalated MOF-525 can be significantly improved without the necessity to use a very high nanoparticle 
loading. When compared to the bare polymeric membrane and 2 wt% non-metalated MOF-525 MMM, 
around 20% improvement in the membrane permeability and selectivity can be observed for the 2 wt% 
metalated MOF-525 MMM. Further analysis on the gas transport property of the MMM showed that the 
improvement mainly results from the enhanced CO2 solubility in the MMMs and improved interaction 
between the metalated MOF-525 and the CO2 molecule. However, it is also found that 2 and 5 wt% are 
the optimum loading value, above which the interfacial defects between the MOF nanoparticles and the 
polymers caused by the particle agglomeration starts to appear and thus deteriorating the membrane 
performance. This is also confirmed through the molecular simulations where some overestimations from 
the Maxwell model on the membrane permeability is observed particularly at high particle loading, 
indicating the agglomeration and the build-up of non-selective voids. Despite this, we have successfully 
shown in this study the high efficacy and efficiency of using metalated porphyrin MOFs for CO2 separation 
in a MMM since only relatively low particle loading (around 2 wt%) is required to improve the membrane 
performance.    
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1. Introduction 

As the concentration of CO2 in the atmosphere continues to rise, contributing to the climate crisis, 
the urgent need to develop effective technologies to tackle this issue becomes increasingly 
critical. Therefore, separation of the CO2 from other gases becomes crucial in order to avoid the 
release of this gas into the atmosphere. In this case, amine absorption technology has been 
considered as the most mature available technology to fulfill this task [1,2]. However, this 
approach suffers from several drawbacks such as the large amount of energy needed to release 
CO2 again [2]. In order to address the above drawbacks, membrane technology could then offer a 
number of advantages for CO2 separation, in particular since it can offer high separation 
performance while also consuming less energy [3,4].  

Despite this huge promise, research and development in the field of advanced membrane 
materials is still required in order to improve the membrane separation performance [4]. 
Typically, economic factors and ease of processability make various polymeric materials the 
preferred choice for membrane construction. However, the performance of a polymeric 
membrane is usually limited by the permeability-selectivity inverse relationship [5]. As a result, a 
membrane with high permeability usually exhibits low selectivity and vice versa. Consequently, 
the last few decades have seen the development of numerous new membrane materials, 
including polymers of intrinsic microporosity (PIM) [6], thermally-rearranged polymers [7] and 
metal organic frameworks (MOFs). Compared to other polymeric-based materials, MOFs offer a 
number of advantages including high porosity, high surface area, the possibility of 
functionalization, a tailorable architecture and also the possibility to be used as a template for a 
new material [8–10]. Therefore, during the last two decades, these crystalline coordination 
networks have been widely investigated to be used for various applications such as water 
purification and gas separation processes [11,12].  

In the field of gas separation processes, one of the main driving forces that stimulates the use of 
MOFs is the possibility to introduce various functionalities to enhance their gas separation 
performances. In this case, various functionalities have been identified for being able to 
effectively improve the CO2 separation performance of the MOFs such as by introducing polar 
functional groups [13–16] or by introducing open metal sites [16–19]. In addition to the above 
strategies, inserting transition metals in the MOF constructed with porphyrin ligand has also been 
proven for being able to significantly improve the CO2 separation performance [20,21]. In this 
case, from theoretical work employing density functional theory (DFT) and Grand Canonical 
Monte Carlo (GCMC) simulation, it has become evidenced that the metalated porphyrins can act 
as the selective binding sites for CO2 by exerting a strong Coulomb interaction with CO2 and thus 
resulting in the enhancement of the CO2 adsorption capacity [21].  

In this work, we investigated a porphyrin-based MOF, namely MOF-525, to be used as a nanofiller 
in the 6FDA-DAM polymeric matrix to form mixed matrix membranes (MMMs). In addition to the 
ease of processing and membrane handling, MOF-based MMMs have been shown to significantly 
improve the performance of a polymeric membrane should the correct MOFs are selected as the 
nanofillers [22]. As a porphyrin-based MOF, the MOF-525 has the potential to be functionalized 
through the post-metalation process where its porphyrin center is metalated with other metals, 
which are cobalt (Co) and zinc (Zn) in our case. We hypothesized that this post-metalation process 
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could bring positive impacts to improve the CO2 separation performance of the MMMs by 
enhancing the interaction between the MOF and CO2. Therefore, it is expected that the post-
metalated MOF-525 could improve the CO2 separation performance of the 6FDA-DAM polymeric 
membrane. 

2. Materials and methods 

2.1 Materials 

Benzoic acid, cobalt chloride (CoCl2), sodium hydrochloride, zinc chloride (ZnCl2) and zirconyl 
chloride octahydrate (ZrOCl2.8H2O) were purchased from Merck. Meso-tetra(4-
carboxyphenyl)porphyrin (H4TCPP) was purchased from BLD Pharmatech GmbH, Germany. 
Acetone, dichloromethane, dimethylformamide (DMF), hydrochloric acid 37% was purchased 
from VWR. 6FDA-DAM with molecular weight around 215,000 was purchased from Akron Polymer 
Systems, Inc.  

2.2 MOF 525 synthesis and post-metalation of MOF-525 

MOF-525 was synthesized according to the published procedure using benzoic acid as the 
modulator [23,24]. Once the synthesis process finished, the product was collected by 
centrifugation (7000 rpm) and washed thoroughly with DMF and acetone and dried at 80 oC 
overnight. The obtained nanoparticles (200 mg) were then immersed in a mixture of 20 mL DMF 
and 1 mL of 8M HCl in an oven at 100°C for 24 h to remove the ligated benzoates from the 
framework [25]. Afterwards, the MOF-525 was thoroughly washed with DMF and acetone and 
stored in acetone.  

In order to post-metalate MOF-525, cobalt and zinc were used as the metal to be incorporated at 
the center of the porphyrin ring. Both metals were chosen because of the reproducibility for the 
post-metalation process. MOF-525 was then post-metalated according to the published 
procedure [26–29]. In a typical post-metalation process, a 20 mL DMF solution containing 1.24 
mmol of the chloride salt of the metal (CoCl2 and ZnCl2) was firstly prepared. Afterwards, 100 mg 
of the MOF-525 was immersed in the solution followed by heating the suspension in a convective 
oven at 100oC for 48 h. Once the post-metalation process was completed, the samples post-
metalated MOF-525 was washed thoroughly with DMF and acetone. As in the case of MOF-525, 
the samples were always stored in acetone before being used.  

2.3 Mixed matrix membrane (MMM) fabrication 

Mixed matrix membranes containing free-base MOF-525, MOF-525(Co) and MOF-525(Zn) were 
fabricated by using 6FDA-DAM as the polymer matrix. To construct the mixed matrix membranes 
(MMMs), a suspension was initially prepared using dichloromethane as the solvent. This mixture 
contained a specific amount of the chosen MOF and 50% of the total polymer. This suspension 
was continuously stirred overnight to prime the MOF nanoparticles to enhance the MOF-polymer 
interaction. Afterwards, the rest of the polymer was added to the suspension and the final 
suspension was continuously stirred overnight. To form a MMM, the suspension was poured on 
a clean glass petri dish (diameter 40 mm) and was covered with perforated aluminum foil. The 
petri dish was then kept in a fume hood to let the solvent evaporate. Upon drying, the MMM was 
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then peeled off from the petri dish and dried in a convective oven at 80oC before the gas 
separation testing.  

2.4 Gas separation performance testing 

The gas separation performance of the membranes was evaluated by using the constant-volume 
variable-pressure method using CO2, N2 or CH4 as the permeating gases. The gas permeability is 
calculated based on the gradient of the pressure change on the permeate side.     

2.5 Characterizations 

UV-Vis spectroscopy. The UV-Vis spectra of the digested samples were recorded by using Cary 
5000 UV/Vis Spectrophotometer equipped with Cary Universal Measurement Accessory (UMA). 
For all cases, the digestion process of the MOF nanoparticles was carried out by immersing them 
in 1M NaOH solution for 24 h.  

X-Ray Diffraction. The powder X-ray diffraction (PXRD) pattern of the non-metalated and post-
metalated MOF-525 were collected by using D8 A25 Da-Vinci Bruker XRD. The samples were 
measured between 2q 4-20°. The same instrument was also used to record the XRD pattern of 
the MMMs. In this case, the MMMs were firstly immobilized on the sample holder by using a seal 
tape before the measurement took place. 
 
Fourier-transformed infrared spectroscopy. The Fourier-transformed infrared (FTIR) spectra of 
both the nanoparticles and the MMMs were recorded by using Bruker Hyperion - Tensor in 
Attenuated Total Reflectance (ATR) mode. The measurement took place between the 
wavenumber 4000 - 400 cm-1 

2.6 Computational methodology 

To deepen our understanding of the gas separation performance observed in the experiment, we 
conducted a computational simulation study as well. The aim of this investigation was to compare 
the experimental results with those derived computationally. To realize this objective, we initially 
calculated the gas permeability of the MOFs through molecular simulations, followed by 
combining the results with experimental polymer data, and finally using these values in the 
Maxwell model [30,31].  

The crystallographic information of MOF-525 structure was obtained from the literature [32]. 
Using the "edit structure" tool provided in Mercury 2023.2.0 [33], Co and Zn metals were placed 
in the center of the porphyrin ring of MOF-525. Subsequently, the Materials Studio Forcite module 
[34] was utilized to optimize the geometry of the generated structures. The smart algorithm, 
which uses the steepest descent, adjusted basis set Newton-Raphson and quasi-Newton methods 
was used to find the lowest energy conformation, with a maximum iteration number of 10,000. 
The convergence tolerance was set to quality of ultra-fine (energy tolerance value of 2 × 10-5 
kcal/mol, displacement tolerance value of 10-5 Å, and force tolerance value of 10-3 kcal). The cell 
parameters were allowed to be optimized. 

The gas uptakes and self-diffusivities were computed by performing Grand Canonical Monte Carlo 
(GCMC) and molecular dynamics (MD) simulations, respectively, in MOF-525, MOF-525(Co), and 
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MOF-525(Zn) using the RASPA [35] simulation code version 2.0.37. Nonbonded interactions were 
defined using the Lennard-Jones (LJ) potential, with intermolecular interactions truncated at a 
distance of 13 Å. The potential parameters of the framework structures were obtained using the 
DREIDING [36] force field. CO2 was represented as a three-site rigid molecule with a Lennard-
Jones 12–6 potential, with partial charges positioned at the center of each site [37]. The TraPPE 
force field [38] was employed to derive the potential parameters for CO2. N2 was modeled as a 
three-site rigid molecule, where nitrogen atoms occupied two sites, and the third site was located 
at the center of mass with partial charges [39]. CH4 was modeled as a single sphere [40]. Pair 
potentials between different atoms were calculated using the Lorentz-Berthelot mixing rules. The 
charge equilibration (Qeq) method [41] as implemented in RASPA was utilized to assign partial 
charges to MOF atoms and to calculate electrostatic interactions between gas molecules and MOF 
atoms, Long-range electrostatic interactions were accounted for using the Ewald summation 
method [42]. 

MD simulations utilized the gas loadings acquired from the results of GCMC simulations 
conducted at 2 bar and 25°C, which were used as inputs to compute the diffusion of CO2, N2, CH4 
gases in each MOF. In addition to 10,000 initialization and 10,000 equilibration cycles, a total of 4 
× 106 production cycles were employed. The temperature was maintained constant using the NVT 
ensemble with the Nose-Hoover thermostat [43]. The mean square displacement of gas 
molecules was calculated, and the self-diffusion coefficients of CO2, CH4, and N2 were determined 
by averaging the diffusivities computed in the x, y, and z directions, following Einstein's relation 
[44,45]. CO2, CH4, and N2 permeabilities were calculated at the feed condition of 2 bar, presuming 
the permeate side to be under vacuum [46], using the results of GCMC and MD simulations. 

Previous research employing the Maxwell model [30], which depends on an ideal morphology 
approximation for gas permeation, has shown a good agreement between experimental and 
simulated gas permeabilities of several MOF-based MMMs [46–48]. Therefore, we predicted the 
gas permeabilities of MMMs using the Maxwell model, as shown below: 

PMMM = PP !n × PMOF + (1-n) × PP-(1-n) × Φ × (PP - PMOF)  
n × PMOF + (1-n) × PP+n × Φ × (PP- PMOF)

" 

In the Maxwell model, n is the geometry shape factor taken as 0.3, assuming sphere-like MOF 
particles and Φ is the volume fraction of the MOF particles in the polymer matrix. PMOF is the gas 
permeability for the MOF computed by molecular simulations as explained above, PP is the gas 
permeability for the polymer and PMMM is the gas permeability for the MMM. Maxwell model is 
mostly applicable to low filler loadings (Φ <0.2) [49]. To calculate Φ in each wt% loading, densities 
of MOFs and polymer were used. 

3. Results and discussions 

3.1 Characterization of MOF and MMMs 

First, to ensure the successfulness of the post-metalation process of the MOF-525, the UV-Vis 
spectrum of the digested MOF-525, MOF-525(Co) and MOF-525(Zn) was collected and the result 
is presented in Figure 1(A). As can be seen from the result, the successfulness of the post-
metalation process can be observed by the change of the UV-Vis spectrum of the MOF-525(Co) 
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and MOF-525(Zn) from their non-metalated MOF-525, particularly in the wavelength region 
between 450-650 nm.  
 

 

Figure 1. The UV-Vis spectra of the digested MOF-525, MOF-525(Co) and MOF-525(Zn) nanoparticles (A), MOF-525 
MMM (B), MOF-525(Co) MMM (C) and MOF-525(Zn) MMM (D). 

In addition, we also investigated the UV-Vis spectra of the digested MMMs to ensure that there 
is no alteration during the membrane fabrication process and the results are presented in the 
Figure 1 (B)-(D). As can be seen, the UV-Vis spectra of the MMMs are similar with the spectra of 
their corresponding nanoparticles and thus indicating the absence of the alteration during the 
membrane fabrication process. Moreover, it can also be seen that the absorbance value of the 
MMMs corresponds to the loading of the nanoparticles and thus indicating the successfulness of 
the incorporation of the nanoparticles inside the 6FDA-DAM matrix.  

Having successfully proven the post-metalation process, the crystallinity of the MOF-525, MOF-
525(Co) and MOF-525(Zn) was also inspected by collecting their PXRD pattern with the result is 
presented in  

(A). As can be seen from the result, the PXRD peak of the non-metalated MOF-525 corresponds 
well with the simulated pattern. The same case can also be observed on the post-metalated MOF-
525, namely MOF-525(Co) and MOF-525(Zn). This case is indeed expected since the post-
metalation process is not expected to alter the crystal lattice of the MOF-525. However, it can 
also be seen that the peak relative intensity of MOF-525(Co) and MOF-525(Zn) is slightly different 
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from MOF-525. This change of form factor after the post-metalation process is expected because 
of the change in electron density resulting from replacing the metals. [24,50].  

 

 

Figure 2. The PXRD patterns of MOF-525, MOF-525(Co), and MOF-525(Zn) and the XRD patterns of the MOF-525 
MMM (B), MOF-525(Co) MMM (C) and MOF-525(Zn) MMM (D). 

The XRD patterns of the MMMs were also collected in order to examine whether the MOF 
crystallinity can still be preserved during the MMM fabrication process since it involves impactful 
steps such as mechanical stirring.  As can be seen in the results in  
 (B)-(D), for all cases, the peaks corresponding to the non-metalated and post-metalated MOF-
525 start to appear at the lowest loading, namely 2 wt%, even though these peaks are relatively 
weak considering the relatively low nanoparticles loading in this case. However, as the 
nanoparticle loading inside the MMMs increases, the peak intensity also becomes higher and this 
becoming more prominent in the case of 10 wt% MMM. These results then successfully indicate 
that the crystallinity of all the MOFs can be well-preserved during the MMM fabrication process. 
This might then be attributed to the strong coordination bonding established between the Zr as 
a high-valence metal atom with the carboxylate ligand. 

The FTIR spectra of the nanoparticles and the MMMs were also collected, and the results are 
presented in the Figure 3(A)-(D). Firstly, from the Figure 3(A), it can be seen that almost no 
difference can be observed between the non-metalated and post-metalated MOF-525. 
Meanwhile, for the case of the MMMs, it can be generally observed that the FTIR spectra of the 
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MMMs consist of the FTIR spectra of both MOFs and the 6FDA-DAM. However, differing from the 
UV-Vis spectra and XRD patterns, almost no difference observed between the MMMs loaded with 
2 wt%, 5 wt% or 10 wt% nanoparticles. This might be caused since some of the peaks from the 
MOFs and the 6FDA-DAM actually overlap.  

 

Figure 3. The FTIR spectra of MOF-525, MOF-525(Co) and MOF-525(Zn) nanoparticles (A), MOF-525 MMM (B), MOF-
525(Co) MMM (C) and MOF-525(Zn) MMM (D). 

Therefore, in order to have a better perspective for the characterization purpose, the FTIR 
difference spectra are also obtained at the wavenumber between 1600 cm-1 and 400 cm-1 by 
subtracting the FTIR spectra of the MMM with the FTIR spectra of the 6FDA-DAM. Figure 4(A)–(C) 
then presents the results for this analysis. As can be seen, differing from the previous FTIRn 
spectra, the fingerprint of the MOF-525 and post-metalated MOF-525 in the MMM can be more 
clearly seen. For all the cases, it can be observed that there is an increase in the peak intensity at 
the wavenumber around 1410 cm-1, 650 cm-1 and 480 cm-1 as the nanoparticle loading inside the 
6FDA-DAM gets higher. As previously observed in Zr-porphyrin MOFs, the peaks at wavenumber 
around 1410 cm-1 and 650 cm-1 could be attributed to the symmetric stretching of the carboxylate 
linkers and the stretching mode of the metal-ligand bonding, respectively [24,51].  
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Figure 4. The FTIR difference spectra of the MOF-525 MMM (A), MOF-525(Co) MMM (B) and MOF-525(Zn) (C) 

Lastly, the micrographs of all MMMs were also captured to analyze the MOF nanoparticles 
distribution inside the 6FDA-DAM polymeric matrix and are shown in Figure 5(A)-(I). From the 
micrographs, it can be seen that both the non-metalated and post-metalated MOF-525 can be 
quite homogeneously dispersed inside the polymeric matrix. However, this seems to only happen 
until the nanoparticle loading is 5 wt%. When the nanoparticle loading is further increased to 10 
wt%, it can be observed that nanoparticle agglomeration becomes more prominent. In this case, 
they are clustered together and are not homogenously dispersed across the polymer matrix. Such 
conditions could then impart a negative impact to the separation performance of the MMMs, as 
will be further discussed in the next section.  
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Figure 5. SEM micrographs of 2 wt% (A), 5 wt% (B), 10 wt% (C) MOF-525 MMM, 2 wt% (D), 5 wt% (E) and 10 wt% 
(F)MOF-525(Co) MMM, 2 wt% (G), 5 wt% (H) and 10 wt% (I) MOF-525(Zn) MMM. The 5 µm scalebar for all the 

figures is given in (A). 

 

3.2 CO2 separation performance of MMMs 

Having fully characterized the MOF nanoparticles and the MMMs, the CO2/N2 and CO2/CH4 
separation performance of all MMMs were then evaluated and the results are given in the Figure 
6. Firstly, as can be seen from the Figure 6(A) and (B), the CO2, N2 and CH4 permeability of the 
bare polymeric membrane is found to be around 450, 27 and 25 Barrer, respectively. Therefore, 
the CO2/N2 and CO2/CH4 selectivity of the bare polymeric membrane is found to be around 17 and 
18, respectively, which are also comparable with other reports [52–54].  
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Figure 6. The gas permeability (A) and CO2/N2 and CO2/CH4 selectivity (B) of the membranes. Figure (C) and (D) 
show the change of the CO2 permeability and selectivity against N2 and CH4, respectively, of the MMMs against the 

6FDA-DAM. 

Once the polymer is loaded with 2 wt% of MOF nanoparticles, the increase of CO2 permeability in 
all MMMs can be observed, which could be attributed to the additional gas pathway contributed 
by the MOF nanoparticles as they are embedded in the 6FDA-DAM. Therefore, such a trend 
becomes more prominent as more MOFs are added into the polymer matrix to reach 10 wt%. 
However, as can also be seen in the Figure 7(A), differing from the trend of the CO2 permeability, 
there is a tendency for the permeability of both gases to be stagnant when the MOF loading inside 
the MMMs is 5 wt% before a slight increase in their permeability occurs when the MOF loading is 
further increased to 10 wt%. 

As a consequence of the differing trend of the gas permeabilities increase, a differing trend is also 
observed regarding the CO2/N2 and CO2/CH4 selectivity. As presented in the Figure 7(B), higher 
MOF loading does not necessarily lead to improved CO2/N2 and CO2/CH4 selectivity. For all the 
cases, it can be seen that the CO2/N2 and CO2/CH4 selectivity for all MMMs reaches plateau at 5 
wt% MMMs. Once the MOF particle loading inside both MMMs is further increased to 10 wt%, a 
decrease in gas selectivity can be observed and more prominent in the case of MOF-525(Co) and 
MOF-525(Zn) MMMs rather than MOF-525 MMM.  

The diffusivity and solubility coefficient of the MMMs are then calculated to further analyze the 
gas transport and the results are depicted in Figure 7. First, it can be seen that the CO2 diffusivity 
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of the bare 6FDA-DAM is found to be around 6.4 x 10-7 cm2 s-1. Once loaded with the nanoparticles, 
a differing trend can be seen for each case of the MMM. For the MOF-525 MMM, an increasing 
trend of CO2 diffusivity from the bare polymeric membrane can be observed from around 6.7 x 
10-7 cm2 s-1 for the 2 wt% MOF-525 MMM to be around 8.2 x 10-7 cm2 s-1 for 10 wt% MOF-525 
MMM. Meanwhile, in the case of MOF-525(Co) and MOF-525(Zn), such an increasing trend is not 
very prominent. In fact, for 2 wt% MOF-525(Co) and MOF-525(Zn) MMM, the CO2 diffusivity 
slightly decreases from the bare polymeric membrane to be around 5.5 x 10-7 cm2 s-1 and 5 x 10-7 
cm2 s-1, respectively. The CO2 diffusivity of the 5 wt% MOF-525(Co) and MOF-525(Zn) MMM then 
increases to be around 5.8 x 10-7 cm2 s-1 and 6.3 x 10-7 cm2 s-1, respectively. A significant increase 
in the CO2 diffusivity for the post-metalated MOF-525 MMM can be observed at the highest 
particle loading when it reaches 8.2 x 10-7 cm2 s-1 and 1 x 10-6 cm2 s-1 for MOF-525(Co) and MOF-
525(Zn) MMM, respectively. 

 

Figure 7. The CO2 (A), N2 (B) and CH4 (C) diffusion and solubility coefficient and the CO2/N2 and CO2/CH4 diffusivity 
and solubility selectivity (D) of the membranes 

As in the case with CO2 diffusivity, there is also a differing trend regarding the N2 and CH4 
diffusivity of the MMMs. For the 2 wt% MOF-525 MMM, the diffusion coefficient of both N2 and 
CH4 increases from 2.7 x 10-7 cm2 s-1 and 1.2 x 10-7 cm2 s-1 to be around 4 x 10-7 cm2 s-1 and 1.5 x 
10-7 cm2 s-1, respectively. Differing from the MOF-525 MMM, there is no significant change 
observed regarding the N2 and CH4 diffusivity for both MOF-525(Co) and MOF-525(Zn) MMM. 
Upon further increase of the MOF loading to 5 wt%, the N2 and CH4 diffusivity for both MOF-
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525(Co) and MOF-525(Zn) MMM starts to increase to be around 4.3 x 10-7 cm2 s-1 and 1.4 x 10-7 
cm2 s-1, respectively. At the highest particle loading, the N2 and CH4 diffusivity of all the MMMs 
show a significant increase from its bare polymeric membrane to be around 4.5 x 10-7 cm2 s-1 and 
2 x 10-7 cm2 s-1, respectively.  

Meanwhile, the CO2 solubility of the 6FDA-DAM is found to be around 7 x 108 cm3STP cm-3 cmHg-

1. Differing from the CO2 diffusivity trend, an increase in the CO2 solubility for all the cases of 2 
wt% MMM can be observed. In this case, the CO2 solubility of 2 wt% MOF-525, MOF-525(Co) and 
MOF-525(Zn) MMM is found to be around 7.8 x 108 cm3STP cm-3 cmHg-1, 9.1 x 108 cm3STP cm-3 
cmHg-1 and 9.5 x 108 cm3STP cm-3 cmHg-1, respectively. However, such an increasing trend can no 
longer be observed at higher nanoparticle loading. At 5 wt% nanoparticles loading, the CO2 
solubility for MOF-525, MOF-525(Co) and MOF-525(Zn) MMM decreases to be around 7.1 x 108 
cm3STP cm-3 cmHg-1, 8 x 108 cm3STP cm-3 cmHg-1 and 7.7 x 108 cm3STP cm-3 cmHg-1, respectively. A 
further decrease can then be seen for all the cases of 10 wt% MMM where the CO2 solubility for 
MOF-525, MOF-525(Co) and MOF-525(Zn) MMM is found to be around 7 x 108 cm3STP cm-3 cmHg-

1, 5.5 x 108 cm3STP cm-3 cmHg-1 and 5.4 x 108 cm3STP cm-3 cmHg-1, respectively. 

In contrast to the CO2 solubility trend, both N2 and CH4 solubility show a decreasing trend for all 
the case of the MMMs. The N2 and CH4 solubility of the bare 6FDA-DAM is found to be around 9.6 
x 107 cm3STP cm-3 cmHg-1 and 2.1 x 108 cm3STP cm-3 cmHg-1, respectively. For the 2 wt% MMMs, 
the N2 and CH4 solubility decrease to be around 8.8 x 107 cm3STP cm-3 cmHg-1 and 2 x 108 cm3STP 
cm-3 cmHg-1, respectively. When the particle loading is increased to 5 wt%, the decrease in N2 
solubility is more pronounced in the case of MOF-525(Co) and MOF-525(Zn) MMM to be around 
5.6 x 107 cm3STP cm-3 cmHg-1 in comparison to the MOF-525 MMM with N2 solubility 7.4 x 107 
cm3STP cm-3 cmHg-1. Meanwhile, the CH4 solubility for all the 5 wt% MMMs is found to be around 
1.5 x 108 cm3STP cm-3 cmHg-1. At the highest particle loading, the N2 and CH4 solubility of the MOF-
525 MMM is found to be around 6.5 x 107 cm3STP cm-3 cmHg-1 and 1.6 x 108 cm3STP cm-3 cmHg-1, 
respectively. Meanwhile, the N2 and CH4 solubility values are found to be around 6 x 107 cm3STP 
cm-3 cmHg-1 and 1.2 x 108 cm3STP cm-3 cmHg-1, respectively, in the case of MOF-525(Co) and MOF-
525(Zn) MMM. 

The differing trend of the diffusion and solubility coefficient exhibited by the MOF-525, MOF-
525(Co) and MOF-525(Zn) MMMs then also result in the differing trend of their diffusivity and 
solubility selectivity, which is presented in the Figure 7 (C) and (D), respectively. The CO2/N2 and 
CO2/N2 diffusivity selectivity of the bare 6FDA-DAM is found to be around 2.3 and 5.3, 
respectively. Meanwhile, the CO2/N2 and CO2/CH4 solubility selectivity of this membrane is found 
to be around 7.3 and 3.3, respectively. Once loaded with 2 wt% of the nanoparticles, there is 
barely any change observed regarding the diffusivity selectivity of all the MMMs. In contrast, a 
significant change can be observed in the solubility selectivity, more prominently in the post-
metalated MOF-525 MMMs. In this case, the CO2/N2 and CO2/CH4 solubility selectivity of 2 wt% 
MOF-525(Co) can be significantly increased to be around 10 and 4.5, respectively. The same trend 
is also exhibited by the 2 wt% MOF-525(Zn) MMM where the values increase to be around 11.16 
and 4.8, respectively.   

When the particle loading is further increased to 5 wt%, it can be firstly seen that the diffusivity 
selectivity of the MOF-525 MMM changes slightly from the bare 6FDA-DAM. However, a 
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significant improvement on the solubility selectivity can now be observed. In the case, the CO2/N2 
and CO2/CH4 solubility selectivity of the 5 wt% MOF-525 MMM increases to be around 9.7 and 
5.3, respectively. Meanwhile, in the case of 5 wt% MOF-525(Co) and MOF-525(Zn) MMM, the 
diffusivity selectivity is significantly lower than the bare 6FDA-DAM. The CO2/N2 and CO2/CH4 
diffusivity selectivity for both MMMs are found to be around 1.4 and 4.3, respectively. In contrast, 
the solubility selectivity of both MMMs continues to increase in comparison to the 2 wt% MMM. 
The CO2/N2 and CO2/CH4 solubility selectivity are then found to be around 14 and 4.9, respectively. 

Upon further increasing the nanoparticle loading to be 10 wt%, both the diffusivity and solubility 
selectivity of MOF-525 MMM show only a slight change in comparison to the 5 wt% MOF-525 
MMM. A contrasting situation, on the other hand, can be seen in both 10 wt% MOF-525(Co) and 
MOF-525(Zn) MMM. In both cases, it can be seen that, although the diffusivity selectivity of both 
membranes barely changes, there is a significant decrease on the CO2/N2 and CO2/CH4 solubility 
selectivity for both membranes. For the 10 wt% MOF-525(Co) MMM, both values drop to be 
around 9.4 and 4.6, respectively. Meanwhile, the values for 10 wt% MOF are found to be around 
8.6 and 4.5, respectively.  

Analyzing from these results, it could then be firstly inferred that the improvement of CO2/N2 and 
CO2/CH4 selectivity for all the MMMs is likely caused by the improvement of CO2 solubility. This is 
evident by the prominent increase of the solubility selectivity while the value of the diffusivity 
selectivity barely changes or even decreases for some cases, such as in the case of 5 wt% MOF-
525(Co) and MOF-525(Zn) MMM. The improvement of CO2 solubility then becomes more 
prominent in the case of post-metalated MOF-525 MMMs since this positive impact can readily 
be observed at low particle loading, namely 2 wt%. This then highly indicates the beneficial aspect 
of employing post-metalated MOF as nanofillers in a MMM.  

However, when the nanoparticles loading inside the polymeric matrix is increased to 10 wt%, the 
positive impact coming from the CO2 solubility improvement is now impaired by the presence of 
non-selective defects in the MMM. This is more prominent in the case of MOF-525(Co) and MOF-
525(Zn) MMM rather than in the case of MOF-525 MMM as the former experiences a more 
significant decrease in CO2 solubility selectivity than the latter. Consequently, the overall 
selectivity of the 10 wt% MOF-525(Co) and MOF-525(Zn) is the lowest when compared with the 
MMMs loaded with 2 wt% and 5 wt% MOF-525(Co) and MOF-525(Zn).  

We then also performed a molecular simulation as a resource to offer valuable insights into gas 
permeation through MOF-based MMMs. Validating computational methodologies for predicting 
gas permeation through membranes necessitates comparing simulation results with experimental 
measurements for various separations. Molecular simulations of MOFs were conducted under 
identical pressure and temperature conditions as the experiments and then gas permeabilities 
were computed. The comparison of experimental CO2, CH4, and N2 permeabilities of MMMs with 
the predictions of the Maxwell model are presented in the Figure 8. From the results it can be 
seen that the Maxwell model overestimates the experimental gas permeabilities particularly at 5 
wt% and 10 wt% loadings since particle agglomeration was observed in the experiments after 5 
wt%. This is attributed to the assumptions that MOFs were modeled as defect-free crystals during 
molecular simulations and perfectly compatible within MMMs as considered in the Maxwell 
model [31]. Recent studies have demonstrated that when the gas permeability of a polymer 
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(approximately 450 Barrer for CO2) is significantly lower than that of pure MOF (4.36 x 104 Barrer 
for MOF-525), the maximum gas permeability of the MMM calculated using the Maxwell model 
is up to two times higher than the permeability of the pure polymer [47,89], which aligns with the 
results presented in the Figure 8. 

 

Figure 8. Comparison of experimental pure gas permeabilities of CO2 (A), CH4 (B), and N2 (C) in MOF-525, MOF-
525(Co), and MOF-525(Zn)/6FDA-DAM MMMs with the predictions acquired from Maxwell model. 

Lastly, to put the performance results of the MMMs used in this study into a perspective, their 
performance in relation to the upper bounds is also given in the Figure 9 [5,55] and compared 
with other MOF MMMs used for CO2/N2 and CO2/CH4 separation [56–87]. First, from the Figure 
9(A) and (C), it can be seen that the MMMs in this study is located at the lower right corner of the 
diagram and thus indicating a satisfactory CO2 gas permeability, which is indeed an intrinsic 
feature of the 6FDA-DAM and thus can perform better than other MMMs fabricated with other 
glassy polymers such as Matrimid [59,72,83,88] or polysulfone [66,76] that usually show a 
relatively low CO2 permeability. Looking closely on the separation performance of the MMMs, it 
can be seen from the Figure 9(B) and (D) that both the CO2/N2 and CO2/CH4 selectivity of the bare 
polymeric membrane can be enhanced so they are closer to the both 2008 and 2019 Upper 
Bound. However, the enhancement obtained by embedding the MOF-525 inside the matrix is not 
sufficient to surpass both upper bounds. This might then indicate that higher MOF loading might 
be necessary to simultaneously increase the gas permeability and selectivity. However, as has 
been previously discussed, there is a tendency for interfacial imperfections once the MOF loading 
reaches 10 wt% and thus a deterioration in membrane performance is very likely to be seen when 
the MOF loading is made higher. Despite this, it is worth to note that, in our case, only a relatively 
low loading of MOF nanoparticles in the range of 2-5 wt% is necessary to improve the 
performance of the bare polymeric membrane and thus resulting in the simultaneous 
improvement of gas permeability and selectivity. For example, as also illustrated in the Figure 6 
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(C) and (D), in the case of 2 wt% post-metalated MOF-525 MMM, the CO2 permeability and 
selectivity against N2 and CH4 can be simultaneously improved up to 10% and 25%, respectively, 
to be around 494 Barrer and in the range of 20-22, respectively. Using the same polymer and ZIF-
301, as an example, around 20 wt% of the particle loading is required to increase the CO2 
permeability and CO2/CH4 selectivity around 37.5% and 31%, respectively [81]. In another 
investigation using polysulfone as a polymer, even though the CO2 permeability of the membrane 
can be significantly increased up to more than 100% using 16 wt% of ZIF-8 and HKUST-1, an 
improvement in CO2 selectivity against N2 and CH4 can be barely observed [66]. This then might 
indicate the high efficiency of using post-metalated MOF-525 nanoparticles to simultaneously 
improve the CO2 permeability and selectivity of a polymeric membrane because of the presence 
of the metal center in the porphyrin ring to increase the CO2 solubility of the MMMs. Therefore, 
if the interfacial defects issue can be solved, it could be expected that the performance of the 
resulting MMM could also be further enhanced by incorporating these nanoparticles.  

 

Figure 9. The CO2/N2 (A and B) and CO2/CH4 (C and D) separation performance of the membranes used in this study 
evaluated against the 2008 and 2019 upper bound [56–87]. The data for this graph can be seen in the Table S1 in 

the Supporting Information. 

4. Conclusions 

In summary, our study demonstrates that incorporating MOF-525 and its post-metalated variants, 
MOF-525(Co) and MOF-525(Zn), positively impacts the CO2/N2 and CO2/CH4 gas separation 
performance of 6FDA-DAM membranes. For the post-metalated MOF-525 MMM, an initial 
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improvement in performance is observed at a relatively low nanoparticle loading of 2 wt%. 
However, the positive trend of the gas separation performance does not continuously increase 
with increasing nanoparticle loading. For the highest nanoparticles loading of 10 wt%, a slight 
decrease in the gas separation performance from the 5 wt% MMMs can be observed, indicating 
the presence of non-selective voids in the MMMs. Using molecular simulations and the Maxwell 
permeation model, gas permeabilities of the MMMs were theoretically predicted and shown to 
overestimate the experiments, particularly at high particle loading. We speculate that the 
discrepancies between the experimental results and those predicted by the Maxwell model at 
high particle loading result from non-ideal conditions within the MOF MMM at the maximum 
loading used in this study. This observation underscores the importance of keeping the particle 
loading under 5 wt% for these specific MMMs, where conditions remain near-ideal, thereby 
allowing the Maxwell model to more accurately predict their gas separation performance. Despite 
this, it can also be seen that the metalated MOF-525 are very efficient to simultaneously improve 
the CO2 permeability and selectivity of the bare polymeric membrane since this can be 
incorporating them at relatively low loading at 2 wt%. If the issue of interfacial defects can be 
effectively addressed, the CO2 separation performance of the MMMs using these metalated MOF-
525 could then be further increased. 
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