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Abstract 19 
 20 
Identifying druggable binding sites on proteins is an important and challenging problem, 21 
particularly for cryptic, allosteric binding sites that may not be obvious from X-ray, cryo-EM, or 22 
predicted structures. The Site-Identification by Ligand Competitive Saturation (SILCS) method 23 
accounts for the flexibility of the target protein using all-atom molecular simulations that include 24 
various small molecule solutes in aqueous solution. During the simulations the combination of 25 
protein flexibility and comprehensive sampling of the water and solute spatial distributions can 26 
identify buried binding pockets absent in experimentally-determined structures. Previously, we 27 
reported a method for leveraging the information in the SILCS sampling to identify binding sites 28 
(termed Hotspots) of small mono- or bi-cyclic compounds, a subset of which coincide with known 29 
binding sites of drug-like molecules. Here we build in that physics-based approach and present a 30 
machine learning model for ranking the Hotspots according to the likelihood they can 31 
accommodate drug-like molecules (e.g. molecular weight > 200 daltons). In the independent 32 
validation set, which includes various enzymes and receptors, our model recalls 65% and 88% of 33 
experimentally-validated ligand binding sites in the top 10 and 20 ranked Hotspots, respectively. 34 
Furthermore, we show that the model’s output Decision Function is a useful metric to predict 35 
binding sites and their potential druggability in new targets. Given the utility the SILCS method for 36 
ligand discovery and optimization the tools presented represent an important advancement in the 37 
identification of orthosteric and allosteric binding sites and the discovery of drug-like molecules 38 
targeting those sites. 39 
 40 
Introduction 41 
 42 
There has been no time like the present for structure-based drug design (SBDD) given the number 43 
of protein structures solved at or near atomic resolution currently available in the Protein Data 44 
Bank [1], with >200,000 experimental structures and >1,000,000 computed structure models [2], 45 
and the >200,000,000 computed structures in the AlphaFold Database [3]. These structural 46 
models cover a plethora of potential drug targets [4]. Furthermore, just as GPUs have 47 
revolutionized deep-learning models for protein structure prediction [3,5,6], they have also 48 
brought all-atom molecular dynamics (MD) simulations of large proteins at meaningful timescales 49 
into routine reach [7,8]. This combination, along with advances in our understanding of the 50 
molecular nature of disease and the associated growth of personalized medicine, has the 51 
potential to produce many new therapeutic agents.  52 
 53 
After target identification, the critical first step in the SBDD process is either to identify binding 54 
sites of known ligands or identifying candidate sites for virtual screening. Despite the boom in 55 
computational power, many widely-used tools for identifying binding sites do not fully account of 56 
the conformational flexibility of proteins. The standard methods of protein-ligand binding site 57 
prediction rely on extremely efficient methods which generally rely on static structure-based 58 
analysis, conventional molecular docking, and/or machine-learning [9]. When a representative 59 
structure is available and the binding pocket is relatively well-defined, methods including FTMap 60 
[10–12] and FPocket [13] are effective. Some methods employ template based modeling to 61 
predict binding sites when only a sequence is known [14–17]. There are many similar-performing 62 
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machine-/deep-learning models [9,18] that incorporate sequence-homology, structural features, 63 
molecular docking, and consensus to predict ligand binding sites [19–23]. To remain highly 64 
computationally efficient, methods reliant on static structures necessarily neglect protein 65 
backbone flexibility, thus cannot capture protein allostery or cryptic binding sites [24–28]. In 66 
addition, the traditional molecular docking approaches used in available methods [29–33], while 67 
efficiently sampling known ligand-protein interactions [12,23], rely on continuum electrostatic 68 
models and/or statistical potentials to estimate the energetics of binding. Such methods are 69 
limited in their ability to accurately account for the complex balance of enthalpic and entropic costs 70 
and desolvation contributions that contribute to ligand binding.  71 
 72 
A powerful way to overcome these limitations is through the use of all-atom cosolute MD 73 
simulations [34,35]. Cosolute methods are conceptually similar to experimental fragment-based 74 
drug design [36,37] wherein proteins are co-crystallized with various small solutes to determine 75 
their binding sites [38]. In general, these methods involve solvating the target biomolecule with 76 
various small molecules to analyze the distribution of the molecules over the course of the 77 
simulation. This approach is widely-employed [39–44] including by MDmix [34,45], pMD-78 
Membrane [46,47], Mix-MD [48–50], SWISH and SWISH-X [51,52], Cosolvent Analysis Toolkit 79 
(CAT) [53], and SILCS [35,54,55]. The coarse grain MD cosolute method Colabind was recently 80 
released [56], which allows substantially faster sampling than all-atom MD, but with corresponding 81 
accuracy sacrifices. The success of the all-atom cosolute MD methods is due to advances in 82 
efficient, GPU-enabled molecular dynamics software packages [57–60], combined with consistent 83 
improvements in the accuracy of all-atom force fields [61–65], such that accurate sampling of the 84 
interactions of solutes with flexible proteins in the presence of explicit atomistic water is readily 85 
achievable.  86 
 87 
Specifically, the present study is based on the SILCS methodology. SILCS samples the protein 88 
conformational ensemble in the presence of multiple solutes and water while alternating between 89 
an oscillating chemical potential Grand Canonical Monte Carlo (GCMC) sampling scheme and 90 
conventional MD [66,67] that dramatically accelerates the rates of penetration of solutes and 91 
water into hydrophobic pockets and other buried cavities. After extensive sampling, the 92 
occupancies of the solute molecules and water are converted to functional group-type specific 93 
free energy maps, or FragMaps. An example of the FragMaps surrounding the protein TEM-1 β-94 
lactamase is depicted in Figure 1A, and Figure 1B shows molecular renderings of the 8 solutes 95 
used in the standard SILCS simulations. These FragMaps form the basis for all subsequent 96 
analysis in SILCS, such as performing molecular docking of small molecules in the field of the 97 
maps [68,69]. In a previous paper, a method was presented for identifying a comprehensive set 98 
of fragment binding sites, or Hotspots, on proteins [70], and subsequently applied to RNA [71]. 99 
Although some Hotspots correspond with the known binding sites of small molecules (Figure 1C), 100 
it was unclear which Hotspots were really ‘druggable’ using only the previous method. Here we 101 
define druggable as being suitable for binding drug-like molecules, such as those with molecular 102 
weight (MW) > 200 Da. 103 
 104 
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Figure 1: Example SILCS FragMap and Hotspots and depiction of the SILCS solutes. A) 
TEM-1 β-lactamase is rendered in NewCartoon style (PDB: 1JWP), with the various FragMaps 
contoured at -1.2 kcal/mol. The green map corresponds to generic apolar carbons (propane 
and benzene carbon), the red corresponds to hydrogen-bond acceptors, the blue corresponds 
to hydrogen-bond donors, the cyan corresponds to positive charges (methylammonium 
nitrogen), the orange corresponds to negative charges (acetate oxygen), gold corresponds to 
alcohols (methanol oxygen), and the solid tan surface is the Exclusion map. B) Depiction of the 
8 solutes used in the SILCS GCMC/MD simulations, namely: benzene, propane, 
methylammonium, acetate, imidazole, formamide, dimethyl ether, and methanol. The 
molecules are rendered in CPK style, where cyan atoms are carbons, red atoms are oxygen, 
blue atoms are nitrogen, and white atoms are hydrogen. C) Depiction of TEM-1 in NewCartoon 
style, with the Hotspots rendered as pink spheres, and with the crystallographic ligands from 
PDBs 1ERO and 1PZO. The ligands are colored as in panel B). 

 105 
In this study we present a new set of tools to identify Hotspots that contribute to binding sites for 106 
drug-like molecules. The method first calculates a range of properties characterizing each 107 
Hotspot, which are then used as features in a machine learning (ML) algorithm that predicts the 108 
likelihood of each Hotspot participating in a drug-like binding site. For model training Hotspot 109 
identified as being in a druggable site were 1) within 12 Å of at least one adjacent Hotspot, 2) 110 
within 5 Å of the non-hydrogen atoms of a crystal location of a drug-like ligand, and 3) partially 111 
buried. The first criteria assumes that a drug-like molecule is comprised of a minimum of two 112 
linked fragments. The second criteria is experimental validation of Hotspots being located in a site 113 
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which binds a drug-like molecule through X-ray crystallography. The third criteria is based on the 114 
assumption that binding sites are pockets in which the ligands are partially buried [72–74] as 115 
determined by an empirical relative buried surface area cutoff described below. For the training 116 
set, the developed ML model identifies 76% and 80%, of druggable sites in the top 10 and 20 117 
Hotspots, respectively. In the validation set it recovers 65% and 88% of druggable sites in the top 118 
10 and 20 total Hotspots, respectively. 119 
 120 
Methods 121 
 122 
SILCS workflow 123 
 124 
The overall workflow was to run standard SILCS GCMC/MD simulations of the target proteins 125 
solvated in water with a variety of solute molecules (Figure 1B) at 0.25 M for a total of 1 μs as 126 
previously described [35,55]. Analysis of the occupancies, and therefore free energy affinities, of 127 
each solute gives an atom-type specific 3D affinity map (FragMap) over the entire 3D space of 128 
the protein, as well as an Exclusion map containing all the voxels with zero solute or water 129 
occupancy (Figure 1A). The PDB identifiers of the protein structures used for the SILCS 130 
simulations are provided in Table S1. Note that wherever possible, an apo structure was used for 131 
the SILCS simulations; else, a structure with minimal ligand size was used. Any ligands were 132 
removed from the structure prior to the simulations. For transmembrane proteins, the membrane 133 
orientation was determined using the PPM (Positioning of Proteins in Membranes) webserver 134 
[75,76], after which a bilayer composed of 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine 135 
(POPC) and cholesterol (9:1 ratio) was constructed using the CHARMM-GUI webserver [77,78]. 136 
The CHARMM-GUI webserver was also used to generate small missing loops (<12 amino acids) 137 
and to adjust the protonation state of titratable residues [77,78]. The protonation state of titratable 138 
residues at pH 7.0 was determined using PropKa3 [79]. The FragMaps were obtained using 139 
SILCS software version 2019 (SilcsBio LLC) and Gromacs version 2019, except for ANGPTL4, 140 
TEM-1, and GABABR, for which SILCS software version 2023 [80] and Gromacs version 2022 141 
were used [57,58]. 142 
 143 
After calculating the FragMaps, we performed the SILCS-Hotspots calculation as described in our 144 
previous work [70]. The Hotspots calculation consists of comprehensively docking a library 90 145 
mono- and bicyclic fragments [81] with MW < 190 Da into the FragMaps and Exclusion map. Then 146 
two rounds of clustering are performed to identify binding sites that include one or more of the 147 
fragments (Figure 1C). Each original Hotspot is then defined by the number of fragments in that 148 
site and the LGFE scores of those fragments from which features such as the minimum (e.g. most 149 
favorable) LGFE or mean LGFE over all the fragments in that Hotspot are calculated and used 150 
for ranking. The SILCS-Hotspots calculations were run using version 2019, except for all proteins 151 
in the validation set, where version 2023 was used [80]. The SILCS-Hotspots docking performed 152 
for this study utilized a new GPU implementation of SILCS-MC docking (Zhao and MacKerell, 153 
manuscript in preparation).  154 
 155 
Additional characterization of Hotspots as potential druggable binding sites was performed by 156 
screening a database of 348 FDA-approved compounds at selected Hotspots. The docking was 157 
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carried out in a 5 Å radius sphere centered on the Hotspot. After docking, each Hotspot was 158 
characterized by the average LGFE and relative buried surface area (rBSA) for the top twenty 159 
molecules, ranked by the LGFE. rBSA is defined as the ratio of the solvent accessible surface 160 
area of the ligand alone relative to that of the ligand in the presence of the protein, such that 100% 161 
rBSA indicates a fully buried ligand with no solvent accessible surface area (SASA). The SASA 162 
of the ligand in both the presence and absence of the protein was based on the conformation of 163 
the ligand from the SILCS-MC docking. The 348 compound FDA database was extracted from an 164 
initial set of FDA-approved molecules derived from the online databases DrugBank [82] and 165 
Drugs@FDA [83]. An initial filter was applied to select only molecules with MW between 250 and 166 
500 Da. To reduce the dimensionality while maintaining the diversity of the molecules in the FDA 167 
set, we clustered the dataset with Morgan fingerprints using a radius of 2 and Tanimoto similarity 168 
index of 0.3, then selected a representative molecule from each cluster, yielding a total of 380 169 
molecules. The final set of 348 molecules was arrived at by manually removing outliers in the 170 
number of rotatable bonds or hydrophobic groups. The FDA database is available in sdf and pdf 171 
formats on GitHub at https://github.com/mackerell-lab/FDA-compounds-SILCS-Hotspots-SI. The 172 
FDA dataset curation and generation of the pdf table of 2D molecular images was done with the 173 
python API for RDKit [84]. 174 
 175 
Calculation of new analysis features 176 
 177 
The Hotspot analysis workflow to calculate features for ML model development consists of three 178 
keys steps: cluster adjacent Hotspots within some user-tunable cutoff distance, collect various 179 
properties of the individual Hotspots and Hotspot clusters, and then use those features to develop 180 
the ML model to identify Hotspots at the binding sites of drug-like molecules. Here we define a 181 
Hotspot cluster as containing all the Hotspots within 12 Å of each Hotspot (centroid), because the 182 
maximum distance between two neighboring Hotspots in the training set is 11.6 Å. Based on this 183 
definition, each individual Hotspot can be a member of multiple Hotspot clusters, though each 184 
Hotspot is the centroid of just one Hotspot cluster with the features based on that cluster assigned 185 
to the centroid Hotspot. 186 
 187 
The new features include the number of protein non-hydrogen atoms in the input PDB file within 188 
a user-defined radius of each Hotspot (default 3 Å), the SASA and volume of each Hotspot (using 189 
a 3 Å radius for the Hotspots), the SASA and volume of the Hotspot clusters, the distances 190 
between Hotspots in the cluster, as well as various statistical measures (e.g. mean, minimum, 191 
and maximum values) of the distribution of these properties over the Hotspot cluster (Table 1). As 192 
a feature we wanted the calculation of the SASA of a Hotspots to account for the protein flexibility 193 
that is included in the SILCS simulations. Accordingly, in addition to using the original crystal 194 
structure used for the SILCS simulations for the SASA calculation, an “Exclusion-map HS SASA” 195 
was calculated where the solvent-accessibility of the Hotspot (default radius 5 Å) was relative to 196 
voxels that were included in the SILCS Exclusion map rather than the standard use of the 197 
positions of the protein atoms. The different Hotspot radii (3 Å for use with protein PDB file and 5 198 
Å for use with Exclusion map) adjusts for the smaller size of an Exclusion map relative to a 199 
corresponding protein. All SASA calculations used a solvent probe radius of 1.4 Å. Additional 200 
features using the Exclusion map were calculated as described in Table 1. 201 
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 202 
The code to calculate the SASA of Hotspots with respect to the Exclusion map was built on the 203 
freeSASA [85] package in python. The freeSASA code was modified to allow for non-default input 204 
atomic radii for the Hotspots and Exclusion map voxels. In addition, the SASA of Hotspot clusters 205 
was calculated based on the SASA of all the Hotspots in the cluster (default radius 5 Å). The 206 
Exclusion map is represented as a set of spheres of radius 1 Å sitting on 1 Å3 grid voxels. To 207 
calculate the volume of the Hotspot clusters not within the protein or Exclusion map a Monte Carlo 208 
integration algorithm we implemented. The calculation of the SASA and volume of the Hotspot 209 
clusters requires substantial CPU time, and so the algorithms were parallelized with numba [86]. 210 
 211 
Table 1: Names and descriptions of the features calculated by the new SILCS-Hotspots 
workflow. The radius of each Hotspot for the SASA calculations can be user-defined separately 
for the protein coordinates and Exclusion map calculations; defaults are 3 Å and 5 Å, 
respectively. LGFE stands for Ligand Grid Free Energy of the fragments located in each 
Hotspot and SASA stands for solvent-accessible surface area.  
Name Description 
Orig Mean LGFE of each Hotspot (Original ranking metric). 
Min Minimum LGFE of each Hotspot cluster. 
Ave Average LGFE of each Hotspot cluster. 
NFrag Number of drug-like fragments in each Hotspot. 
N_Heavy_Atoms Number of protein non-hydrogen atoms within 3 Å of each Hotspot. 
N_BBone_Atoms Number of protein backbone atoms within 3 Å of each Hotspot. 
PDB_SASA SASA of protein atoms occluded by each Hotspot. 
Excl_SASA SASA of protein Exclusion map occluded by each Hotspot. 
PDB_HS_SASA SASA of each Hotspot occluded by the protein. 
Excl_HS_SASA SASA of each Hotspot occluded by the Exclusion map. 
Adj_PDB_SASA SASA of protein atoms occluded by each Hotspot cluster. 
Adj_PDB_HS_SASA SASA of each Hotspot cluster occluded by the protein. 
Relative_Adj_SASA The relative SASA of each Hotspot cluster defined as the ratio of SASA 

of the Hotspot cluster in the presence of the protein PDB to total SASA 
of the Hotspot cluster without the protein. 

Vol Volume of each Hotspot excluding the volume overlapping with protein 
atoms. 

Excl_Vol Volume of each Hotspot, excluding the volume overlapping with the 
SILCS Exclusion map. 

MinDist Minimum distance between each Hotspot and the other Hotspots in the 
cluster. 

MaxDist Maximum distance between each Hotspot and the other Hotspots in the 
cluster. 

MidDist Median distance between each Hotspot and the other Hotspots in the 
cluster. 

AvgDist Average distance between each Hotspot and the other Hotspots in the 
cluster. 

https://doi.org/10.26434/chemrxiv-2024-hrqq9 ORCID: https://orcid.org/0000-0001-8287-6804 Content not peer-reviewed by ChemRxiv. License: CC BY-NC-ND 4.0

https://doi.org/10.26434/chemrxiv-2024-hrqq9
https://orcid.org/0000-0001-8287-6804
https://creativecommons.org/licenses/by-nc-nd/4.0/


 8 

Sum_<feature> Sum of <feature> over the Hotspot cluster. 
Mean_<feature> Mean of <feature> over the Hotspot cluster. This is sum divided by the 

number of Hotspots in the cluster. 
Min_<feature> Minimum of <feature> among Hotspots in the cluster. For example, the 

value of the most favorable LGFE of the Hotspots in the cluster. 
Max_<feature> Maximum of <feature> among Hotspots in the cluster. For example, the 

value of the Hotspot with largest Volume in the cluster. 
 212 
Training and validation data set curation 213 
 214 
The training set is constructed from the seven protein systems from the previous SILCS-Hotspots 215 
paper [70]: Cyclin-dependent kinase 2 (CDK2) in both active and inactive states [87,88], 216 
Extracellular-signal-regulated kinase 5 (ERK5) [89], Protein tyrosine phosphatase 1b (PTP1B) 217 
[90–93], Androgen receptor [94,95], and three G-protein coupled receptors (GPCRs), namely G 218 
protein-coupled receptor 40 (GPR40) [96,97], M2 Muscarinic receptor [98,99], and β2 Adrenergic 219 
receptor [100,101]. The validation set is comprised of ten proteins, seven of which we recycle 220 
from previous SILCS-MC publications [68,69], namely: P38 mitogen-activated protein kinase 221 
[102,103], Farnesoid X bile acid receptor (FXR) [104], β-Secretase 1 (BACE1) [105,106], tRNA 222 
methyl transferase (TrmD) [107], Myeloid cell leukemia 1 (MCL1) [108,109], Heat-shock protein 223 
90 kDa (Hsp90) [36], and Thrombin [110]. To those we added the C-terminal domain of the lipid-224 
binding protein angiopoietin-like 4 (ANGPTL4) [111], TEM-1 β-lactamase [112–114], and GPCR 225 
γ-aminobutyric acid receptor (GABABR) in both active and inactive states [115–117].  226 
 227 
For each protein system, we identified relevant crystal structures where there is a drug-like ligand 228 
bound and aligned these structures to the structure used to generate the SILCS FragMaps. 229 
Hotspots within 5 Å of a ligand non-hydrogen atom are classified as a “true hit”. In addition, a 230 
Hotspot must be within 12 Å of at least one other Hotspot to be a true hit, and the 12 Å path must 231 
be unobstructed by any Exclusion map voxels. In the training set, if a Hotspot is within 5 Å of more 232 
than one ligand, it is counted for both ligands to reflect its importance in identifying more than one 233 
distinct ligand binding site. The PDB [1] and D3R [118] structures used are listed in Table S1, and 234 
the Hotspots considered true hits are listed in Table S2. In each system, there may be several 235 
ligands bound in similar positions available in different PDB files, but only one such ligand was 236 
selected to represent that binding site. In a few cases, there are Hotspots which are within 5 Å of 237 
the ligand but are located on the surface of the protein above the ligand binding site. Figure S1 238 
depicts one such example, Hotspot 25 in the ERK5 system, which is within 5 Å of the ligand but 239 
largely solvent-exposed. As one of our criteria of druggable binding sites was that they are partially 240 
buried sites, we removed outlying Hotspots with greater than 300 Å2 Exclusion-map HS SASA 241 
(Figure S2), as these sites may not be suitable for binding drug-like molecules. This empirical 242 
cutoff corresponds to ~42% rBSA. 243 
 244 
Evaluation of model performance 245 
 246 
To evaluate the developed models, we calculated precision, recall, weighted F1, and binding site 247 
recall using the Hotspots identified as true hits. Evaluating a Hotspot classification model requires 248 
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ranking the Hotspots, then selecting a cutoff, such as taking all Hotspots with LGFE < 0 or taking 249 
the top N Hotspots. For a given cutoff, precision is the ratio of true hits to the total number of 250 
Hotspots up to and including the cutoff, while recall is the ratio of true hits up to and including the 251 
cutoff to the total number of experimentally verified hits. For example, if a protein has four total 252 
experimentally verified hits, two of which are identified with a cutoff at ten Hotspots, the precision 253 
is 2/10 = 0.2 and the recall is 2/4 = 0.5. The weighted F1 statistic is the population-weighted 254 
harmonic mean of precision and recall. This is important because it accounts for the low proportion 255 
of Hotspots which are true hits: only 7% of all the Hotspots in the training set are experimentally 256 
verified hits and only 2% in the test set. Accordingly, a random predictor would have a precision 257 
of ~0.02 for the validation set, which is a useful comparison when evaluating the precision of a 258 
model (e.g., 0.2 for the validation set example represents a ten-fold increase over a random 259 
predictor). In addition, binding site recall was calculated to compare the performance of the 260 
models on the practical problem of identifying at least one Hotspot per ligand. Binding site recall 261 
is defined as the ratio of identified ligand binding sites to the total number of experimentally 262 
identified ligand binding sites for that protein. A ligand binding site is identified once a single 263 
Hotspot within 5 Å of that ligand is identified above a given cutoff. Accordingly, the maximum 264 
number of ligand binding sites is equivalent to the total number of experimentally identified ligand 265 
binding sites although the total number of Hotspots defined as true hits may be greater than the 266 
total number of experimentally identified ligand binding sites. Below the total number of 267 
experimentally verified hits is indicated as “# Sites” in the tables. 268 
 269 
We note that the calculated performance of the models may underestimate their true 270 
performance, since we base our true hits on crystallographically-identified ligand binding sites. It 271 
is possible that some of the Hotspots occupy sites for which a ligand indeed exists but has not 272 
yet been identified. Accordingly, the number of true hits may actually be higher than is calculated 273 
in the present study. 274 
 275 
Table 2: Linear SVM hyperparameters. Descriptions of hyperparameters are adapted from 
the sci-kit learn library documentation [119]. Where multiple hyperparameter values were 
tested, the bolded parameter value was selected in the final model. 
Hyperparameter Values Description 
C 1e-4, 1e-3, 1e-2, 

1e-1 
Regularization strength, which is proportional to 1/C. 
Regularization provides a way to reduce the final 
model complexity. 

intercept_scaling 1e1, 1e2, 1e3 Reduce impact of C on intercept fitting. 
loss hinge, 

squared_hinge 
The loss function used in training the classification 
model. Hinge loss is the standard for SVM. 

penalty l2 Regularization penalty, the l2-norm. 
fit_intercept True The input feature vector includes a scalar intercept 

term. 
dual auto Automatically select optimization algorithm where the 

optimal choice depends on the relative numbers of 
features versus samples, and some choices of other 
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parameters. Auto will be the default in scikit-learn 
version 1.5.  

max_iter 1e8 Maximum number of iterations of the linear solver. 
tol 1e-4 Tolerance criterion for convergence of the linear 

solver. 
class_weight balanced A weight for the regularization parameter C, in this 

case inversely proportional to the class proportion. 
 276 
 277 
Machine learning methods 278 
 279 
Given the limited size of the dataset, we focused our efforts on Support Vector Machine (SVM) 280 
and Random Forest classifier models. Random forest models and SVM with polynomial kernels 281 
of degree > 1 resulted in over-training (Table S3). While all models generated reasonable average 282 
weighted F1 statistics on the 5-fold cross-validation (CV), there is a significant degradation in 283 
performance between the average CV recall and the recall after fitting on the whole training 284 
dataset (single-fit) (Table S3). In comparison, the linear kernel SVM had similar recall between a 285 
single-fit and the average CV recall (Table S3), so we selected the linear kernel SVM model and 286 
fully trained its hyperparameters (Table 2). To optimize the performance of the SVM, we performed 287 
standardization ((�⃑� − 𝜇)/𝜎) of each feature, then performed principal component analysis (PCA) 288 
on these features and used the principal components as inputs for all subsequent models. This 289 
ensures the inputs are all mutually orthogonal. The hyperparameters were optimized using a grid 290 
search of the parameter space described in Table 2. Each round of grid search was performed 291 
using 5-fold cross-validation, and the selection of optimal parameters was made based on the 292 
weighted F1 statistic. Subsequently we performed recursive feature elimination [120] to identify 293 
the optimal number of input principal components and reduce the risk of overfitting by reducing 294 
the dimensionality of the inputs (Figure S3). The first 22 principal components were selected, 295 
corresponding to the maximum weighted F1 in Figure S3. The final model hyperparameters are 296 
indicated in Table 2 with bold text. These were used to train the final model on the whole training 297 
dataset; all subsequent results in the paper are based on this model. A key output of an SVM 298 
model is the Decision Function, defined as the distance a Hotspot lies from the SVM’s decision 299 
boundary and can be interpreted as the confidence that a given Hotspot corresponds to a true hit 300 
and, therefore, likely located within 5 Å of a crystallographic ligand binding site [121,122]. The 301 
Decision Function is positive for higher confidence, and negative for confidence that the Hotspot 302 
is not a suitable binding site. The machine learning scripts were written using the scikit-learn [119] 303 
and pandas [123] python libraries. All 3D molecular renderings were generated using VMD 304 
version 1.9.3 [124], and all plots were created with the python library matplotlib [125] using the 305 
accessible color sequences of Petroff [126]. 306 
 307 
Results 308 
 309 
The present study involved the development of a ML model to predict the probabilities that SILCS 310 
Hotspots are located in druggable binding sites, based on those sites which are occupied by drug-311 
like molecules (MW > 200 Da) as identified in crystallographic studies. The model builds on the 312 
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previously reported SILCS Hotspots based on fragment docking into the SILCS FragMaps 313 
combined with additional features for each Hotspot used in ML model development targeting the 314 
known druggable sites. The training set included seven proteins while the validation set included 315 
ten proteins. As presented, the developed ML model predicts those Hotspots with a high 316 
probability of defining druggable sites based on a quantitative ranking score that may be applied 317 
to new systems. 318 
 319 
Of the ten proteins in the validation set, seven were used in previous SILCS-MC benchmarking 320 
studies, and as such each contain a single orthosteric binding site [68,69]. In addition, allosteric 321 
ligands were identified for the validation set proteins where available. The full details of the 322 
structures and ligands used in both the training and validation sets is described in Table S1, but 323 
some additional details are given here. For P38 we selected the allosteric inhibitor ligand BIRB 324 
796 bound in PDB 1KV2 [103]. Note that for the purposes of this study BIRB 796 may be only 325 
partially allosteric, as it also overlaps with orthosteric site defined by the ligand in PDB 3FLS [102]. 326 
We collected four additional systems, ANGPTL4, TEM-1, and GABABR in both the active and 327 
inactive state. For ANGPTL4, we selected a structure with glycerol bound for the SILCS 328 
simulations (PDB: 6U0A) and used a Palmitic acid-bound structure for assessing which Hotspots 329 
are in a ligand binding pocket (PDB: 6U1U) [111]. TEM-1 was selected because of its cryptic 330 
allosteric binding site [24,113], which is absent in the apo structure we used for the SILCS 331 
simulation (PDB: 1JWP) [112]. For the GABABR, as previously described for the CDK2 system 332 
[70], we collected two sets of FragMaps corresponding to the active (PDB: 7CA3, allosteric 333 
modulator BHFF) and inactive (PDB: 7CA5, apo) conformations. Each FragMap set was used to 334 
identify ligands from separate PDBs (6UO8 and 7C7Q). This allows us to assess if the individual 335 
FragMap sets allows the prediction of binding sites from either state of the protein. However, the 336 
large interdomain rearrangement of the transmembrane (TM) helices between active and inactive 337 
states [115] disallows predicting the allosteric binding site present in the active conformation using 338 
the inactive conformation with the an equilibrium MD method such as SILCS. 339 
 340 
New Hotspot properties improve the identification of druggable Hotspot clusters 341 
 342 
To generate features of model development we calculated numerous properties of individual 343 
Hotspots including features based on the Hotspot clusters of which they are the centroid Hotspot. 344 
The previously published Hotspot ranking (Orig in Table 1) was based purely on the mean LGFE 345 
over all the specific fragments present in each Hotspot [70]. As discussed above a single Hotspot 346 
represents a binding site for fragments (MW < 200 Da) which are generally smaller than most 347 
drugs. The ranking of all the Hotspots using the mean LGFE, as well as being within 12 Å of at 348 
least one other Hotspot, is shown in Figure S4, which highlights that for many proteins in the 349 
training set, the mean LGFE has limited predictive power. To evaluate the ability of the LGFE to 350 
predict the binding sites for drug-like molecules, the binding site recall was calculated with respect 351 
to the crystallographic ligand poses. The mean LGFE ranking captures 40%, 44%, and 80% 352 
experimental binding sites in the top 10, 20, and 40 Hotspots, respectively, over the training set 353 
protein systems (Table 3). While the mean LGFE score used to rank the original Hotspots is 354 
somewhat successful as a predictor of the Hotspot being a drug-like molecule binding site in some 355 
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systems, significant improvements can be made by incorporating additional features in ML model 356 
development, as shown below.  357 
 358 
Table 3: Training set binding site recall in the top 10, 20, and 40 
Hotspots. The recalls are reported for three models: Hotspot LGFE, 
Exclusion-map HS SASA, and the SVM model. Binding site recall is the ratio 
of unique ligands within 5 Å of an experimentally-validated ligand binding site 
over the total number of such sites for that protein. 
Protein Name # Sites Top 10 Top 20 Top 40 

LGFE (Original ranking metric) 
CDK2 Active 6 0.67 0.67 0.67 
CDK2 Inactive 6 0.33 0.33 0.83 
ERK5 2 0.50 0.50 1.00 
PTP1B 3 0.33 0.33 1.00 
β2 Adrenergic 2 0.00 0.50 0.50 
GPR40 2 0.00 0.00 0.00 
M2 Muscarinic 2 0.50 0.50 1.00 
Androgen 2 0.50 0.50 1.00 
Total 25 0.40 0.44 0.80 

Exclusion-map HS SASA 
CDK2 Active 6 0.50 0.83 0.83 
CDK2 Inactive 6 1.00 1.00 1.00 
ERK5 2 1.00 1.00 1.00 
PTP1B 3 0.33 0.33 1.00 
β2 Adrenergic 2 0.50 1.00 1.00 
GPR40 2 1.00 1.00 1.00 
M2 Muscarinic 2 0.50 1.00 1.00 
Androgen 2 1.00 1.00 1.00 
Total 25 0.76 0.88 0.96 

SVM model 
CDK2 Active 6 0.50 0.50 0.83 
CDK2 Inactive 6 1.00 1.00 1.00 
ERK5 2 1.00 1.00 1.00 
PTP1B 3 0.33 0.33 1.00 
β2 Adrenergic 2 1.00 1.00 1.00 
GPR40 2 0.50 1.00 1.00 
M2 Muscarinic 2 1.00 1.00 1.00 
Androgen 2 1.00 1.00 1.00 
Total 25 0.76 0.80 0.96 

 359 
When designing new features, we considered another limitation in the original ranking where the 360 
mean LGFE scores of Hotspots with high solvent exposure are often quite favorable. To account 361 

https://doi.org/10.26434/chemrxiv-2024-hrqq9 ORCID: https://orcid.org/0000-0001-8287-6804 Content not peer-reviewed by ChemRxiv. License: CC BY-NC-ND 4.0

https://doi.org/10.26434/chemrxiv-2024-hrqq9
https://orcid.org/0000-0001-8287-6804
https://creativecommons.org/licenses/by-nc-nd/4.0/


 13 

for the degree of solvent accessibility required to make a binding site more favorable for drug-like 362 
molecules as well as consider the size of drug-like molecules, we designed features related to 363 
the degree of solvent accessibility of the Hotspot, the volume of the Hotspot not occluded by the 364 
protein, the number of Hotspots in a cluster, and the totals of these in each Hotspot cluster. Figure 365 
2 shows the ranking based on Exclusion-map HS SASA for all Hotspots also within 12 Å of at 366 
least one other Hotspot. Those Hotspots within 5 Å of a drug-like molecule from crystallographic 367 
structures are shown as large circles. The Exclusion-map HS SASA ranking greatly improves the 368 
selection of Hotspots close to drug-like molecules. Table 3 shows that the mean binding site 369 
recalls have increased over that of the original LGFE Hotspot ranking to 76%, 88%, and 96% for 370 
the top 10, 20, and 40 Hotspots, respectively. While accounting for the SASA and presence of at 371 
least one adjacent Hotspot greatly improves the identification of druggable Hotspots, there is 372 
variability over the training set proteins. For example, with PTP1B or the M2 Muscarinic receptor, 373 
these two criteria alone aren’t particularly effective. Accordingly, we reasoned that using a 374 
machine learning classifier method to combine the information from many features should provide 375 
a better ranking. If the model is trained with cross-validation, it could also lead to robust 376 
generalization across a range of protein systems. 377 
 378 

 
Figure 2: Ranking based on Exclusion-map HS SASA of individual Hotspots with a 
minimum of one adjacent Hotspot within 12 Å. The larger circles denote Hotspots within 5 
Å of a non-hydrogen atom of a drug-like compound bound to the proteins.  

 379 
Machine learning model improves identification of druggable Hotspots 380 
 381 
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While the individual feature of Exclusion-map HS SASA, and presence of adjacent Hotspots, 382 
contain substantial information about whether a Hotspot is located in a drug binding site, an 383 
appropriately selected and trained machine learning model should better integrate the information 384 
from a wider range of features and improve the model’s accuracy as well as generalizability. 385 
Accordingly, we trained several machine learning models using the features listed in Table 1, as 386 
shown in the supporting information (Table S3). From that analysis we selected the SVM classifier 387 
with a linear kernel as implemented in scikit-learn library [119,121]. The final model improves the 388 
predictive power over the untrained features alone, as shown in Figure 3. Figure 3A shows the 389 
model’s Hotspot ranking for each system and highlights the Hotspots which are within 5 Å of a 390 
ligand. Figure 3B presents a precision-recall curve for the training data and includes comparison 391 
to two untrained models, the original mean LGFE of all the molecules in the Hotspot, and Hotspot 392 
Exclusion-map HS SASA. Precision-recall curves show the change in precision over increasing 393 
recall, which corresponds to lowering the level of the cutoff above which a Hotspot is predicted to 394 
be a hit. Figure 3C shows the merged ranking of Hotspots from all proteins, for each of the three 395 
models, corresponding to Figure 3B. To facilitate easy comparison, the LGFE and Exclusion-map 396 
HS SASA were inverted, and then the LGFE, Exclusion-map HS SASA and SVM Decision 397 
Function were Min-Max normalized ((�⃑� − 𝑚𝑖𝑛)/(𝑚𝑎𝑥 −𝑚𝑖𝑛)) so that they all predict maximal 398 
druggability at 1 and minimal druggability at 0 (Figure 3C). Figure 3C shows that generally, the 399 
SVM model has the greatest density of true hits in the lower rankings; we note that the relative 400 
ranking within each metric is important in Figure 3C, not the position of the curves with respect to 401 
one another (Figure 3C). Indeed, the SVM model has superior performance to the other models, 402 
demonstrated by the larger area under the precision-recall curve (AUC) for the SVM model (0.42) 403 
as compared to the LGFE (0.08), Exclusion-map HS SASA (0.29), and the random model (0.07) 404 
(Figure 3B). The SVM model’s AUC increased six-fold from that of the random model (0.07 to 405 
0.42) (Figure 3B). 406 
 407 
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Figure 3: Performance of final model on the training set. A) Ranking of each protein’s 
Hotspots by the final SVM model’s Decision Function with Hotspots within 5 Å of the non-
hydrogen atoms of known drug-like molecules (true hits) shown as large circles. B) Precision-
Recall curves of the original LGFE (blue), Exclusion-map HS SASA (yellow), and SVM Decision 
function (red) models. AUC stands for area under the curve, and the black dashed line reflects 
the ratio of hits to total Hotspots, or the expected AUC for a random model. C) Ranking of all 
training set Hotspots using the Min-Max normalized ranking metric in which the range for each 
metric is set from 0 to 1 using (�⃑� − 𝑀𝑖𝑛)/(𝑀𝑖𝑛 −𝑀𝑎𝑥). Hotspots within 12 Å of at least one 
other Hotspot from all proteins are combined and plotted as a continuous curve. Prior to Min-
Max normalization the Exclusion-map HS SASA and LGFE were inverted to allow direct 
comparison to the SVM Decision Function. The markers denote hits, as in panel A). 

 408 
In practical terms, the model identifies 80% of ligand binding sites in the top 20 Hotspots (Table 409 
3). This is impressive performance given the challenging nature of the problem since the binding 410 
sites identified here include both allosteric and orthosteric sites based on ligands exclusively 411 
absent in the crystal structures used in the SILCS simulations [70]. In the top 20 Hotspots the 412 
SVM model fails to identify three out of twenty ligand sites (Table 3). One is a relatively solvent-413 
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exposed site on the protein PTP1B, and so are unusual in our training set and challenging to the 414 
model. The remaining three missing ligands belong the CDK2 kinase in the active state. Two of 415 
these missing sites share the same Hotspot ranked 34th by the SVM model (Table S2). The last 416 
missing site has no Hotspot within 5 Å (Table S2), as highlighted in the previous paper [70]. 417 
Missing this binding site is therefore not a limitation of the ranking method itself but the sampling 418 
of that particular pocket using the CDK2 Active structure 3MY5 with the SILCS method. While the 419 
system PTP1B, which has largely surface-exposed binding sites, remains challenging even for 420 
the SVM model, the model prediction generally improves across all systems (Figure 3B), and may 421 
be more generalizable than a single feature such as the Exclusion-map HS SASA, which happens 422 
to perform well on this particular dataset. However, an unbiased assessment of the final model 423 
must rely on an independent dataset. 424 
 425 
Validation of the final SVM model 426 
 427 
To validate the final model, we gathered a set of proteins independent of the training set, as 428 
discussed in the Methods. The details of the ligands analyzed for each system are listed in Table 429 
S1 and Table S2. The results for predicting all Hotspots near crystal ligands using the SVM model 430 
are given in Figure 4A, and a comparison of the model’s performance to the untrained LGFE and 431 
Exclusion-map HS SASA models are given in Figure 4B and Figure 4C. The results for predicting 432 
individual binding sites is given in Table 4. There is a six-fold increase in precision-recall AUC 433 
between the random model and the SVM model in the validation set (0.02 to 0.12), the same as 434 
was in the training set (0.07 to 0.42), which suggests that the model was not overfit to the training 435 
data. More practically, the model recalls 65% of ligand binding sites in the top 10, and 88% of 436 
sites in the top 20 Hotspots, respectively (Table 4). The SVM model’s Decision Function 437 
outperforms the untrained models as demonstrated by the increased precision-recall AUC (Figure 438 
4B). Notably, the Exclusion-map HS SASA ranking performs worse in the validation set than in 439 
the test set, suggesting that the trained SVM model is more generalizable than either individual 440 
feature alone (Figure 4B). Furthermore, although the Exclusion-map HS SASA ranking performed 441 
slightly better at binding site recall on the training set (Table 3, top 20), the SVM model performs 442 
better than either untrained model on the validation test (Table 4). Overall, the results argue that 443 
the model is not over-fitted to our limited training data, and that the model can predict druggable 444 
binding sites across a range of proteins with reasonable accuracy. 445 
 446 
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Figure 3: Performance of final model on the training set. A) Ranking of each protein’s 
Hotspots by the final SVM model’s Decision Function with Hotspots within 5 Å of the non-
hydrogen atoms of known drug-like molecules (true hits) shown as large circles. B) Precision-
Recall curves of the original LGFE (blue), Exclusion-map HS SASA (yellow), and SVM Decision 
Function (red) models. AUC stands for area under the curve, and the black dashed line reflects 
the ratio of hits to total Hotspots, or the expected AUC for a random model. C) Ranking of all 
training set Hotspots using the Min-Max normalized ranking metric in which the range for each 
metric is set from 0 to 1 using (�⃑� − 𝑀𝑖𝑛)/(𝑀𝑖𝑛 −𝑀𝑎𝑥). Hotspots within 12 Å of at least one 
other Hotspot from all proteins are combined and plotted as a continuous curve. Prior to Min-
Max normalization the Exclusion-map HS SASA and LGFE were inverted to allow direct 
comparison to the SVM Decision Function. The markers denote hits, as in panel A). 

 447 
While the model performs quite well across most of the validation set, it performs poorly on the 448 
heterodimer GABAB Receptor in both active and inactive states. It captures one of nine true hit 449 
Hotspots in the active state and zero of three in the inactive, which corresponds to identifying only 450 
one of three ligand binding sites (Table 4). The orthosteric binding site (2C0, Baclofen) was not 451 
identified in GABABR Inactive, despite being identified in the GABABR Active simulations. In the 452 
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simulations of the inactive state, the orthosteric binding site is highly solvent exposed, and the 453 
Hotspots’ Exclusion-map rBSA values range from 1% to 40%, less than the empirical 42% cutoff 454 
used to define the training set (see Methods). This makes this site an outlier compared to the data 455 
used to train the model. However, another challenge is that the GABABR heterodimer is much 456 
larger than the other proteins considered. A total of 416 Hotspots were identified or about four- to 457 
five-times the number in the training set systems. To account for this, we ranked the Hotspots 458 
near the extracellular part of the GABAB1 subunit. From among these 118 Hotspots, a Hotspot 459 
near the ligand 2C0 is now ranked in 33rd, or in the top 40 (Table S2). Finally, the missing site in 460 
the GABABR active state is an allosteric binding site between the two TM domains and directly 461 
interacts with lipids in the bilayer during the SILCS GCMC/MD simulations (Figure S5), making 462 
this site uniquely challenging to identify with our method. We ranked all the Hotspots in the TM 463 
region and found that the first two Hotspots near the ligand are only ranked 50th and 57th, 464 
respectively (Table S2). A future improvement of the model could explicitly account for lipid 465 
interactions at membrane-protein interfaces. 466 
 467 
Table 4: Validation set binding site recall in the top 10, 20, and 
40 Hotspots. The recalls are reported for three models, the LGFE, 
Exclusion-map HS SASA of the Hotspot, and SVM model’s Decision 
Function. Binding site recall is the ratio of the total number of ligand 
binding sites within 5 Å of a Hotspot in the top N Hotspots. A site is 
identified when at least one Hotspot corresponding to a ligand is 
selected in the top N. 
Proteins Name # Sites Top 10 Top 20 Top 40 

LGFE 
P38 2 0.50 1.00 1.00 
BACE1 1 1.00 1.00 1.00 
Hsp90 1 1.00 1.00 1.00 
TrmD 1 1.00 1.00 1.00 
Thrombin 1 1.00 1.00 1.00 
MCL1 1 1.00 1.00 1.00 
FXR 3 0.67 0.67 1.00 
ANGPTL4 1 1.00 1.00 1.00 
TEM1 3 0.33 0.33 0.33 
GABABR Active 2 0.00 0.50 1.00 
GABABR Inactive 1 0.00 0.00 1.00 
Total 17 0.59 0.71 0.82 

Exclusion-map HS SASA 
P38 2 1.00 1.00 1.00 
BACE1 1 0.00 1.00 1.00 
Hsp90 1 1.00 1.00 1.00 
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TrmD 1 1.00 1.00 1.00 
Thrombin 1 0.00 1.00 1.00 
MCL1 1 1.00 1.00 1.00 
FXR 3 0.67 1.00 1.00 
ANGPTL4 1 1.00 1.00 1.00 
TEM1 3 0.33 0.33 0.67 
GABABR Active 2 0.00 0.00 0.00 
GABABR Inactive 1 0.00 0.00 0.00 
Total 17 0.53 0.71 0.88 

SVM model 
P38 2 1.00 1.00 1.00 
BACE1 1 1.00 1.00 1.00 
Hsp90 1 1.00 1.00 1.00 
TrmD 1 1.00 1.00 1.00 
Thrombin 1 0.00 1.00 1.00 
MCL1 1 1.00 1.00 1.00 
FXR 3 1.00 1.00 1.00 
ANGPTL4 1 1.00 1.00 1.00 
TEM1 3 0.33 1.00 1.00 
GABABR Active 2 0.00 0.50 0.50 
GABABR Inactive 1 0.00 0.00 0.00 
Total 17 0.65 0.88 0.88 

 468 
 469 
Model’s Decision Function is a predictor of Hotspot druggability 470 
 471 
While the SVM model highly ranks most Hotspots corresponding to known drug-like ligand binding 472 
sites in the top 20 (Table 4), there are a number of high-ranking Hotspots that do not correspond 473 
to known binding sites. Because some may be associated with true drug-like binding sites for 474 
which no ligand has yet experimentally been identified, we hypothesized that the most highly-475 
ranked Hotspots should be more druggable than those ranked poorly. To test this hypothesis, we 476 
selected two proteins in the validation set, namely TEM-1 and GABABR Active, and docked the 477 
FDA database of 348 compounds at the Hotspots ranked 1-10, 91-100, and for GABABR 391-478 
400. These Hotspots represent the most and least-druggable according to the SVM model’s 479 
ranking. For each Hotspot we report the mean LGFE and rBSA for the top twenty compounds 480 
ranked by LGFE (Table S4). The mean LGFE scaled by mean rBSA (mean LGFE x rBSA), where 481 
100% rBSA is equivalent to 1.0, was used as a measure of Hotspot druggability. This assumes 482 
that druggable sites have favorable LGFE scores with high rBSA values, associated with high 483 
affinity and with buried sites, respectively. We plotted the final SVM model’s Decision Function 484 
against the mean LGFE x rBSA for these Hotspots in Figure 5. In general, it shows the expected 485 
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anti-correlation between Hotspot predicted druggability, based on larger positive SVM Decision 486 
Function values and more negative LGFE x rBSA scores corresponding to druggable sites. 487 
 488 
The SVM Decision Function’s anti-correlation with the LGFE x rBSA druggability scores accounts 489 
for slightly different trends in LGFE and rBSA individually between GABABR and TEM-1. For the 490 
TEM-1 Hotspots, the top 10 Hotspots have substantially higher average rBSA and the average 491 
LGFE values of Hotspots 91-100 decrease only slightly, whereas in GABABR Active the average 492 
LGFE score decreases substantially while the average rBSA values decrease slightly (Table S4). 493 
The fact that GABABR Hotspots appear far more druggable, having more favorable average LGFE 494 
and lower rBSA, despite only considering Hotspots 91-100 is due to that system have significantly 495 
more Hotspots due to its larger size than the TEM-1 system. Importantly there are large 496 
differences between the SVM Decision Function scores between Hotspots 1-10 and 91-100 for 497 
both proteins, indicating the ability to discriminate between sites in difference proteins. In addition, 498 
it is notable that with both proteins the SVM Decision Function scores for the top Hotspots are 499 
similar, ~1.0, indicating that the SVM values may be applied directly to new proteins for the 500 
selection of potential druggable sites. Finally, the lack of a stronger anti-correlation between SVM 501 
Decision Function scores and the Mean LGFE x rBSA druggability scores may be associated with 502 
the concept of druggability being fairly imprecise. For example, some binding sites may have high 503 
affinity for just a few ligands, and low affinity for all other ligands, yielding lower druggability score 504 
despite the fact that the site is druggable in principle.  505 
 506 

 
Figure 5: SVM model Decision Function and the Mean LGFE times rBSA for selected 
Hotspots. For TEM-1 and GABABR, the Hotspots 1-10 and 91-100 were selected, and for 
GABABR Hotspots 391-400 were also selected. The trendlines show the linear line of best fit. 
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For TEM-1 Hotspots 1-10 and 91-100 correspond to SVM Decision Function scores of ~1.0 and 
-1.5, respectively, while Hotspots 1-10, 91-100, and 391-400 correspond to SVM Decision 
Function scores of ~1.0, 0.2, and -1.5. The discrepancy in the relationship is due to the 
significantly higher number of Hotspots with GABABR versus TEM-1, which biases the overall 
distribution towards lower ranking SVM Decision Function scores. 

 507 
 508 
Conclusions 509 
 510 
We previously presented the SILCS-Hotspots method to leverage the information in SILCS 511 
FragMaps to identify a comprehensive set of fragment binding sites. Here we have built upon the 512 
previous work and developed a predictive algorithm which identifies the binding sites of larger, 513 
drug-like molecules. As a training set, we used the original set of proteins which included a list of 514 
Hotspots within 5 Å of a drug-like ligand in a crystal structure of the protein. We first demonstrated 515 
that the existing SILCS-Hotspot ranking, based solely on the mean LGFE of each Hotspot that is 516 
within 12 Å of at least one other Hotspot, was insufficient to efficiently identify druggable binding 517 
sites. Next, use of the Exclusion-map HS SASA of each Hotspot and presence of at least one 518 
adjacent Hotspots was shown to substantially improve the ranking. Building on this, a SVM 519 
classification model was developed using a wide array of Hotspot and Hotspot cluster properties 520 
as features. This led to improved predictions and the final model was validated on a separate set 521 
of 9 proteins, on which the model performs quite well. On the problem of identifying at least one 522 
Hotspot per ligand binding site, the final model achieves 80% recall in the top 20 Hotspots per 523 
protein (20 out of 25 total ligand binding sites total) in the training set, and 88% recall in the top 524 
20 on the validation set (15 out of 17 total sites). By comparing the model’s ranking with the 525 
predicted affinity and solvent accessibility of members of a chemically-diverse set of FDA-526 
approved compounds, we argue that the model predicts sites which are likely druggable even if 527 
they haven’t yet been identified through the presence of crystallographic ligands. 528 
 529 
In practice, the presented workflow and SVM model offers the capability of identifying novel 530 
binding sites for drug-like molecules in proteins, including allosteric sites. This takes advantage 531 
of the high information content in the SILCS FragMaps that include contributions from protein 532 
flexibility, desolvation and protein-functional group interactions which, in a ligand discovery 533 
scenario can be used for database screening and ligand optimization. Notable is the high 534 
performance of the SVM model on the validation-set proteins. This is suggested to be due to the 535 
use of the physics-based SILCS FragMaps in the initial Hotspots calculation avoiding inherent 536 
overtraining effects that may occur with a ML model solely based on data fitting. However, the 537 
model has limitations associated with sites adjacent to the lipid bilayer. Future efforts will focus 538 
on addressing this issue.  539 
 540 
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Figure S1: Surface-exposed Hotspot 25 in ERK5. The Hotspots are shown as spheres 
overlaid on the SILCS exclusion map (tan surface). The Hotspots within 5 Å of ligand 4WG 
(PDB 5BYY) are black, else the Hotspots are colored by the final model’s decision function, 
with red corresponding to the highest and blue the lowest confidence of being a druggable site. 
Hotspot 25 (original LGFE-based ranking) is located above and outside of the ligand binding 
pocket and has a large SASA with respect to the Exclusion map. 
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Figure S2. Distribution of Hotspot SASA by protein system. The SASA (Å2) was calculated 
with respect to the SILCS Exclusion map for Hotspots of radius 5 Å. The large circles are 
Hotspots within 5 Å of a crystal ligand’s non-hydrogen atoms. The dashed black line indicates 
the empirical cutoff at 300 Å2. 
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Figure S3. Class-weighted average of weighted F1 statistic from Recursive Feature 
Elimination with 5-fold Cross Validation. The weighted F1 shows the model’s performance 
while including some number of principal components, and the maximum occurs at 22. 
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Figure S4: Ranking based on mean LGFE of each Hotspot. This is the mean LGFE of all 
the fragments clustered within the Hotspot and was the original ranking metric. 
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Figure S5: Burial of allosteric binding site between GABABR Active TM domains. The 
Hotspots within 5 Å of one of the ligand non-hydrogen atoms and near the lipid are shown as 
black spheres. The allosteric ligand QDA is drawn in Licorice style; additional information on 
QDA is in Table S1. The lipids near to the TM helices are rendered with Lines style. The teal 
atoms are carbon, the yellow are sulfur, the red are oxygen, the blue are nitrogen, and the pink 
are fluorine. The protein and lipids are taken from a representative snapshot from the SILCS 
MD simulations. 
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Table S1: List of proteins and ligands used for model training and validation. The protein 
structures used for the SILCS simulations are bolded. Where possible, an apo structure is used 
for the SILCS simulations. The alignments were done on all backbone non-hydrogen atoms 
with the residues listed. Where alignment residues are not listed, they are identical to the 
residues listed for the reference protein (used for SILCS simulations). a) Alignment described 
in [1]. b) Alignment described in [2]. c) Structures aligned in D3R dataset [3]. d) ASP233 
protonated as predicted by PropKa [4]. Some of the data in this table is reproduced from refs 
[1,2,5]. O stands for Orthosteric, A stands for Allosteric. 
Name PDB/D3R 

(SILCS) 
Alignment 
residues 

RMSD 
(Å) 

Ligand Notes 
(Orthosteric/Allosteric), 
Reference 

CDK2 
active 

3MY5   DRB O, active [6] 

CDK2 
inactive 

1PW2    Apo, inactive [7] 

 3PXF 1-298 4.6 2AN A, 2 present [8] 
 5FP5 1-298 4.5 1Y6 A, 2 present [9] 
 5FP6 1-298 4.0 MFZ A, 2 present [9] 
ERK5 4IC8    Apo, inactive [10] 
 5BYY 49-389 (27-

367) 
3.8 4WG O [11] 

 4ZSG 47-389 3.5 4QX A [11] 
PTP1B 2F6F    Apo, S295F mutant [12] 
 1T48 1-298 2.8 BB3 A [13] 
 2NT7 2-298 1.5 9O2 O [14] 
 3CWE 1-283 1.1 825 O, phosphonic acid analog 

[15] 
β2 
Adrenergic 

3SN6 6-205, 238-
315 

 P0G O, active [16] 

 5X7D 31-230, 
263-340 

2.8 CAU O, carazolol, inactive [17] 

 5X7D   8VS A, inactive [17] 
GPR40 
(partial 
agonist) 

4PHU 15-176, 
178-224, 
390-453 

 2YB A, TAK-875, Site 1, Partial 
allosteric agonist [18] 

GPR40 (full 
agonist) 

5KW2 3-31, 39-
111, 120-
145, 168-
210, 214-
277 

 6XQ A, Lilly, full positive allosteric 
agonist, Site 2 [19] 

 5TZY 2-163, 165-
211, 2215-
2278 

2.0 MK6 A, partial positive allosteric 
agonist, Site 1. This ligand 
was compared to the 5KW2 
map. 

 5TZY 3-31, 39-
111, 120-
145, 168-
210, 2214-
2277 

1.6 7OS A, AgoPAM, Full allosteric 
agonist, Site 2. This ligand 
was compared to 4PHU map. 
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M2 
Muscarinic 

3UON 1-198, 201-
277 

 QNB O, antagonist, inactive form 
[20] 

 4MQT 20-217, 
379-455 

2.6 2CU A, LY2119620, positive 
allosteric modulator, active 
[21] 

 4MQT 20-217, 
379-455 

2.6 IXO O, iperoxo, agonist, active 
[21] 

Androgen 2AM9   TES O, testosterone [22] 
 2PIX 670-918 0.5 DHT O, dihydrotestosterone [23] 
 2PIX 670-918 0.5 FLA A, flufenamic acid (inhibitor) 

[23] 
P38 3FLY   FLY A [24] 
 1KV2 7-150, 200-

300 
0.9 B96 A, BIRB 796, partial allosteric 

[25] 
BACE 4DJW   0KP A [26] 
 -- -- -- Merck 36-

17 
Merck 36-17b [27], pose from 
SILCS-MC docking [2] (no 
PDB entry) 

Hsp90 2JJC   LGA O, Pyrimidin-2-amine (small 
fragment) [28] 

 4YKW 20-220 b 2.1 4ES O, CS312 
TrmD 4YPW   4FD No ref 
 4YQ2 1-160 b 0.5 EFY No ref 
Thrombin 2ZFF    O [29] 
 2ZDA -- 0.5 32U O, S1 pocket, structure 

alignment used [29] 
MCL1 4HW3   19G O [30] 
 4HW2 b 0.6 19H O [31] 
FXR 1DVWB    Apo [3] 
 1NQQW 250-458c 1.5 -- Roche 016 [3] 
 1FGGU 250-458c 1.6 -- Roche 034 [3] 
 1WGPH 250-458c 2.4 -- Roche 036 [3] 
ANGPTL4 6U0A    O, Glycerol [32] 
 6U1U 185-400 0.4 PLM O, Palmitic acid [32] 
TEM1 1JWPd    Apo, M182T mutant [33] 
 1ERO 26-181 0.3 BJP O [34] 
 1PZO 26-181 0.3 CBT A, 2 ligands present [35] 
GABABR 
active 

7CA3   FN0 A, BHFF, active [36] 

GABABR 
inactive 

7CA5    Apo, inactive [36] 

 6UO8 Chain A: 
165-485, 
503-562, 
Chain B: 
380-569 

1.9 
(7CA3) 

QDA A, GS39783 [37] 

 7C7Q Chain A: 
707-861, 
Chain B: 

1.6 
(7CA3) 

2C0 O, Baclofen [38], GABA 
analog 
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600-748 
(7CA3) 

 7C7Q Chain A: 
290-480, 
495-570 
(7CA5) 

3.4 
(7CA5) 

2C0 O, Baclofen [38], GABA 
analog 
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Table S2: Training and validation set Hotspots and ligand distances. Distance is the 
distance to the nearest non-hydrogen atom on that ligand. Ligand names are given in Table S1. 
Rank refers to the SVM model rank and the original Hotspot LGFE rank is given for comparison. 
For the validation set, we included only one Hotspot per ligand to avoid over-counting in the 
test dataset due to it being smaller, although some Hotspots were within 5 Å of multiple ligands. 
There are some ligands which appear multiple times, as noted in Table S1, which is denoted 
with a, b. 

Training 
Protein Distance (Å) Ligand Rank Decision Fn. LGFE Rank 
CDK2 Active 2.7 2AN a 34 -0.49 12 
CDK2 Active -- 2AN b -- -- -- 
CDK2 Active 4.9 1Y6 a 10 0.23 19 
CDK2 Active 1.4 1Y6 a 2 1.34 5 
CDK2 Active 4.2 1Y6 a 3 1.25 92 
CDK2 Active 2.7 1Y6 b 4 1.24 65 
CDK2 Active 1.1 1Y6 b 7 0.27 78 
CDK2 Active 4.9 MFZ a 44 -0.78 8 
CDK2 Active 2.7 MFZ a 34 -0.49 12 
CDK2 Active 1.7 MFZ b 2 1.34 5 
CDK2 Active 3 MFZ b 3 1.25 92 
CDK2 Inactive 3.5 2AN a 6 0.79 22 
CDK2 Inactive 1.5 2AN a 2 1.79 33 
CDK2 Inactive 0.9 2AN a 1 2.00 70 
CDK2 Inactive 4.2 2AN b 31 -0.51 6 
CDK2 Inactive 2 2AN b 6 0.79 22 
CDK2 Inactive 3.2 1Y6 a 7 0.57 50 
CDK2 Inactive 2.4 1Y6 a 37 -0.64 51 
CDK2 Inactive 2.5 1Y6 b 5 1.01 34 
CDK2 Inactive 4.4 1Y6 b 1 2.00 70 
CDK2 Inactive 1.7 MFZ a 31 -0.51 6 
CDK2 Inactive 4.2 MFZ a 6 0.79 22 
CDK2 Inactive 1.9 MFZ b 5 1.01 34 
ERK5 0.9 4QX 2 1.16 29 
ERK5 3.7 4QX 1 1.19 71 
ERK5 0.9 4WG 10 0.22 8 
ERK5 2.5 4WG 1 1.19 71 
ERK5 2.6 4WG 5 0.83 78 
ERK5 0.8 4WG 3 1.02 86 
PTP1B 1 BB3 2 1.15 5 
PTP1B 3 BB3 40 -0.58 16 
PTP1B 1.6 BB3 3 0.39 50 
PTP1B 0.6 902 19 -0.10 24 
PTP1B 2.3 902 52 -0.86 30 
PTP1B 1.9 902 32 -0.47 32 
PTP1B 1.3 825 19 -0.10 24 
PTP1B 4.8 825 32 -0.47 32 
β2 Adrenergic 1.7 CAU 3 1.11 20 
β2 Adrenergic 1.5 CAU 13 0.37 31 
β2 Adrenergic 1.3 CAU 2 1.18 41 
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β2 Adrenergic 3.5 CAU 9 0.64 47 
β2 Adrenergic 2 CAU 10 0.63 57 
β2 Adrenergic 3.3 CAU 5 0.85 67 
β2 Adrenergic 1.2 8VS 7 0.77 58 
β2 Adrenergic 2.1 8VS 8 0.72 60 
GPR40 (5KW2) 1.2 MK6 12 -0.05 27 
GPR40 (5KW2) 1.1 MK6 1 1.81 57 
GPR40 (5KW2) 0.9 MK6 2 1.29 61 
GPR40 (4PHU) 1.5 70S 10 0.03 12 
GPR40 (4PHU) 2.2 70S 5 0.38 29 
M2 Muscarinic 2.3 2CU 10 0.72 23 
M2 Muscarinic 3.2 2CU 25 -0.21 28 
M2 Muscarinic 2 2CU 19 0.14 41 
M2 Muscarinic 3.2 2CU 5 1.00 75 
M2 Muscarinic 2.1 IXO 8 0.92 3 
M2 Muscarinic 0.8 IXO 3 1.20 10 
M2 Muscarinic 3.8 IXO 2 1.36 27 
Androgen 0.8 DHT 3 1.41 26 
Androgen 3.6 DHT 1 1.57 57 
Androgen 0.9 FLA 9 0.19 3 
Androgen 1.2 FLA 15 -0.13 17 
Androgen 1.6 FLA 27 -0.49 34 

Validation 
P38 1.2 B96 1 2.34 19 
P38 1.7 B96 4 1.62 3 
P38 3.1 B96 9 0.70 50 
BACE1 3.1 Merck36 17b 30 -0.04 4 
BACE1 0.8 Merck36 17b 12 0.67 14 
BACE1 1.0 Merck36 17b 10 0.72 21 
BACE1 4.3 Merck36 17b 24 0.05 29 
Hsp90 1.1 4ES 4 1.04 2 
Hsp90 1.3 4ES 8 0.69 58 
TrmD 1.0 EFY 4 0.85 1 
TrmD 1.9 EFY 5 0.85 23 
TrmD 1.1 EFY 8 0.24 11 
Thrombin 1.0 32U 27 -0.17 2 
Thrombin 1.5 32U 11 0.44 5 
MCL1 1.9 ADP 13 0.01 7 
MCL1 0.6 ADP 9 0.24 10 
FXR 0.5 1wpgh 3 1.43 3 
FXR 4.1 1nqqw 5 1.12 10 
FXR 1.7 1wpgh 4 1.39 11 
FXR 3.1 1wgph 11 0.55 20 
FXR 1.5 1nqqw 10 0.63 25 
FXR 1.0 1fggu 8 0.67 32 
FXR 4.1 1wpgh 1 1.82 58 
FXR 5.0 1wpgh 7 0.84 62 
FXR 1.6 1fggu 9 0.64 72 
ANGPTL4 0.9 PLM 3 0.84 1 
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ANGPTL4 1.0 PLM 9 0.68 6 
TEM1 1.6 BJP 20 0.09 95 
TEM1 1.6 CBT a 19 0.10 71 
TEM1 3.2 CBT b 6 1.04 16 
TEM1 3.7 CBT b 17 0.21 10 
GABABR Active 4.9 QDA 177 -0.48 177 
GABABR Active 0.5 QDA 162 -0.40 35 
GABABR Active 1.9 QDA 141 -0.23 125 
GABABR Active 3.0 QDA 179 -0.49 284 
GABABR Active 3.0 2C0 67 0.45 21 
GABABR Active 3.1 2C0 19 0.84 12 
GABABR Active 4.8 2C0 103 0.11 97 
GABABR Inactive 3.3 2C0 133 -0.27 47 
GABABR Inactive 4.9 2C0 106 -0.09 39 
GABABR Inactive 4.0 2C0 122 -0.21 186 
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Table S3: Stratified 5-fold cross-validation training of higher-order SVM Classifier with 
polynomial or radial basis functions kernels and a Random Forest model. These models 
were all trained with class_weight = ‘balanced’, max_iter = 1e6, and tol = 1e-4. The reported 
metrics are mean ± sem over the 5-fold CV. Weighted F1, precision, and recall are defined 
based on the Hotspots near crystal ligands as described in the Methods section. Precision is 
the ratio of predicted hits to total Hotspots above some cutoff, and recall is the ratio of predicted 
hits to the total true hits. Weighted F1 is the population-weighted harmonic mean of precision 
and recall. Single-fit recall is the recall after training on the whole dataset. The RF model was 
optimized over the following hyperparameter space, with the selected values bolded: 
n_estimators = [10, 50, 100], max_depth = [2, 10, 50, 100], min_samples_split = [2, 10, 50, 
100], min_samples_leaf = [2, 10, 50, 100], class_weight = balanced, bootstrap = True, 
max_features = ['sqrt', 'log2', None]. The hyperparameters for the linear kernel are fully 
described in Table 2 of the main text. 
Model C (SVM) Weighted F1 Precision Recall Single-fit 

recall 
Linear kernel 1e-2, 1e-3, 

1e-4 
0.88 ± 0.03 0.31 ± 0.08 0.72 ± 0.16 0.74 

Polynomial 
degree 2 

1, 1e-2, 1e-4 0.91 ± 0.03 0.45 ± 0.21 0.44 ± 0.14 0.76 

Polynomial 
degree 3 

1, 1e-2, 1e-4 0.92 ± 0.02 0.47 ± 0.19 0.38 ± 0.10 0.74 

Polynomial 
degree 4 

1, 1e-2, 1e-4 0.93 ± 0.00 0.55 ± 0.11 0.42 ± 0.10 0.76 

Radial basis 
functions 

1, 1e-2, 1e-4 0.88 ± 0.03 0.25 ± 0.14 0.38 ± 0.17 0.98 

RF Classifier -- 0.84 ± 0.02 0.17 ± 0.06 0.50 ± 0.19 0.88 
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Table S4. FDA compound screening for selected Hotspots of TEM-1 and GABABR 
Active. The Hotspots selected for each protein system are ranked 1-10 and 91-100. The 
results are average LGFE and %rBSA for the top 20 compounds ranked by LGFE. %rBSA is 
the relative buried surface area expressed as a percentage. For more details regarding the 
docking and the set of compounds used, see the Methods section. 

TEM -1  
Rank Hotspot Decision Fn. Mean LGFE Mean %rBSA LGFE x %rBSA 

1 3 1.24 -11.8 100 -11.8 
2 13 1.23 -7.8 99 -7.7 
3 28 1.14 -9.6 98 -9.4 
4 74 1.13 -5.2 79 -4.1 
5 9 1.07 -12.0 99 -11.9 
6 16 1.04 -11.1 99 -11.0 
7 5 0.86 -11.4 100 -11.4 
8 26 0.83 -10.3 99 -10.2 
9 14 0.83 -9.4 98 -9.2 
10 25 0.7 -11.0 98 -10.8 
  Mean 1.01 -9.9 97 -9.6 

91 68 -1.48 -9.0 36 -3.2 
92 4 -1.49 -11.5 36 -4.1 
93 85 -1.52 -8.5 30 -2.6 
94 44 -1.54 -11.9 44 -5.2 
95 75 -1.56 -6.4 34 -2.2 
96 42 -1.61 -5.0 29 -1.5 
97 66 -1.62 -8.3 35 -2.9 
98 57 -1.63 -8.2 35 -2.9 
99 6 -1.64 -12.0 33 -4.0 
100 24 -1.66 -13.9 41 -5.7 

  Mean -1.58 -9.5 35 -3.3 
      

GABABR Active 
Rank Hotspot Decision Fn. Mean LGFE Mean %rBSA LGFE x rBSA 

1 91 1.10 -10.3 97 -10.0 
2 28 1.10 -17.5 100 -17.5 
3 414 1.09 -14.4 100 -14.4 
4 15 1.06 -11.7 99 -11.6 
5 121 1.02 -11.5 100 -11.5 
6 202 0.97 -11.8 100 -11.8 
7 3 0.97 -16.1 99 -15.9 
8 141 0.96 -17.7 97 -17.2 
9 59 0.94 -11.0 98 -10.8 
10 45 0.94 -10.2 100 -10.2 
  Mean 1.02 -13.2 99 -13.1 

91 70 0.22 -13.8 93 -12.8 
92 451 0.21 -5.8 99 -5.7 
93 72 0.20 -13.6 93 -12.6 
94 80 0.20 -11.6 99 -11.5 
95 169 0.19 -10.1 97 -9.8 
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96 277 0.18 -12.3 74 -9.1 
97 391 0.16 -8.6 98 -8.4 
98 217 0.15 -8.7 100 -8.7 
99 307 0.14 -9.0 73 -6.6 
100 139 0.14 -10.0 99 -9.9 

  Mean 0.18 -10.4 93 -9.7 
391 366 -1.52 -9.8 99 -9.7 
392 306 -1.52 -8.3 95.3 -7.9 
393 422 -1.55 -7.6 44.3 -3.4 
394 457 -1.55 -8.5 92.6 -7.9 
395 394 -1.55 -6.2 49.7 -3.1 
396 152 -1.56 -9.7 85 -8.2 
397 287 -1.58 -9.6 65.6 -6.3 
398 385 -1.59 -8.1 51.6 -4.2 
399 442 -1.61 -8.1 93.6 -7.6 
400 424 -1.62 -6.1 92.7 -5.7 

  Mean -1.57 -8.2 77 -6.4 
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