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Metabolite identification and quantification in biological samples are crucial for understanding biochemical processes, 

disease mechanisms, and biomarker discovery. While targeted metabolomics focuses on specific compounds, untargeted 

metabolomics comprehensively assesses the entire metabolome. Liquid chromatography hyphenated with high-resolution 

mass spectrometry (LC-HRMS) has become a powerful tool for untargeted metabolomics due to its ability to detect various 

chemicals. LC-HRMS combines liquid chromatography's separation capabilities with mass spectrometry's high-resolution 

mass analysis. MS1 spectra, acquired in LC-HRMS, provide detailed mass-to-charge ratio information for detected ions, 

enabling simultaneous profiling of metabolites without prior knowledge of their structures or retention times. Pre-

processing steps and feature detection algorithms are applied to raw MS1 spectra, facilitating downstream analysis, 

including statistical analysis, metabolite annotation, and pathway mapping. The choice between profile and centroid scans 

for MS1 data acquisition entails trade-offs in resolution, data complexity, and processing requirements. Several software 

tools have been developed to handle LC-HRMS data, providing functionalities for pre-processing, peak detection, metabolite 

identification, and statistical analysis. This article presents Finnee2024, a Matlab toolbox for analysing profile scan-based 

MS1 data. The toolbox allows good coverage, low false positives, and improved visualisation and control of extracted 

features. It offers enhancements over previous versions, facilitating faster calculations and leveraging the advantages of 

profile scans. The article highlights the changes in Finnee2024 using datasets from a comparative study of software packages, 

demonstrating its performance and usability.

Introduction 

 

Identifying and quantifying metabolites in biological samples is 

essential for understanding underlying biochemical processes, 

elucidating disease mechanisms, and discovering potential 

biomarkers.1,2 Targeted metabolomics approaches focus on 

analysing known or expected chemicals, limiting the scope to 

pre-selected compounds. On the other hand, untargeted 

metabolomics provides an unbiased and comprehensive 

assessment of the entire metabolome, offering the opportunity 

to discover novel biological pathways and explore the intricate 

interactions within biological systems.3,4 

In recent years, liquid chromatography hyphenated high-

resolution mass spectrometry (LC-HRMS) has emerged as a 

powerful tool for untargeted metabolomics due to its ability to 

separate and detect a wide range of chemicals in complex 

matrices.5 LC-HRMS combines the chromatographic separation 

capabilities of liquid chromatography (LC) with the high-

resolution mass analysis provided by mass spectrometry 

(HRMS). HRMS instruments offer superior mass accuracy, 

resolution, and sensitivity, enabling the detection of 

metabolites at trace levels.6 One of the approaches to LC-HRMS-

based untargeted metabolomics is the acquisition of MS1 (or 

full scan) spectra, which provide detailed mass-to-charge ratio 

(m/z) information for all ions detected within a given mass 

range. Collecting MS1 spectra makes it possible to 

simultaneously profile a wide range of metabolites without 

prior knowledge of their structures or retention times. MS1 

spectra can be processed using sophisticated data analysis tools 

to extract valuable information about the detected metabolites' 

presence, abundance and potential identity. Compared to MSn 

acquisition modes, MS1 offers increased coverage, sensitivity, 

and simplified data interpretation and analysis.7 However, MSn 

provides better structural information and specific patterns, 

allowing for better identification.  

 

Analysis of such data is performed using computerised tools. 

After data acquisition, the raw MS1 spectra are subjected to 

pre-processing steps, including noise removal, baseline 

correction and peak alignment, to improve data quality and 

comparability.8 Feature detection algorithms are then applied 

to identify metabolite peaks in the spectra and generate a list of 

detected features represented by their respective m/z values, 

retention times and intensities. This feature list forms the basis 

for downstream data analysis, including statistical analysis, 

metabolite annotation and pathway mapping.9,10 While MS1 

scans are the starting objects, these can be either profile scans 

or centroid scans. Each approach has advantages and 

considerations that are important to understand for practical 

untargeted metabolomics analysis. Profile scans, also known as 

continuum scans, record the entire mass spectrum, capturing 

detailed information about the intensity distributions of the 

multiple ions separated at a given time in the separation by the 

mass analyser (ion peak) across the m/z range. In profile scans, 

each ion peak is described by multiple points, providing a high-

resolution representation of the separation in the mass analyser 
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at any time. The advantages of profile scans for untargeted 

analysis include high mass accuracy, fine resolution, and 

improved quantification.11 However, the scan files are larger 

than centroid scans and more complex to analyse.  

 

Centroid scans, also known as centroided or peak-picked scans, 

convert each ion peak in the MS1 scans into discrete data points 

representing each peak's centroid (centre). Centroid scans 

record only the m/z positions and intensity information of each 

detected MS peak, drastically reducing the file size and allowing 

faster data processing. However, there is potentially a 

substantial loss of information, with peak overlap becoming 

undetectable.12 Most instrument software can export MS1 data 

as either centroid or profile scans. Freeware can also convert 

proprietary files into profile or centroid scans in the open mzML 

format.13,14 

 

Several freeware tools have been developed to facilitate 

untargeted analysis of LC-HRMS data with MS1 or MSn scans. 

XCMS,15 MZmine,16 OpenMS,17 MSdial18 and MetaboAnalyst19 

are among the most widely used software frameworks 

providing comprehensive functionalities for pre-processing, 

peak detection, metabolite identification and statistical analysis 

of untargeted metabolomics data. These tools have proven 

invaluable resources for researchers to unravel complex 

metabolic networks and identify potential biomarkers. It should 

be emphasised that while centroid and profile scans can be 

used, with most software, the first step will be to convert every 

profile scan to centroid.  

This article aims to present the latest version of Finnee, a 

Matlab toolbox for analysing MS1 scans acquired by LC-HRMS.20 

While Finnee offers similar functionalities to other freeware, it 

specifically aims to work with MS1 scans acquired as profile 

scans, providing better coverage and fewer false positives while 

allowing better control of the quality of the extracted 

features.21,22 The critical step that allowed efficient working 

with profile scans was to use a master m/z axis, estimated from 

the data, and to interpolate all MS scans to this master axis. The 

new version of Finnee, Finnee2024, presented in this article, is 

a complete rewrite of the previous toolbox, allowing faster 

computations and taking full advantage of profile scans. The 

changes are highlighted in the text and illustrated with the data 

provided by Li and coworkers.23 They use 1100 compounds, 

with 130 of them at varying concentrations, separated by LC-

HRMS (Orbitrap - Thermo Q exactives). Each mixture was 

analysed five times. The original data files are freely available 

for download. Their manuscript compared the performance of 

five software packages. Those data will validate and compare 

the Finnee version with other existing approaches. 

Finnee2023 Objectives and Data Structures  

Core objectives. Features mining and alignment that aims to extract 

features consistent with chromatographic peaks from HRMS 

datasets and align them across multiple datasets is an essential step 

in metabolomics. The results of this step are used to detect isotopic 

and adduct patterns and merge all features originating from the 

same compound into a single group, identify and annotate putative 

molecular formulae, test for significant differences between two or 

more populations and identify important features between these 

observed differences. Not only is the correct identification and 

alignment of key features essential, but precision and accuracy in 

measuring key chromatographic figures of merit, such as areas, 

accurate masses, and migration time, are also necessary. However, 

error rates can be high in untargeted analysis, where thousands of 

peaks per dataset within, ideally, hundreds of datasets. In addition, 

classical chromatographic optimisation to maximise precision (e.g. 

resolution greater than 1.5) is not possible.24 To address this 

limitation, Finnee2024 has been designed with the following 

objectives: 

1. Transparency. Each transformation is recorded in detail, 

allowing for the visualisation of data integrity and data loss. 

2. Error analysis. Errors are inherent in large-scale 

metabolomics. Finnee is equipped with algorithms that 

detect and visualise potential errors. 

3. Flexibility to re-analyse individual features as required. 

Finnee2023 is not a closed pipeline but a series of individual 

functions that can be tailored to the specifics of a given study. 

However, the toolbox and all associated functions have been 

designed solely to process MS1 data acquired as profile scans. 

The input file should be in mzML format. 

 

Data structure. The data structure reflects these core 

objectives. The data structure has been redesigned from the 

previous version to facilitate parallel computing and allow 

profile scans to be processed even with large-scale 

metabolomics studies that may involve processing thousands of 

datasets. 

With Finnee2024, each file part of a large study can be 

processed independently, allowing easy parallelism. For each 

mzML file obtained for the original instrumental data, a folder 

with a user-defined name and a "fin" extension is created. This 

folder will contain two Matlab files; "AquisitionData.mat" will 

include all the metadata associated with the original mzML file, 

and "myFinnee.mat" is a Matlab object that will summarise any 

transformation done on the original data as well as archiving 

any used parameters. A subfolder within this folder is created 

with the generic name <Dataset1>. This folder contains two 

files; the one called "infoDataset.mat" has information about 

the dataset, such as the date of creation, options for creations, 

labels and units for the m/z, time and intensity axis. It also 

contains information allowing loading the binary file  

"Profiles.dat". This file contains the name of each MS scan file 

recorded as a profile scan and its corresponding time of 

acquisition together with simple descriptors such as the total 

intensity and maximum intensity in each MS scan, allowing to 

obtain the total ion profile (TIP) and base peak profile (BPP). Per 

IUPAC, we have used the term profile rather than 

chromatogram to include electropherogram or any traces 

obtained from a separation device.25 Additional two-

dimensional representations of the date can easily be added. 

Individual MS scans are stored in binary files in an additional 

sub-folder <Scans> with the generic name "Scan#X.dat". The 
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size of each binary file is stored in "Profiles.dat" for quick 

retrieval of information. A schematic of the Finnee2024 data 

chart is given in Scheme 1. Such structure allows to rapidly 

calculate extracted ion profiles or obtained targed scans as only 

the necessary information has to be retrieved. However, the 

primary rationale for such a data structure was to allow for 

recording any data transformation. Those are recorded in new 

folders named <Dataset2>, <Dataset3>,…, <DatasetX> with the 

same structure as in <Dataset1>, allowing to compare any MS 

scans or profiles between each transformation and assess data 

loss. Scheme 1 illustrates the four datasets used in this work, 

with <Dataset1> corresponding to the MS scans as acquired by 

the instruments, <Dataset2> the MS scans and associated 

profiles after alignment to the master mz axis, <Dataset3> the 

MS scans after baseline correction and the <Dataset4> the MS 

scans after noise removal. Additional transformation can easily 

be added. The ones used in this work are detailed below. 

 

 
Scheme 1. Schematic representation of the data structure of a Finnee file. 

Main transformations and associated datasets 

The datasets obtained in Scheme 1 correspond to the data after 

various global transformations. While this can easily be tailored 

to one needs, the following ones were used. The first dataset 

corresponds to the data as recorded by the MS instrument. 

Dataset2: Linear Interpolation to Master m/z Axis. This first 

transformation is the main originality of the Finnee approach. It 

consists of two steps: first, a master m/z axis is generated using 

the experimental data, and then MS1 scans are interpolated to 

this master m/z axis, thus providing the same axis for all spectra 

within the same dataset.  

In the first step, the master m/z axis is created from the scan 

with the most information. The m/z profile scan axis cannot 

readily be used as portions with null intensities are missing. To 

build the master axis, the value of the differences of m/z 

between two successive m/z with non-null intensities is 

extracted. A polynomial is fitted to this data to predict the m/z 

increment as a function of the m/z value. More than 10,000 

data points can be obtained from one MS spectrum in an 

orbitrap file to build the master m/z axis. Results are shown in 

Figure 1. 

 

  
Figure 1. m/z as a function of m/z calculated from one MS scan. The circles correspond 

to the experimental data (n = 10241) and the line to the fitted polynomial.  


m
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The polynomial is then used to obtain the completed m/z axis. 

This axis is a vector with 552,377 points in the orbitrap dataset 

recorded in <Dataset2>  as "MasterMZAxis.dat" 

Each MS1 scan in the original dataset is then interpolated using 

a linear spline, and the new scan is recorded in the new dataset, 

<Dataset2>. Following the intensity variation at a specific m/z 

over time is now possible with such a transformation. Emphasis 

should be placed on this approach, which does not involve a 

bucketing approach where all intensities with a set m/z interval 

are summed in a single bucket. Here, we maintain the spatial 

resolution where multiple points describe each ion peak's m/z 

positions and intensities. By analogies, we named the profile 

obtained at a specific m/z,  single mz profile (SmzP). The folder 

<Dataset2> contains similar information as <Dataset1>, but a 

new file is now used: "Spectra.dat". While "Profile.dat" contains 

information about profiles, that is, variation of information as a 

function of time (total ion profile, base peak profile,…), 

"Spectra.dat" contains information about spectra, which is a 

variation of information as a function m/z that can now be 

calculated. For example, the Total Intensity Spectra (TIS) is the 

sum of all intensities recorded at any time at a specific m/z, and 

the Base Intensity Spectra (BIS) is the maximum intensity 

recorded at any time. Those two spectra allow for pinpointing 

relevant SmzP. However, an essential spectrum is the Maximum 

Continuous Profile (MCP), which records for each m/z the most 

extended sequence of non-null intensity. This representation 

allows the differentiation of SmzP, where only spikes are 

present, from SmzP with probable chromatographic peaks and 

SmzP with background ions. For example with SA1.mzml, one of 

the files from the orbitrap dataset, out of the 490,031 SmzP that 

have non-null intensities, 293,282 of them do not have a 

continuous sequence of points with non-null intensities higher 

than 3, 192,347 of them have at least one sequence of non-null 

intensity between 4 and 500, and 4,402 of them have, at least, 

one sequence of points of non-null intensities higher than 500. 

500 has been chosen as a threshold because it is roughly 10 % 

of the total time axis length (5824). Such information allows us 

to remove and calculate the MS base noise (bNoise) due to 

random spikes in the absence of any ions entering the mass 

analyser and select the SmzP that may need to be corrected for 

baseline drift. This is illustrated in Figure 2, with one 

representative file from the orbitrap dataset.

 

Figure 2. Base peak profiles were obtained with (A) all data, (B)  using SmzP with continuous non-null intensity between 3 and 500, (C) using SmzP with continuous non-null intensity 

below 3, and (D) using SmzP with continuous non-null intensity higher than 500. In (C), the continuous line represents the bNoise.

 

Dataset3: Baseline Drift Correction. The following dataset is 

obtained after correction of the selected SmzP for baseline drift. This 

part also allows us to estimate the background noise at every m/z. 

For SmzP corrected for baseline drift, the noise is calculated as twice 

the standard deviation of the point detected as baseline intensity. 

For the other, it is the value of the minimal noise, calculated as twice 

the standard deviation of all non-null intensities in SmzP with MCP < 

3. This approach limits the number of profiles to be corrected for 

baseline drift. While many algorithms have been developed,26 for the 

moment, only the symmetrically reweighted penalised least squares 

(arPLS) has been implemented. 27 

Dataset4: Noise removal. The noise removal step used in the 

previous version of Finnee, Finnee2016, has been optimised, 

allowing an x2 time gain. As in the earlier version, the intensity at 

every m/z in every spectrum is scanned and set to zeros if its intensity 

and the intensities of neighbouring points (in the m/z and time 

dimension) are below ten times the noise, allowing a decrease in the 

quantity of data drastically. Here, for example, while the size of the 

A 

B 

C

C

D

C
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scan folder is 997 MB in <Dataset1>, it is reduced by 3 to 314 MB in 

<Dataset4> without losing important information. This is illustrated 

in Figure 3, within A the original TIF, B the TIF after baseline 

correction and noise removal, and C the difference between the two 

profiles. 

 

Figure 3. Comparison of the total ion profiles (TIP), (A) after alignment to the master mz 

axis and (B) after baseline drift correction and noise reduction. The profile displayed in 

(C) corresponds to the difference between both profiles.  

Region of Interests and Feature List. The feature extraction takes 

advantage of the thorough data cleaning performed previously. 

Features are obtained in two steps. First, regions of interest (ROI) are 

extracted from the noise-corrected dataset. ROIs are defined as 

areas within the time and m/z space with non-null intensities 

surrounded by null intensities. Each ROI is recorded as an mxn matrix 

and saved as binary files in a new folder. A set of descriptors is 

recorded in the file myROIs for each ROI.mat (see Scheme 1, allowing 

assessing the relevance of each ROI. ROI may contain noise and one 

or more chromatographic features. ROI can be independently 

visualised. A random forest ML approach has been developed to 

allow a prefiltration of the ROI based on those descriptors. Users are 

first asked to label a random selection of more than 150 ROIs to 

discard or to keep. Examples of ROIs are displayed in Figure 4. It 

should be emphasised that some may be difficult to classify (Figure 

4D) and will depend on the user's choice. It should be emphasised 

that ROIs are extracted as surfaces surrounded by null intensity 

points. As such, ROIs may contain more than one peak if they are not 

baseline-separated (Figure 4C). This is normal, and ROIs will be 

further processed in the next step. 

The labelling stops when each class contains at least 75 ROI (this 

value can be changed). Label ROI are then separated into training 

(66% of the data) set and test (33% of the data). A random forest 

model is optimised with the training set and validated with the test 

set. In this example, an accuracy of 82.0% was obtained (false 

negative: 6%, false positive 12%, n = 50), allowing filtering of 50 % of 

the ROI (from 41,568 ROI to 20,861). Individual features that should 

be single chromatographic peaks are extracted from the ROIs by 

determining the limits of the peak's surfaces (chromatographic peak 

x ms peak). Different figures of merits are calculated from those data, 

including the peak volume, the centroid position in the m/z axis, 

allowing the calculation of the accurate masses, the centroid position 

in the time axis, allowing the calculation of the retentions, as well as 

the peaks' variances in both dimensions.  

 

Figure 4. Representative examples of ROI, with (A) only noise or (B) and (C) one or 

multiple chromatographic peaks. (D) is an example of hard-to-label ROI, which may 

depend on the user's decision. 

Project and Validation 

Master Finnee, Project, and merged Feature Lists. While it is 

necessary to optimise all steps described previously using the output 

of an LCMS experiment representative of the complete study, those 

steps can then be performed to all output of all experiments 

belonging to a study, as long as the conditions in each experiment 

are similar. This allows for leveraging the parallel computing toolbox 

and speeds up the whole analysis. The finnee file, with a structure 

similar to scheme 1, will be used as a template and is named the 

Master Finnee. All Finnee files belonging to a specific study are 

stored in an umbrella folder and linked to an object that will record 

basic information such as the name and location of all the original 

mzML files and the location of all output of the Finnee file. Features 

lists from all finnee files are aligned to obtain quantitative variation 

in each experiment. Average accurate mass, migration time, peak 

variances, and their standard deviation are calculated. 

Validation with orbitrap files. The performance and accuracy of the 

Finnee2024 toolbox were measured using data provided by Li and 

coworkers. Out of the 1100 compounds used to build the test 

mixture, they demonstrated that 836 can be accurately detected and 

quantified using a targeted approach. These are present in 10 

experiments grouped into two series (SA1-SA5 and SB1 and SB5). The 

concentrations of some of the compounds are varied between the 
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two series. The authors also provided an Excel file with, for each of 

the features, the theoretical accurate mass, the retention time and 

the theoretical concentration ratio between the SB and SA series, 

and the experimental ratio calculated using a targeted approach, 

thus providing two different validation tools, first a qualitative 

validation based on the number of features that were accurately 

detected with a mass difference lower than 10ppm and a retention 

time difference lower than 0.3 min between the theoretical values 

and the ones obtained using an untargeted approach. Features were 

assumed to be accurately quantified if the SB/SA ratio difference was 

lower than 20% between the values obtained using the targeted 

approach and the untargeted pipeline. The optimised parameters for 

the Finnee2024 approach are supplementary information in the 

short tutorial. With Finnee2024, 27947 common features were 

extracted from the ten files. Of those, 817 matched the expected 

features, and 711 (27947, 817/711) of those matched the expected 

concentration ratio. This compared favourably with leading software 

such as XCMS (35215, 820/731), MZMine 2 (20021, 769/761), MS-

Dial (21545, 799/654) and compounds discoverer (10525, 748/482). 

The relatively lower quantitative performance of Finnee2024 has 

been linked to (1) the absence of missing value implementation and 

(2) the various transformations performed along the successive 

dataset to extensively correct from baseline drift and background 

noise. This was verified by performing a semi-targeted approach, 

where the 27947 features were re-analysed using a targeted 

approach with Dataset2, as the only transformation is the alignment 

to the common mz axis. The targeted approach also allows us to 

accurately measure the noise for each peak, allowing us to exclude 

peaks with a signal-to-noise ratio lower than 10. After the target 

approach, 21008 common features remain; of those, 816 matched 

with the expected compounds, and 784 matched the expected 

concentration ratio. 

Conclusions 

Unlike existing pipelines, the Finnee toolbox aims to process MS 

scans recorded as profile spectra, thus avoiding the loss of 

information inherent to the transformation from profile to 

centroid scans. The Finnee2024 new version is faster and fully 

uses the profile spectra by analysing the 3-dimensional 

chromatographic objects recorded as a region of interest (ROI). 

With the test data provided by Li and coworkers, results were 

on par with the best software as assessed by Li and coworkers.23  
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