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Abstract 

 

The development of precision polymer synthesis has facilitated access to a diverse library of 

abiotic structures, wherein chiral monomers are positioned at specific locations within 

macromolecule chains. These structures are anticipated to exhibit folding characteristics similar 

to biotic macromolecules and possess comparable functionalities. However, the extensive 

sequence space and numerous variables make selecting a sequence with the desired function 

challenging. Therefore, revealing sequence-function dependencies and developing practical 

tools are necessary to analyze their conformation and molecular interactions. In this study, we 

investigate the effect of stereochemistry, which dictates the spatial location of backbone and 

pendant groups, on the interaction between sequence-defined oligourethanes and bisphenol A 

ligands. Various methods are explored to analyze the receptor-like properties of model 

oligomers and the ligand. The accuracy of molecular dynamics simulations and experimental 

techniques is assessed to uncover the impact of discrete changes in stereochemical 

arrangements on the structure of the resulting complexes and their binding strength. Detailed 

computational investigations providing atomistic details show that the formed complexes 

demonstrate significant structural diversity depending on the sequence of stereocenters, thus 

affecting the oligomer-ligand binding strength. Among the tested techniques, the fluorescence 

spectroscopy data, fitted to the Stern-Volmer equation, are consistently aligned with the 

calculations, thus validating the developed simulation methodology. The developed 

methodology opens a way to engineer the structure of sequence-defined oligomers with 

receptor-like functionality to explore their practical applications, e.g., as sensory materials. 
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1. Introduction 

Sequence-defined polymers term was recently formulated to describe a macromolecule species 

whose length is discrete and the order of monomeric units within a chain is strictly specific.1–4 

Archetypical representatives of these chemical species are naturally occurring polymers, i.e. 

proteins and nucleic acids. Non-natural building blocks and backbones broaden the scope of 

macromolecular structures thanks to advancements in precision polymer synthesis.5–8 

Backbone structure may range from bioinspired peptoids9,10, or polyphosphates11 to novel 

chemical moieties, i. e., triazoles12–14, urease15, urethanes16–19, ethers20,21,, esters22,23, or π-

conjugated oligomers.24–27 Applying chiral monomers enables full control over the 

stereochemistry of macromolecules.12,18,28–31 Consequently, primary structure control and 

stereochemistry are emerging as promising tools to induce functionalities in abiotic 

macromolecules.32 

Discrete, abiotic macromolecules have already been proven to display functions like natural 

polymers. For instance, sequence-defined polymers are used as binary information carriers 

similar to DNA storing genetic code.33–36 The encoded digital data can be revealed by mass 

spectrometry37–39 or nanopore sequencing.40 Interestingly, a relevant design of abiotic polymer 

structure enables for editing of encoded information by the light trigger.41 Besides data storage, 

such macromolecules have been used in catalysis42,43, drug delivery44–48, sensing27,49–51, 

selective binding52,53, molecular transport47,54, or as peptidomimetic foldamers.55,56 The 

biological environment, where natural macromolecules perform sophisticated functions, is 

chiral. Therefore, the stereochemistry of macromolecules should be an essential parameter for 

their function. However, the effect of stereochemistry on polymer function has not been widely 

explored. 

In general, the functionalities of biological macromolecules derive from their ability to arrange 

their chains spatially, attaining a three-dimensional structure. It is dictated by a sequence of 
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monomers characterized by various pendant substituents and stereochemistry. Stereocontrol 

opens up the possibility to influence the abiotic macromolecule interactions with the chiral, 

biological environment.53,57,58 Stereospecificity, in combination with monomer sequence 

control, offers a wide library of abiotic structures to engineer functional macromolecules in a 

broad range of chemical and physical properties. However, very little is known about the 

sequence-structure-function relationship of abiotic macromolecules, particularly those built on 

non-amide backbones. Therefore, engineering selective functionalities into abiotic polymers 

remains beyond reach due to the enormous sequence space generating multiple variables that 

impede rational structure design until effective tools for characterizing their functionalities 

become available. The lack of a precise methodology impedes the characterization of their 

structural properties and the assessment of their functionality. While taking cues from related 

protocols developed in biosciences is possible, the intricate nature of studying nuanced 

properties, both structural and functional, often renders the direct transfer of these methods 

challenging. 

Here, the impact of sequence stereospecificity on receptor-like functionalities of model 

oligourethanes towards the target molecule - bisphenol A (BPA) was investigated by 

computational and experimental methods. BPA and natural [3H]estradiol compete in the 

binding process to the estrogen receptors; therefore, it is an endocrine-disruptive substance and 

should be monitored in the environment.59,60 The verification of molecular dynamic simulation 

outcomes by experimental techniques contributed to the development of a precise, 

computational tool for the characterization of receptor-like functionalities of non-natural, 

sequence-defined oligourethanes. The developed methodology opens a way to engineer the 

structure of sequence-defined oligomers with receptor-like functionality to explore their 

practical applications, e.g., as sensory materials. 
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2. Results and Discussion 

Library of model oligourethanes with one (OU1-OU4, Fig. 1) or two mutations (OU5-OU7, Fig 

S1) of stereocenters were evaluated towards an ability to bind BPA ligand. Following the 

peptidomimetic nomenclature, studied molecules may be considered γ-peptide derivatives61–63. 

The resonance stabilization of the urethane bond tends to foster a planar conformation64, which 

promotes the folding of those scaffolds. Therefore, we hypothesized that oligourethane 

scaffolds built from chiral monomers can attain a specific set of shapes in solution depending 

on the arrangement of stereochemically distinct monomers that affect their interactions with the 

ligand. Oligourethane sequences with methyl and benzyl pendant substituents are assumed to 

exhibit attractive interactions with the BPA (Fig. 2). BPA is a symmetrical molecule composed 

of two phenol rings connected via tetrahedral carbon with two methyl groups. Therefore, BPA 

is expected to form hydrogen bonds with urethane backbone groups and π-π stacking/van der 

Waals (vdW) interactions with oligomer side groups.  
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Figure 1. In this study, oligomers consist of aromatic (PS) and aliphatic (MS, MR) monomers 

with a defined stereochemistry. Structures are designed to foster attractive interactions with 

BPA, encompassing H-bonds, Van der Waals, and π-π stacking forces. The depicted collection 

of discrete oligourethanes OU1-OU4 contains one mutation of one stereocenter in various 

positions. Structures of oligourethane-BPA complexes are received from the Multiple 

Simulated Annealing - Molecular Dynamics (MSA-MD). For clarity, all hydrogens have been 

hidden, and nitrogen and oxygen are represented by blue and red, respectively. BPA atoms are 

colored yellow. 
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Investigated stereocontrolled, discrete oligourethanes (OU1-OU7, Fig. S1) were synthesized 

according to the solution synthesis protocol using chiral monomers (P, MS, MR, Fig. 1) as 

described previously.18 The structures of products were confirmed by size-exclusion 

chromatography (SEC) (Fig. S2-S8), LC-MS (Fig. S9-S15) and 1H NMR (Fig. S16-S22) 

analyses. For all oligomers, SEC analyses yielded a single, narrow signal proving the uniform 

structure of oligomers. Overlapped GPC chromatograms show that each oligomer is 

characterized by a specific retention time that indicates the stereochemistry-dependent 

hydrodynamic volume of oligomer chains (Fig. S8B). In LC-MS chromatograms, we observed 

one peak corresponding to oligomer molar mass. As expected, for all studied diastereoisomers 

we observed three main signals at m/z 632.33, 732.38 and 754.36 corresponding to ions [M-

Boc+H]+, [M +H]+ and [M +Na]+, respectively. 

1H NMR analyses revealed structural differences between oligomers depending on the sequence 

of stereocenters indicating various spatial conformation preferences (Figure 2A-2F, S16-S22). 

In the spectra, we distinguished six signal regions which are coming from aromatic protons at 

7.0-7.5 ppm (I), urethane N-H at 4.6-6.75 ppm (II), backbone protons at 3.5-4.5 ppm (III), -

CH2- from benzyl side chain at 2.5-3.0 ppm (IV), methyl side chains at 1-1.2 ppm (V) and Boc 

protons at 1.40 ppm (Boc), as presented in Fig. 2A. At room temperature, protons from 

backbone and methyl side chains occur as broaden multiplets with sequence-specific patterns 

(Fig, 2B-F) defined by a diverse spatial arrangement of chiral building blocks. The sequence 

conformation stability can be assessed based on the Boc 1H NMR signal as an internal probe 

(experiment at 240K), which delivers information about the homogeneity of the Boc 

neighborhood reflected in a signal splitting (Fig. 2F). 
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Figure 2. 1H NMR characterization of stereocontrolled oligourethanes revealed differences 

between oligomers depending on the sequence of stereocenters. (A) Representative 1H NMR 

spectrum of OU1 SSSSS. Upon zooming individual regions, I (H-Ar, B), II (H-N, B), III 

(backbone protons, C), IV (-CH2-Ar, D), V (-CH3, E) spectrum shape dependence on 

stereochemical sequence for OU1-OU4 with one stereocenters mutation becomes apparent. 

Sequence-specific splitting of the Boc signal is noticed, indicating the distinct conformational 

preferences of studied oligomers (F). Variable temperature experiments (6.8 mM) indicate the 

formation of intramolecular hydrogen bonds (G). A notable chemical shift in N-H protons upon 

temperature decrease is evident, where no change occurs during the variable concentration 

experiment in the range of 1-10 mM (H), confirming that the hydrogen bonds come from the 

single-chain folding. 
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The decrease in temperature improves the resolution of the signals causing the stabilization 

of conformation and formation of energetically favored structures (representative 1H NMR 

variable temperature spectra for OU1 and OU2 see Fig. S23-S24). The decreased temperature 

has diminished the exchange rate between conformations of oligourethanes, highlighting the 

uniqueness of shapes for each stereosequence. Moreover, cooling causes significant alterations 

of urethane N-H proton chemical shifts, indicating the presence of intramolecular hydrogen 

bonds (Fig. 2G, S24, S26).65,66 The possibility of intermolecular hydrogen bond formation due 

to the aggregation of macromolecules was disproved through variable concentration 1H NMR 

experiments in the range of 1-10 mM. Upon changes in concentration, values of N-H chemical 

shifts remain constant. Therefore, obtained data suggests that within the studied concentration 

range, we observe intramolecular hydrogen bonds from single-chain folding (Fig. 2E, S25-

S26).  All investigated oligomers display conformational preferences, and their conformations 

depend on the sequence of stereocenters; therefore, each oligomer represents a unique set of 

shapes in the solution. Further, we examined how stereocenter mutations affect the formation 

of oligourethane-BPA complexes to assess the impact of stereochemistry on their receptor-like 

function. 

2.2. Studies of the oligourethane-BPA interactions by Molecular Dynamics 

Molecular dynamic simulation studies revealed details on oligourethane-BPA structures. 

Extensive multiple simulated annealing molecular dynamics (MSA-MD) computational 

protocols followed by clustering were employed to characterize the conformational space of 

investigated oligourethane-BPA complexes solvated in the implicit chloroform.  Simulated 

annealing was performed for 150 ps by heating from 298K to 500K, equilibrating, and finally 

reducing the temperature to 0K. These calculations were repeated 300 times with randomly 

generated velocities using the Maxwell-Boltzmann distribution. The applied procedure 

generates a set of random local minima which were the starting configurations for 10 ns MD 
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simulations at 298K. In all simulations Amber14SB67 force field parameters were employed for 

oligourethane-BPA complexes.  More technical details on simulation parameters are provided 

in the Supporting Information (Section 4.2). Structures derived from the trajectories of the 

oligourethane-BPA complex were organized into clusters based on the structural resemblance, 

corresponding to a specific conformation. Out of 42 866 structures representing the whole 

ensemble, the 5 most populated clusters were selected and analyzed from a structural standpoint 

for each oligomer OU1-OU7 (Fig. S27). Depicted 5 clusters represent, on average, 60% of the 

ensemble, whereas a dominant cluster characterizes ca. 20% of all conformations. 

Representative cluster distributions for oligourethane-BPA complexes with one stereocenter 

mutation are shown in Fig. 3. Simulated three-dimensional structures of oligomer-BPA 

complexes for dominant clusters are visualized in Fig. 1. It is seen that the structure of the 

complexes solely depends on the stereoconfiguration of the oligomer. The 3D structure of 

oligourethane with associated BPA varies among the clusters, inferring that the complexes 

exhibit conformational flexibility. Oligomer chains adopt diverse shapes, to which BPA binds, 

generating a range of complex conformations that undergo an interchange.  

 

Figure 3. The representative cluster distributions for oligourethanes with a single stereocenter 

mutation, OU1-OU4, complexed with the BPA. The cluster analysis was performed based on 

the structural similarity of BPA-oligomer complexes. 
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Backbone torsional angles are used to analyze conformations of oligourethane-BPA complexes 

identifying a sequence-shape dependency. Structural biology uses the Ramachandran method 

to graphically analyze the rotation of peptide bonds in the protein chain. Due to steric 

hindrances and hydrogen bonds, allowed and disallowed torsional angle regions are created, 

impeding rotations. Their analysis enables one to assess the shape and stability of the three-

dimensional structure of the macromolecule. Since urethanes can be considered peptide bond 

relative, the Ramachandran plot methodology was modified to investigate abiotic 

oligourethanes. We used nomenclature, which refers to the initially developed for peptide bond 

analysis and defined ψ (C–O), ω (C–N), and φ (N–Cγ), torsions. In the case of urethanes, the 

backbone is extended by two rotatable bonds, and that obliges us to also introduce ξ (Cγ–Cβ) 

and χ (Cβ–O) torsions (Fig. 4A). Yet not all torsions are valid for the analysis, i.e., C–O and C–

N bonds, in urethane group, are affected by electron resonance, thus making ψ and ω torsions 

immobile and making urethane groups stiff and planar. When remaining rotations φ, ξ, and χ 

are analyzed separately, distinct torsional preferences within these systems are unveiled. 
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Figure 4. The shapes of oligourethane-BPA complexes can be depicted through graphical 

analysis of their torsional angles φ, ξ, and χ. (A) The fragment of a urethane chain shows the 

projected bond rotations, defining individual torsional angles. (B) The most probable φ, ξ, and 

χ angle values plotted with respect to the stereochemistry visualize apparent torsion preferences. 

The analysis involved deriving the highest probability angle values for each monomer within 

every cluster while considering their stereochemistry. By assessing all mutual angle 

dependencies via the 3D torsional plot, an example of angle distributions for conformations 

respective to the undefined coil (C) or right-handed helix structure (D) is revealed and depicted 

in NewCartoon style.  

We observed that φ dihedral value is dependent on the stereochemistry of the Cγ atom. The 

data shows its values are distributed around 120° or -120°, depending solely on the 

stereochemistry of the introduced monomer. The φ torsion value is < 0 if the monomeric unit 

is of S configuration, and otherwise, φ assumes > 0 values if the configuration is R (Fig. 4B). 

Whereas no effect of stereoconfiguration is observed for two other torsions ξ and χ. The ξ 

torsion values oscillate around 60° or -60° disregarding the stereochemistry. The third torsion 

χ assumes 4 possible values in proximity to -180, -70°, 70° or 180°, similarly, no stereochemical 

effect has been identified.  

Analyzing three angles collectively offers insights into their mutual presence and enables to 

extract the structural information. Every set of clusters is composed of a unique distribution of 

φ, ξ and χ angles, which reflects the multitude of chain arrangements and possible interaction 

sites to which BPA binds. Most of the torsional plots for oligourethane-BPA complexes are 

characterized by multiple, widely distributed values, which reflect undefined coil arrangements, 

far from helix and sheet characteristics for biomacromolecules (e.g., OU2 SRSSS - cluster 1, 

Fig. 4C, for other examples see Fig. S30 and S32). Among analyzed clusters, we found 

examples of structural regularity indicating the presence of helical structure (OU4 SSSRS 
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cluster 3 and OU6 SRSRS cluster 5 depicted in Figures S29 and S31, respectively). For example, 

cluster 3 of OU4 SSSRS folds into a misshaped right-handed helix, which occurs 9.6% of the 

simulated time. The helix structure depends on interactions between monomers in the chain and 

BPA ligand, which may act as a structure-disrupting agent, thus influencing the stability and 

regularity of the formed complex. The clusters represent groups of similar complex 

conformations, not isolated oligomers, hence, a lack of structural regularity is expected. 

To look into the structural peculiarities of the complex, we studied the formed hydrogen 

bonding network. An analysis of intra- and intermolecular hydrogen bonds representing 

electrostatic interactions in the oligourethane-BPA complexes is presented in Fig. 5. The 

ensemble average analysis provided a general perspective on data analysis (Fig. 5A). We see 

that in complex formation, one hydrogen bond is formed intramolecularly by oligomer, and one 

is used to couple with BPA. The input of H-bonds differs between oligomers. Specifically, 

when the chirality mutation from S to R occurs at the third position in the sequence, we observe 

an increase in the contribution of both inter- and intramolecular hydrogen bonds. The analysis 

of individual clusters (Fig. 5B) shows that in most cases, we observe the inversely proportional 

tendency of inter/intra hydrogen bond formation. The clusters (OU1-OU3) with the highest 

input of intramolecular hydrogen bonds exhibit the lowest involvement of intermolecular 

hydrogen bonds. The data suggest that BPA may compete for the donors and acceptors of 

hydrogen bonds of oligourethane. Interestingly, the exception is the OU4 sequence, for which 

the formation of a unique helical complex was observed. The analyzed helix structure of the 

SSSRS cluster displays an average of 1.29 intramolecular hydrogen bonds, just slightly higher 

than the overall average across the entire SSSRS complex ensemble – 1.01 hydrogen bonds, 

indicating that structure regularity might not correlate with the number of hydrogen bonds in 

those systems. 
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Figure 5. The ensemble average of both intra- and intermolecular hydrogen bonds reveals 

stereochemistry-dependent characteristics. (A) An inversion of the stereocenter at the third 

position in the oligomer chain results in an increased count of hydrogen bonds of both types 

(analysis of the whole ensemble). (B) The analysis of hydrogen bond number averages by 

individual clusters suggests an inverse tendency of inter-intra hydrogen bond formation. 

The receptor-like functionality of the studied oligourethanes (OU1-OU7) was 

demonstrated through variations in Gibbs binding energy values (ΔGbind) calculated for 

oligourethane-BPA complexes. We found that ΔGbind varies with the stereochemistry of the 

oligomer as shown by the Molecular Mechanics – Generalized Born Surface Area (MM-GBSA) 

calculations (Fig. 6).68 The details of the calculations are provided in the Supporting 
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Information. To visualize the general influence of mutations of stereocenters on BPA binding, 

the average ΔGbind for the whole ensemble has been calculated (Fig. 6A). For all investigated 

complexes its values range from -7.70 kcal/mol to -8.70 kcal/mol between oligomers (Table 

S4), and each oligourethane-BPA system is characterized by a unique set of binding force 

magnitudes (Fig. S34A). The data clearly shows that the stereoconfiguration modulates the 

intermolecular binding function that relates to the diversity of attained structures. The 

stereochemical center manipulation has the most prominent effect if the middle monomer is 

mutated to the opposite configuration (OU3 SSRSS).  
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Figure 6. The analysis of receptor-like functionality of stereocontrolled oligourethanes by 

Gibbs binding energy calculations. The average ΔGbind values show a substantial variance, 

indicating that each oligomer engages the ligand with characteristic strength (A). When ΔGbind 

for the OU1-BPA complex is decomposed into its energy components (B), a main contribution 

of dispersive forces ΔEvdW to the binding process becomes evident. The bars on the chart 

indicate the statistical distribution of energy values for the whole ensemble. C) The ΔEvdW 

values for each oligomer-BPA complex. D) Contribution of electrostatic interactions ΔEel to 

the oligourethane-BPA binding.  

 Through decomposition analysis of ΔGbind energies (depicted in Fig. 6B), we gain insights 

into the nature of interactions between the oligomer and ligand. Two major components of 

ΔGbind are van der Waals energy (ΔEvdW) and electrostatic energy (ΔEel) representing two 

molecular mechanics non-bonding terms describing non-covalent interactions. Other elements 

of ΔGbind value comprise interactions between solute and continuous solvent divided into polar 

(ΔGsolv. polar) and non-polar (ΔGsolv. nonpolar), which constitute free energy of solvation (ΔGsolv.) 

dominated by the polar component representing repellent force (Fig. S34B, C). For all studied 

oligomers, the total effect of solvation energy gives a positive value, which depends on the 

complex shape. Thus, the data indicate that the solvent-accessible surface area and available 

polar interactions relate to the stereochemistry of oligourethane.  The dominant contribution to 

ΔGbind is vdW interaction indicating that dispersive forces are the major forces responsible for 

complex formation. The mutation of stereocenters leads to the changes of ΔEvdW above 1.23 

kcal/mol (Fig. 6C). In the case of electrostatic interactions which involve hydrogen bonds, the 

variations in the ΔEel value with stereochemistry are minor, differences are below 0.3 kcal/mol 

(Fig. 6D). Interestingly, the highest ΔEel values are observed in the case of complexes (OU4 

and OU6) that can attain the helical conformation. 

2.3. Experimental analysis of oligomer-BPA interactions  
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Establishing a relevant protocol adjusted to the studied system is critical to getting reliable 

information about the interaction between molecules. Numerous experimental methods are 

applied to analyze molecular interactions, which are mostly validated for biological systems.69,70 

We evaluated NMR,71 circular dichroism72,73, and fluorescence spectroscopy74–76 techniques to 

study oligourethane-BPA interactions.  

Formation of the complex causes changes in the chemical environments of protons belonging 

to the binding molecules that can be followed by NMR. 1H NMR analyses of oligourethane-

BPA complexes (oligomer:BPA, 1:1 molar ratio) revealed alterations in spectra compared to 

characteristics of individual compounds (Fig. 7A, S36-S42). We observe changes in the shape 

of signals coming from N-H protons meaning that BPA is disturbing the oligomer hydrogen 

bond net. The most noticeable deviations in the spectra appear in the aromatic region, where 

we observe a clear shift of signals attributed to aromatic protons of BPA. This characteristic 

shift of about 0.01 ppm is visible for all studied oligomers OU1-OU7, suggesting interactions 

between both molecules (Table S5). To confirm the formation of the complex we performed a 

2D NOESY experiment for a representative OU5-BPA system. The analysis revealed cross-

peaks between the aromatic signal of BPA and oligomer phenyl moiety (Fig. S35). Relatively 

small and irregular changes of 1H NMR spectra, without a clear tendency, observed for 

oligomers upon BPA titration reflect the structural dynamics of complexes and the diversity of 

ligand binding sites, as presented by cluster analyses.77 The chemical shifts of NMR signals are 

very structure-dependent, hence, studies of dynamic systems forming various complexes do not 

provide representative data of the whole ensemble, yet the obtained data confirm interactions 

between both molecules.  
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Figure 7. A) The superimposed 1H NMR spectrum shows that the presence of BPA caused 

alteration of the signals. The greatest changes are visible in the range of amine and aromatic 

protons. B) Complex formation is observed via CD titration measurements. As the 

concentration of the BPA increased, an increase in the CD signal intensity was noted for OU3 

SSRSS (top), signifying the emergence of the complex that impacts the spatial arrangement of 

the oligomer. On the contrary, a decrease of the CD signal was observed upon titration of BPA 

in the case of OU4-BPA SSSRS (bottom). 

The chiral configuration of oligourethanes is an attribute that allows to investigate interactions 

between oligomers and BPA using circular dichroism spectroscopy. Oligourethanes built from 

aromatic chiral phenylalaninol monomers (P) show characteristic CD signals in the range 240-

280 nm (Fig.S43-S49), therefore it may act as an excellent probe to follow structural changes 

of complexes as BPA is a CD silent ligand. Consequently, CD results demonstrate various 

interactions occurring between oligomer and BPA depending on stereochemical arrangements. 
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Increasing concentration of BPA ligand leads to a significant change in the CD signal intensity 

for all oligomers (Fig. 7B, S43-S49). All spectra apart from OU4-BPA SSSRS show an increase 

in CD signal amplitude. Remarkably, OU4 is a unique sequence where helical conformation 

has been found by molecular dynamics calculations. A change in the signal intensity indicates 

the formation of the complexes, affecting the three-dimensional structure of oligomers, which 

may be a consequence of adjustments in the skeletal conformation of oligomers to the ligand 

molecule. However, no typical titration trend matches the obtained CD intensity curves, apart 

from the SSRSS oligomer (Fig. 7B). Similar to NMR, CD spectroscopy is a technique revealing 

structural details of formed pairs, which demonstrates occurring interactions, yet unsuitable for 

representing a structurally diverse ensemble.  

 Investigated oligourethanes composed of P monomers with a benzylic substituent exhibit 

fluorescent properties, similar to phenylalanine-containing peptides, therefore, interactions with 

BPA can be followed by emission measurements.78 Interactions between molecules often lead 

to alterations in the intensity, shape, or position of the receptor fluorescence signal, hence, 

fluorescence is employed as a tool to investigate molecule binding through the measurement of 

its quenching 79, enhancement80, anisotropy81 or shift82 depending on the system. Oligourethanes 

are characterized by excitation and emission at the UV range with maxima at λEx=260 nm and 

λEm=310 nm, while BPA exhibits weak activity within the specified wavelength range (Fig. 

S50). For all studied oligomers, BPA titration leads to significant quenching of fluorescence 

signal (Fig. 8A, S51-S57). The intensity changes were fitted to the Stern–Volmer equation to 

determine dissociation constant (Kd) values for all investigated systems (Fig. 8B).83 Those 

values were inversed to obtain association constants (Ka), which were used as a representative 

parameter to describe the receptor-like functionality of oligourethane towards BPA and 

compared with theoretical ΔGbind values derived from molecular dynamics (Fig. 8C). 
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Figure 8. A) Fluorescence spectra of OU2 (68 µM) recorded in chloroform (orange). BPA 

titration (0-11 mM) causes quenching of oligourethane fluorescence. (B) Fluorescence 

quenching was used to calculate dissociation constant (Kd) values based on the Stern-Volmer 

equation, where F – the measured fluorescence, F0 - fluorescence of oligourethane solution 

before BPA is added, and Q - quencher (BPA) concentration. C) Both experiment-derived Ka 

(Ka=1/Kd) and the theoretically calculated ΔGbind demonstrate a compatible value variation 

depending on the sequence of stereocenters. 

An alteration of the sequence of stereocenters influences Ka values, leading to a subsequent 

decrease in Gibbs free binding energy. Comparing the theoretical and experimental data across 

the entire library of oligourethane-BPA complexes reveals a consistent trend of changing 
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parameters that describe the receptor-like functionality of oligomers. Computational studies 

show an approximate 70% success rate in trend predictions. Notably, some oligomers displayed 

a significant decrease in Ka values with respect to ΔGbind, indicating reduced stability of formed 

oligourethane-BPA complexes.  However, discrepancies may relate to the mechanism of a 

quenching phenomenon that is not considered in calculations but can influence experimentally 

determined Ka. Nevertheless, both methods indicate which oligomer is characterized by the 

most promising receptor-like features (OU5) and appoints the least efficient sequence (OU3). 

The OU5 shows the most potent interaction with BPA among all studied systems, as indicated 

by experimental and theoretical approaches. At the computational level, OU5 is in the top 4 

oligomers with the highest binding energy values. Differences between them are minor, e.g., a 

bit diverse value of ΔGbind than for OU5 are revealed by OU2 (0.14 kcal/mol), OU4 (0.20 

kcal/mol), and OU6 (0.04 kcal/mol). We did not notice a connection between the ability of 

oligomers to form a secondary helical structure (OU4 and OU6) and its effectiveness in BPA 

binding. A high number of hydrogen bonds does not guarantee strong binding, as could be 

expected. OU3, which forms the most hydrogen bonds (Fig. 5) is characterized as the weakest 

receptor (Fig. 8C).  This observation highlights the leading role of hydrophobic interactions. 

The presented data emphasizes the importance of sequence programming through 

stereoconformation changes, which directly affects the spatial arrangement of the complex and 

the strength of binding with the ligand. The developed computational methodology enables the 

screening of abiotic oligomers and, in silico, identifies abiotic oligomers characterized by 

binding function toward chosen ligands, revealing stereochemistry effects. 

3. Conclusions 

The structural properties of sequence-defined oligourethanes hold a great potential to form 

nuanced shapes, which can be controlled by a rational design. Engineering non-natural 
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macromolecule functionalities demands effective tools to study their conformation and 

molecular interactions. Structure and function studies of biopolymers, such as proteins, are 

already well-established; thanks to that, we have a broad range of tools to characterize 

biological macromolecules that facilitate research outcomes. However, we must refine and 

adjust existing protocols to characterize abiotic systems. Binding between abiotic sequence-

defined oligomers and ligands can be induced by rational design based on supramolecular 

chemistry background. Oligourethanes equipped with structural motifs such as phenyl rings and 

hydrogen bond donors/acceptors enable attractive interactions with a bisphenol A ligand. 

Regardless of the stereocenter(s) mutation pattern, all sequences interact with a BPA primarily 

via vdW rather than electrostatic interaction despite a strongly nonpolar environment which 

would enhance the latter. The predominance of nondirectional vdW forces over directional 

interactions such as hydrogen bonding results in complex behavior with a low level of 

specificity. Studied systems display a range of possible complex conformations interacting with 

the ligand with different strengths yet showing similar binding characteristics. Such nature of 

attraction and liability may render it a nonspecific receptor. Since the dispersive forces are not 

directional, they allow the binding of structurally similar compounds. On the other hand, the 

flexibility of the macromolecule may enhance that effect by adopting diverse conformations 

depending on the type of ligand. Matching the shape of the oligomer and the ligand is a key to 

achieve a reliable binding, allowing the highest number of interactions and supramolecular 

bonds to be formed. Amplification of polymer molar mass is expected to cause an augmentation 

in the frequency and strength of interactions between the polyurethane and the ligand, as longer 

chains will have an increased number of sites to form hydrogen bonding, π-π stacking, and Van 

der Waals interactions. We speculate that the elongation of polymers to the level of protein size 

will improve specificity of binding with the ligand. Moreover, to improve the design of 

oligourethanes we should consider the additional polar groups to forge an impactful number 
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and strength of directional electrostatic interactions between molecules. To advance the 

specificity of the convoluted binding mechanism of BPA a broad sequence space of oligomers 

must be explored to find matching structural motifs. The demonstrated MD simulation 

methodology is emerging as an invaluable tool for the in-silico screening of various structures 

to optimize receptor-like functionalities of oligourethanes. The method reveals the impact of 

subtle structural changes, such as the effect of stereocenter sequence (e.g., 1 kcal ΔGbind 

difference). As we demonstrated for NMR and CD spectroscopies, such flexible systems are 

challenging to characterize by structure-sensitive methodologies. We considered fluorescence 

measurements a complementary technique for verifying simulation data. The observed 

fluorescence quenching is not too sensitive to the structural diversity of complexes and delivers 

data representative of the whole ensemble of conformations. Combining the developed MD 

methodology with the Stern-Volmer model is an efficient strategy for predicting and validating 

receptor-like functionalities of oligomer ligand complexes that can be used for future structure 

optimization and the development of sensory materials using abiotic sequences and 

sterocontrolled polymers.  

Supporting Information 

Supporting information contains all experimental details, spectra (NMR, CD, fluorescence), 

chromatograms (LC-MS, GPC), and a detailed description of simulations. 
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