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Abstract
In sequential multiscale molecular dynamics sim-
ulations, which advantageously combine the
increased sampling and dynamics at coarse-
grained resolution with the higher accuracy of
atomistic simulations, the resolution is altered
over time. While coarse-graining is straightfor-
ward, the reintroduction of the atomistic de-
tail is a non-trivial process called backmapping.
Here, we present ART-SM, a fragment-based
machine learning backmapping framework that
learns the Boltzmann distribution from atom-
istic data to switch from coarse-grained to atom-
istic resolution seamlessly. ART-SM requires
minimal user input and goes beyond state-of-
the-art fragment-based approaches by selecting
from multiple conformations per fragment to
simultaneously reflect the coarse-grained struc-
ture and the Boltzmann distribution. Addition-
ally, we introduce a novel refinement step to
connect individual fragments via optimization
of specific bonds, angles, and dihedral angles in
the backmapping process. We demonstrate that
our algorithm accurately restores the atomistic
bond length, angle, and dihedral angle distribu-
tions for various small molecules of up to three
Martini coarse-grained beads and that the re-
sulting high-resolution structures are representa-
tive of the original coarse-grained conformations.
Moreover, the reconstruction of the TIP3P wa-

ter model is fast and robust, and we illustrate
that ART-SM can be, in principle, applied to
larger molecules as well, indicating its potential
extension to more complex molecules like lipids,
proteins, and macromolecules in the future.

1 Introduction
In recent years, molecular dynamics (MD) sim-
ulations have gained popularity, especially in
the fields of molecular biology,1–8 chemical
physics,9,10 and materials science.11,12 Between
2007 and 2017, the annual number of struc-
tural biology publications involving MD more
than doubled, which can be attributed, among
other factors, to the improved accuracy and
performance of MD software and a greater num-
ber of experimentally determined protein struc-
tures,13 in particular, cryoEM structures.14 The
unmatched spatial (sub-angstroms) and tempo-
ral resolution (femtoseconds) of MD simulations
over the entire simulation period, which can-
not be achieved through experimental methods,
renders MD simulations a perfect complement
to experiments.1,6,15,16 Nevertheless, due to the
substantial computational resources required,
atomistic MD simulations, even though already
neglecting quantum effects, are still limited to
the microsecond and nanometer scales. Con-
sequently, scientists often have to drastically
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simplify biological systems or forego the study
of large molecular complexes entirely.

Coarse-grained (CG) simulations are a pop-
ular strategy to mitigate the computational
limitations by using a low-dimensional represen-
tation of the atomistic systems while preserving
as much structural information as possible.17

Even though different CG force fields with var-
ious granularity have been developed,18 the
most commonly used for biomolecular systems
is Martini.19–22 Nowadays, martinize2 and Ver-
mouth23 can be used for instance via the recently
released Martini Database server24 to automat-
ically create the Martini CG representation
of an atomistic structure, which is essential
for large scale studies and high-throughput
investigations.25–29 Although CG simulations
increase sampling and dynamics, they often
lack the required accuracy and level of detail to
properly analyze specific atomistic interactions
like hydrogen bonds, which are key features in
protein-protein and protein-lipid complexes.3,6

Also, CG models are unable to describe in-
dividual water molecules and thus fail in the
description of water-mediated hydrogen bonds30

and in simulations of water passage in a single-
file manner, e.g. through aquaporins.15,31,32

Sequential multiscale MD simulations combine
the strengths of both approaches by initially sim-
ulating in CG resolution until an equilibrium
or research-relevant conformation is reached.33

This is followed by a process called backmap-
ping, where the structure is reverse transformed
to atomistic detail, enabling the continuation
of the simulation at high resolution.4,16,28,29

While coarse-graining is straightforward, accu-
rate backmapping is a challenging task due to
the loss of information about the atomistic struc-
ture underlying the CG representation, which
must be reintroduced. Consequently, backmap-
ping is a probabilistic process, and multiple valid
solutions typically exist for the same CG struc-
ture.

State-of-the-art backmapping algorithms can
roughly be categorized into geometric,34–37

fragment-based,38,39 and recently emerging ma-
chine learning (ML)40–45 approaches. Geometry-
based methods build an initial atomistic struc-

ture from a set of rules and aim to recover the
Boltzmann distribution with a subsequent re-
laxation step, which typically consists of en-
ergy minimizations (EMs) and short MD simu-
lations. Backward34 is one of the most widely
used backmapping algorithms and exactly fol-
lows this protocol. First, it places atoms at
the weighted average of the corresponding CG
beads, modifies the coordinates of specific atoms
based on manually prepared mapping files to en-
sure correct stereochemistry and to avoid atom
overlaps, and corrects the peptide bonds of the
protein backbone. Afterward, the algorithm
carries out two rounds of EM followed by four
rounds of position restraint MD to further refine
the structure and restore the Boltzmann distri-
bution. While Backward is a highly adaptable
and versatile method that generates accurate
results for a broad spectrum of molecule types,
developing new mapping files requires extensive
expertise. The relaxation step can take a con-
siderable amount of time for larger systems, and
molecules can get trapped in local minima con-
formations. Moreover, the python2-based Back-
ward struggles to accurately recover β-sheets
and is restricted to GROMACS versions older
than 2020, due to its dependence on the group
cut-off scheme.

Another well-known geometric method was de-
veloped by Rzepiela et al.35 that initially places
the respective atoms randomly in a sphere with
a radius of 3Å around the CG beads and per-
forms a simulated annealing (SA) protocol to
obtain the final structure. First, the simulation
begins at a high temperature to overcome en-
ergy barriers, and harmonic potentials hold the
atoms in close proximity to the CG beads. Af-
terward, the temperature is gradually reduced
to a biologically meaningful value, and the struc-
ture is relaxed by successively removing the po-
tentials around the CG beads. SA is a flexi-
ble and straightforward approach directly inte-
grated into the GROMACS software package,
making it easy to use. Despite its advantages,
a study by Wassenaar and colleagues34 demon-
strated that Backward outperforms SA in re-
covering molecular stereochemistry and protein
secondary structures on the examples of YvoA,
Aquaporin-1, and ASIC-1a.
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Fragment-based approaches construct the ini-
tial atomistic structure by assembling individual
fragments retrieved from a database rather than
relying on geometric rules. This database can ei-
ther be predefined, as in the case of CG2AT2,39

or directly extracted from a reference struc-
ture.38 Ideally, each fragment represents a min-
imum energy structure to obtain a reliable ap-
proximation of the overall energy minimum of
every molecule and to reduce the runtime of the
subsequent relaxation step compared to geomet-
ric algorithms. However, only one rigid confor-
mation per fragment is usually available in the
database. This one-size-fits-all approach may
lead to structures that inadequately represent
the CG conformation, get trapped in local min-
ima during the subsequent relaxation step, and
fail to reflect the underlying Boltzmann distri-
bution accurately. Additionally, creating a com-
prehensive database encompassing the prevalent
biomolecules and incorporating diverse mapping
strategies is also challenging.

Apart from the conventional geometric and
fragment-based approaches, ML methods have
gained more interest in recent years and were
successfully applied in backmapping.40–45 When
employing ML methods, it is crucial to avoid
strictly modeling the probability density of
the target as a unimodal function. Otherwise,
the model may predict averaged structures as
shown by An et al.40 in their study on hexane,
which has multiple valid atomistic conforma-
tions given the same CG structure. In general,
particle coordinates can be either directly uti-
lized as input features40,42 or transformed to
internal coordinates or voxels41,45 first. The
latter enables direct adaptation of generative
adversarial networks (GANs) from the field of
image generation and recognition to generate
the atomistic structures conditioned on the
CG conformations. For instance, Stieffenhofer
et al. showed that their DeepBM framework
successfully recovers the conformational space
and the distributions of angles, dihedral angles,
and Lennard-Jones energies for syndiotactic
polystyrene.45 Although ML frameworks have
shown promising initial results, their application
has been mainly limited to specific problems
and types of molecules, making it challenging to

compare their performance and choose the most
suitable method for a particular use case. Fur-
thermore, they have to be separately trained for
each system, thus always requiring a matched
set of atomistic and CG data. For large protein
systems, this is computationally expensive and
may even render the sequential multiscaling MD
obsolete.

With the aforementioned advantages and
drawbacks of state-of-the-art methods in
mind, we developed Artificial intelligence-based
Reverse Transformation of Small Molecules
(ART-SM), a fragment-based ML framework
that directly learns the Boltzmann distribution
from atomistic simulations. Our method goes
beyond traditional fragment-based approaches
that employ only one rigid structure per frag-
ment, as ART-SM identifies all main conforma-
tions from atomistic data and selects the most
appropriate one based on the CG structure.
Moreover, ART-SM optimizes bond lengths,
angles, and the dihedral angle to connect indi-
vidual fragments, rather than entirely relying
on subsequent MD simulations to restore the
Boltzmann distribution. Our algorithm relies
on SMILES46 to ensure correct stereochemistry.
SMILES facilitates the ease and efficiency of
comparing structures and their respective frag-
ments by concisely representing a molecule’s
3D structure in a single string The convenient
installation via Python’s package manager pip,
applicability to any atomistic force field, the
option to add new fragments to the database,
and the possibility to automatically generate
mapping files make ART-SM easy to use and
avoid extensive user input. Here, we provide a
proof-of-principle of our algorithm by backmap-
ping small organic molecules of up to three
CG beads from MARTINI to CHARMM36 and
show that it has the potential to be extended
to larger molecules in the future.
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2 Methods

2.1 Prerequisites

2.1.1 Fragment Pair Definition

Given an atomistic molecule A, a fragment F
is a substructure of A that is represented by a
single bead in the corresponding coarse-graining
scheme (see Figure 1). Let FA denote the
set of unique fragments derived from A, where
fragments are considered identical if they can
be represented by the same SMILES string.
Then, a fragment pair P is a triple (F1, F2, C),
where F1, F2 ∈ FA and C is a connector link-
ing F1 and F2. The connector C is a straight
chain of four atoms (a1, a2, a3, a4), with a1, a2 ∈
F1 and a3, a4 ∈ F2. Analogously, fragments
and fragment pairs can be derived from a set
of molecules A, instead of a single molecule A.
The resulting sets are termed F and P .

Figure 1: Fragmentation of molecules. The first
row depicts the molecule undecan-1-ol along
with a typical coarse-graining scheme for Mar-
tini (represented by grey spheres). The re-
sulting fragments are denoted F1, F2, and F ′

2,
whereby the latter are considered equal due to
their identical SMILES representation CCCC.
In the second row the corresponding fragment
pairs P1 and P2 are displayed together with the
respective connectors C1 and C2 (highlighted in
green and magenta, respectively).

2.1.2 Main Conformations and Boltz-
mann Distribution

The Boltzmann distribution describes the prob-
ability pi of a molecule, or a substructure of it,
to be in conformation i. It is given by

pi =
exp

(
−Ei

kT

)∑n
j=1 exp

(
−Ej

kT

) , (1)

where Ei represents the energy of conforma-
tion i, n is the total number of conformations, T
is the temperature, and k is the Boltzmann con-
stant.47 The energy Ei depends on various fac-
tors, including bond orders, dihedral angles, and
interactions with the environment, resulting in a
complex energy surface. Despite its complexity,
the energy landscape often exhibits multiple lo-
cal minima, which, according to the Boltzmann
distribution, indicates that certain conforma-
tions are significantly more likely than others.
We refer to these highly probable structures as
main conformations (see Figure 2 and Support-
ing Information Figure S2). As the size of the
molecules increases, it becomes progressively
challenging to determine their main conforma-
tions based on atomistic data. We adopt a local
approach to overcome this challenge by identi-
fying the main conformations of F1, F2, and C
for each fragment pair P separately, thereby
approximating the overall main conformations.

2.2 Workflow of ART-SM

An overview of the ART-SM workflow is de-
picted in Figure 3. In the initial step, all frag-
ment pairs are identified from a mapping file
(box 0). Next, a database of fragment pairs is
created from atomistic simulations. To this end,
the atomistic data is preprocessed (arrow 1),
hydrogens are removed from the atomistic struc-
tures (box 2), and for each fragment pair P , the
main conformations of F1, F2, and C are deter-
mined (box 3). Subsequently, a random forest
regressor (RFR) is trained for each P to learn
the probabilities of each main conformation de-
pendent on the center of mass (COM) distance
between fragments (box 4). Bond lengths and
angles are extracted from the atomistic data
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Figure 2: Relation between Boltzmann distribu-
tion and main conformations. The dependency
of the change in the free energy E on the dihe-
dral angle O-C1-C2-C3 is shown for the frag-
ment F1 of undecanol (see Figure 1). The three
energy minima correspond to the most likely
structures according to the Boltzmann distri-
bution (see Supporting Information Figure S2)
and are termed main conformations M1, M2,
and M3. For each main conformation the re-
spective structure is depicted at each energy
minimum.

(arrow 5) to complete the database generation.
This fragment database is used to recover atom-
istic details from a given CG structure. Thereby,
ART-SM predicts the most suitable fragment
conformations for the current CG structure us-
ing the previously trained RFRs (box 6) and
optimizes bond lengths, angles, and dihedral an-
gles to connect the individual fragments (box 7).
In the last step, the hydrogen atoms are rein-
troduced (box 8), and optionally the all-atom
system undergoes EM and short equilibration
(arrow 9). Detailed descriptions of each step are
provided in the following subsections.

2.2.1 Identification of Fragment Pairs

Box 0: Mapping files unambiguously define the
3D structure of atomistic molecules and their
mappings to CG resolution. To this end, the
atom connectivity is specified through bond lists,
stereochemistry via SMILES, and fragmentation
via matching sets of CG and atomistic particles
(see Supporting Information Section S1 for an ex-
ample). Mapping files are used to schematically
split the specified molecules according to the pro-
vided coarse-graining model, resulting in a set of

fragments F . Subsequently, the set of fragment
pairs P is derived from F by the provided bond
lists of each molecule. Manually defining map-
ping files can be a tedious and error-prone task.
Therefore, ART-SM can automatically gener-
ate mapping files given congruent atomistic and
CG structures and a SMILES representation for
each molecule.

2.2.2 Database Construction

Arrow 1: The database construction process is
based on atomistic simulation data. Naturally,
the conformations of molecules in subsequent
time steps are dependent on each other. There-
fore, snapshots are by default extracted every
500 ps to obtain independent training data. This
time between the extracted snapshots is called
sampling time in the subsequent sections, and
a suitable value for our simulation systems is
determined in Section 3.1.

Box 2: In this step, hydrogen atoms are re-
moved from the atomistic structures since they
provide negligible information on the overall
conformations of the molecules.

Box 3: For each P = (F1, F2, C) ∈ P,
the main conformations of the individual frag-
ments F1 and F2 and the connector C are deter-
mined via hierarchical clustering from the atom-
istic snapshots extracted in arrow 1. For brevity,
this process is exclusively described for frag-
ment F1. Nevertheless, it applies analogously
to F2 and C. First, internal coordinates of heavy
atoms are derived for F1, which are preferable to
cartesian coordinates due to their invariance to
translation and rotation. Internal coordinates
usually encompass bond lengths, angles, and di-
hedral angles. However, bond lengths and angle
distributions are comparable across various con-
formations and thus ineffective in distinguishing
different main conformations. Hence, only di-
hedral angles are extracted from the atomistic
data. This approach results in an m × n data
matrix DF1 , assuming that the fragment pair P
occurs m times in the atomistic data and the
fragment F1 can be described by n dihedral an-
gles. Typically, n ≤ 2 for the Martini force field.
Note that n = 1 for the connector since it al-
ways consists of four atoms, allowing it to be
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Figure 3: Workflow of ART-SM. The database construction process comprises steps 0 to 5 and the
backmapping algorithm steps 1, and 6 to 8. Optionally, the backmapped structures are relaxed by
energy minimization and short molecular dynamics simulation in step 9.

represented by a single dihedral angle.
Subsequently, agglomerative hierarchical clus-

tering48 is performed by default on 500 data
points of DF1 (see Section 3.1 for details on
the optimal number of data points), using the
average linkage criterion and an adjusted Eu-
clidean distance, which additionally accounts
for the periodicity of angles (see Supporting In-
formation Section S2.1). Thereby, the clusters
are identified automatically, and the medoid is
chosen as the representative conformation for
each cluster. These representative structures
are called main conformations and are stored in
the database. Note that different main confor-
mations are calculated for each P ∈ P, even if
they contain identical fragments. For example,
given P1 = (F1, F2, C1) and P2 = (F1, F3, C2)
with P1, P2 ∈ P, main conformations are de-
termined for F1 ∈ P1 and F1 ∈ P2 separately.
This distinction is necessary because the main
conformations of fragments can vary depending
on the particular fragment they are connected
to.

Box 4: For each fragment pair P ∈ P , an RFR
is trained to predict the probabilities Y of its
conformations. The predictors X consist of four
variables: three categorical variables that indi-

cate the main conformations of F1, F2, and C,
and a numerical variable for the COM distances
between F1 and F2. To obtain Y , the probabil-
ity of each observation in X is determined. This
involves identifying the number of observations
with identical features and normalizing them by
the total number of observations in X. Since
the COM distance is a numerical and continuous
variable, it is uniformly binned into 50 intervals
first. Finally, a RFR from the scikit-learn
package49 is trained with default parameters on
the dataset X with corresponding labels Y and
stored in the database. To estimate the test
error of the models, 10-fold cross-validation is
performed and the errors are provided to the
user via log files.

Arrow 5: Values for bond lengths and angles
are required later in the optimization step of the
backmapping algorithm (see the forthcoming
Subsection 2.2.3). Instead of retrieving them
from force field parameters or general databases,
they are extracted directly from the atomistic
simulations. For this purpose, up to 1000 data
points are collected for each bond or angle type
and the respective mean values are stored in the
database.
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2.2.3 Backmapping

The backmapping algorithm converts a CG
structure to atomistic resolution given a corre-
sponding mapping file (identical to the mapping
file in the database construction step) and a
fragment database constructed as shown in Sec-
tion 2.2.2.

Box 6: For each molecule, the conformations of
its fragments and their connectors are predicted
in a stepwise manner rather than backmapping
the entire molecule at once (see Figure 4 steps 1
and 2). Starting at a random boundary fragment
pair P = (F1, F2, C) ∈ P, i.e., F1 is only con-
nected to F2 and to no other fragment, the cor-
responding regression model predicts the prob-
abilities for all possible combinations of main
conformations of F1, F2, and C given the dis-
tance between the CG bead (corresponds to
the COM distance between F1 and F2 in the
database construction process). For example,
assume that the main conformations of F1, F2,
and C are (f11, f12), (f21), and (c1, c2, c3) and
the current bead distance is 4.8Å. Then the
probabilities are predicted for (f11, f21, c1, 4.8Å),
(f12, f21, c1, 4.8Å), . . ., (f12, f21, c3, 4.8Å). The
resulting probabilities (p1, p2, . . . , pn), where n
is the number of total combinations of main con-
formations, are transformed such that pi ∈ [0, 1]
for i = 1, . . . , n and

∑n
i=1 pi = 1. Afterward,

a single combination of main conformations is
selected by sampling according to the proba-
bilities (p1, . . . , pn). Sampling is in accordance
with the Boltzmann distribution since consis-
tently selecting the most likely conformations
would disregard the probabilistic nature of the
system and result in a deterministic algorithm.
This process is iteratively repeated for overlap-
ping fragment pairs, with the difference that the
conformation of the shared fragment is already
fixed. Since the main conformations for the
shared fragment were determined independently
for different types of fragment pairs, they do not
necessarily agree. Therefore, the fixed confor-
mation of the shared fragment is compared with
all possible main conformations for the current
fragment pair via the metric given in Supporting
Information Section S2.2, and the conformation
closest to the fixed structure is chosen for the

prediction step.
Box 7: The selected main conformations of

all fragments are translated to the respective
CG bead positions and connected by optimizing
bond lengths, angles, and dihedral angles of the
connectors (see Figure 4 steps 3, 4, and 5). The
target values of the bond lengths and angles are
directly obtained from the database. In contrast,
the target values for the dihedral angle of the
connectors are directly given by their predicted
main conformations. The optimization consists
of three steps: First, all fragments of the cur-
rent molecule are rotated around their COM
to achieve the target bond lengths as precisely
as possible for all connectors. This provides a
reasonable starting structure for the subsequent
steps. Second, F1 and F2 of a randomly chosen
boundary fragment pair P = (F1, F2, C) ∈ P,
where F1 can only be connected to F2 similar to
the prediction step, are rotated and translated
to obtain chemically reasonable angles and a
dihedral angle of its connector. Third, the sec-
ond step is repeated for overlapping fragment
pairs in a stepwise manner. The position of the
fragment shared with a previously optimized
fragment pair was already modified and remains
unchanged to prevent the generation of chem-
ically incorrect structures. To obtain the op-
timal rotation angles and translation vectors
for the individual fragments, the minimize func-
tion of scipy50 with the method L-BFGS51 is
used. Moreover, the angle calculations are im-
plemented in Cython52 for improved runtime
performance. A more detailed description of
the optimization, which contains, among others,
the respective objective functions, is given in
Supporting Information Section S3.

Box 8: Finally, hydrogen atoms are added
to the atomistic structure using the Hydride53

package. This algorithm is based on a fragment
database derived from all molecules of the Chem-
ical Component Dictionary.54 Selecting suitable
fragments and superimposing them on the atom-
istic structure reliably predicts the hydrogen po-
sitions. Notably, we omit the relaxation step
of Hydride as we observed that it resulted in
marginal structural improvements while signifi-
cantly increasing the runtime by approximately
50%.
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Figure 4: Illustration of the backmapping algorithm using undecan-1-ol. The main conformations
of the individual fragments and the connector are predicted for P1 = (F1, F2, C1) in step 1 and
subsequently for P2 = (F2, F

′
2, C2) in step 2. Afterward, the bond lengths between the atoms C3-C4

and C7-C8 are simultaneously optimized by rotating all fragments F1, F2, and F ′
2 around their COMs

(step 3). Next, the fragments of P1 are rotated and translated such that proper angles C2-C3-C4
and C3-C4-C5 and an accurate dihedral angle C2-C3-C4-C5 are received while maintaining proper
bond lengths between C3-C4 and C7-C8 (step 4). This step is repeated for P2 with the difference
that only the position of F ′

2 is modified (step 5).

Arrow 9: We recommend relaxing the result-
ing structure by energy minimization and short
MD simulation while restraining the atoms to
the CG beads from which they were recovered.
The optimal number of relaxation steps is deter-
mined in Supplementary Information Subsection
S5.4. Note that this step has yet to be directly
implemented in ART-SM and, at the moment,
has to be manually performed by the user. In
this way, the user can decide on his preferred
force field and simulation program. Neverthe-
less, we plan to provide a default option with
GROMACS in the future.

We emphasize that together with this article,
we provide a custom database built from a se-
lection of common organic molecules, which en-
ables users to bypass the database construction
process (boxes 2 to 4 and arrow 5 in Figure 3)

if they are working with identical molecules or
molecules that share the same fragment pairs.
The respective molecules and the corresponding
CG models are shown in Supporting Informa-
tion Figure S6. Moreover, the user can extend
the database with new fragment pairs, avoiding
repeatedly building the entire database.

2.3 One-bead Molecules

Molecules represented by a single bead in the
corresponding CG model do not have fragment
pairs. The workflow for these short molecules
can, therefore, be greatly simplified: First, the
identification of fragment pairs (box 1), the re-
moval and addition of hydrogen atoms in the
database construction and the backmapping
step (box 2 and box 8), the extraction of bond
lengths and angles (arrow 5), and the optimiza-

8
https://doi.org/10.26434/chemrxiv-2024-mcv45 ORCID: https://orcid.org/0000-0002-7498-6584 Content not peer-reviewed by ChemRxiv. License: CC BY 4.0

https://doi.org/10.26434/chemrxiv-2024-mcv45
https://orcid.org/0000-0002-7498-6584
https://creativecommons.org/licenses/by/4.0/


tion of connectors (arrow 7) can be omitted.
Hydrogen atoms can be kept during the entire
workflow because their total number is fixed for
one-bead molecules. This is not the case for
larger molecules with multiple fragments. For
instance, heptan-1-ol consists of one fragment
pair with SMILES OCCCCCCC and 16 hydro-
gens, while undecan-1-ol has the same fragment
pair with 15 hydrogens. Second, the internal
coordinates and the main conformations, deter-
mined via hierarchical clustering, are calculated
for whole molecules compared to the individ-
ual fragments and the connector of fragment
pairs (box 3). Note that they are still derived
using only heavy atoms, even though hydro-
gen atoms are not removed in the preprocessing
step. Third, probabilities are computed for each
main conformation from the clustering results
instead of training an RFR for each fragment
pair (box 4). Assuming that the main conforma-
tion i is representing the cluster Ci of size |Ci|,
its probability pi is given by

pi =
|Ci|∑n
j=1 |Cj|

, (2)

where n is the total number of clusters. In the
backmapping step, the main conformations are
randomly sampled according to their respective
probabilities and translated to the positions of
the corresponding CG beads (box 6). Finally,
each conformation is randomly rotated around
its COM to avoid the formation of crystal-like
structures.

2.4 Water Model

Water is a special case, as each CG bead repre-
sents four atomistic water molecules. Because
of their uniqueness and wide usage in simula-
tions, water models are not determined dur-
ing the database’s construction. Instead, pre-
determined main conformations of four water
molecules, hereafter called main water groups
because the term conformation usually describes
the spatial arrangement of atoms within a sin-
gle molecule, and their respective probabilities
are provided for the TIP3P water model (see
Supporting Information Figure S4). To this

end, we analyzed the last 10 ns of a 100 ns atom-
istic simulation, consisting of over 2000 water
molecules, as follows: For every 100 ps, 100
water molecules were randomly selected, and
the three closest water molecules were identi-
fied for each of these molecules. The result-
ing 10 000 groups of four water molecules were
encoded by the SOAP descriptor55 with the pa-
rameters r_cut = 6, n_max = 6, and l_max = 6.
Note that internal coordinates are not suitable
in this case since the orientation of the indi-
vidual water molecules to each other would be
neglected. Subsequently, hierarchical cluster-
ing was performed with the Ward linkage cri-
terion and the SOAP kernel as the distance
metric. This analysis yielded six clusters, as
shown in Supporting Information Figure S4,
and the medoids were chosen as the main wa-
ter groups. To validate the results, hierarchical
clustering was compared to DBSCAN56 via the
adjusted Rand index (ARI),57 whose values lie
between -1 (complete mismatch) and 1 (perfect
agreement). After removing noise points in DB-
SCAN, an ARI of 0.92 indicated a high degree of
similarity (see Supporting Information Section
S4.1 for details). The probabilities of all main
water groups were determined in the same way
as for one-bead molecules by normalizing the
number of water groups in each cluster by the
total number of water groups (see Equation (2)).

The backmapping proceeds iteratively. First,
a main water group is sampled from the resulting
probability distribution and transferred to the
position of the corresponding CG bead. Second,
the water group is rotated such that the distance
between any two atoms in the system is ideally
larger than 1Å to avoid atom clashes. The
optimization is performed using the minimize
function of scipy with the method L-BFGS
(see Supporting Information Section S4.2 for a
detailed description).

2.5 Data Processing

We simulated 12 systems with different
molecules in atomistic or CG resolution (Mar-
tini). See Supporting Information Section S5
for simulation parameters. Each simulation
was split into training, validation, and test sets
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Table 1: Overview of simulation systems. Mixed box consists of 100 molecules undecan-1-ol, propan-
1-ol, S-2-bromo-2-chloropropan-1-ol, 1-hydroxypropan-2-one, each, and 200 molecules heptan-1-ol.
Split indicates how the trajectory was divided into training, validation, and test sets. For instance,
60/20/20 means that the first 60 ns were used for training, the next 20 ns for validation, and the
remaining 20 ns for testing. ∗Ala-Ala-Gly contains 27 water-soluted tripeptides consisting of the
amino acids alanine, alanine, and glycine. Water was excluded from the conversion process since its
mapping from atomistic to coarse-grained resolution is non-trivial.

System Resolution No. Molecules Sim. Time (ns) Split (ns)

Undecan-1-ol Atomistic 104 100 60/ 20/ 20
Heptan-1-ol Atomistic 190 100 60/ -/ 40
Ala-Ala-Gly∗ Atomistic 27 100 60/ -/ 40
Propan-1-ol Atomistic 461 100 60/ -/ 40
S-2-bromo-2-chloropropan-1-ol Atomistic 326 100 60/ -/ 40
1-hydroxypropan-2-one Atomistic 409 100 60/ -/ 40
Water - TIP3P Atomistic 2022 100 100/ -/ -
1-10-decandiol Atomistic 105 100 -/ -/100
Butyl-pentadecanoate Atomistic 57 100 60/ -/ 40

Heptan-1-ol Coarse-grained 190 105 -/ -/105
Mixed box Coarse-grained 600 105 -/ -/105
Water Coarse-grained 729 100 -/ -/100

as specified in Table 1. Atomistic simulations
were coarse-grained with ART-SM using the
command artsm-coarse_grain to generate
matching atomistic and CG data. We call these
simulations artificial coarse-grained simulations
for later reference. To this end, mapping files
were created by manually coarse-graining a
single molecule and executing artsm-mapping.

Four fragment pair databases were built
from the training sets with artsm-build_db.
Three were only trained on individual molecules,
namely undecan-1-ol to estimate the optimal
number of data points for training RFRs (see
Section 3.1), heptan-1-ol for backmapping other
molecules with identical fragment pairs (see
Section 3.2.3), and butyl-pentadecanoate to
backmap molecules with more than three frag-
ments (see Section 3.2.4). The fourth database
was used for all other analyses and was generated
from simulations of undecan-1-ol, heptan-1-ol,
propan-1-ol, Ala-Ala-Gly tripeptide, S-2-bromo-
2-chloropropan-1-ol, and 1-hydroxypropan-2-
one. All databases were built with a sampling
time of 500 ps to ensure that molecule confor-
mations are independent of each other (see Sec-
tion 3.1). The undecan-1-ol database was built

with varying numbers of data points, whereas
the other databases use at most 500 randomly
selected data points per fragment pair (see Sec-
tion 3.1).

Snapshots were extracted from the test sets
of artificial or real CG simulations and subse-
quently backmapped with artsm-backmap or
Backward. For our testcase, we use snapshots
every 500 ps to obtain independent molecule
conformations and enough data points (here
more than 2000) to compare backmapped with
atomistic distributions in a statistically mean-
ingful manner. The properties of the resulting
molecules were compared to the corresponding
atomistic simulations. This workflow was re-
peated five times to obtain a comprehensive
understanding of the robustness and variability
of ART-SM and Backward’s backmapping pro-
cess and to ensure that our conclusions are not
solely dependent on a single analysis run.
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Figure 5: Violin plots of transition times of undecan-1-ol’s dihedral angles (left) and estimation of
the optimal number of data points for training (right). White circles in the violin plot represent
the median values, while black bars indicate the interquartile ranges. The dashed vertical line
denotes the chosen sampling time. The plot on the right depicts the mean interval error over five
backmapping repetitions (40 snapshots each - see Section 2.5) for a dihedral angle of a fragment
O-C1-C2-C3, a connector C2-C3-C4-C5, and neither of the two C1-C2-C3-C4. The mean time
to build the corresponding fragment pair database is shown in brown. The error bars denote
the corresponding standard deviations. Atom naming of the dihedral angles is consistent with
Supporting Information Figure S1.

3 Results

3.1 Optimal Training Data Size

The performance and efficiency of ART-SM de-
pend on the number of data points on which
the RFRs of each fragment pair are trained, as
well as on the sampling time. Selecting optimal
values for both parameters is crucial to minimize
both the simulation time required to generate
the training data and the runtime to build the
fragment pair database.

The sampling time is ideal if it is as small as
possible while ensuring that the current molecule
conformations do not depend on their confor-
mations in previously selected time frames. To
estimate it, we analyzed the transition time,
i.e., the simulation time needed for dihedral
angles to switch from one main conformation
to another, for the undecan-1-ol training set.
As illustrated in Figure 5, the transition time
significantly varies depending on the types of
atoms forming the dihedral angles. Specifically,
the dihedral angle involving oxygen O-C1-C2-
C3 (see Supporting Information Figure S1 for
atom naming) requires more simulation time to
undergo conformational changes than dihedral
angles consisting solely of carbon atoms. In

more detail, the median is 160 ps compared to
30–50 ps. For the subsequent analyses, we used
a sampling time of 500 ps to account for possi-
bly higher transition times for dihedral angles
of other molecules. Note that even though this
is a conservative choice, the transition time can
be significantly larger than 500 ps as illustrated
in Supporting Information Figure S7.

The number of training data points is ideal
when training on more data points does not
improve the performance of the backmapping
algorithm. To evaluate this, we constructed
the database and thus trained the RFRs us-
ing varying numbers of randomly selected data
points from the undecan-1-ol training set. Sub-
sequently, we backmapped 40 simulation snap-
shots from the validation set, i.e., subsequent
frames are 500 ps apart, and the results were
evaluated by computing the interval error, which
compares the backmapped and atomistic distri-
butions of each dihedral angle (see Supporting
Information Section S6 and specifically S6.2 for
a detailed explanation). As shown in Figure 5,
the interval error rapidly decreases with the
number of data points for the dihedral angles
O-C1-C2-C3 and C2-C3-C4-C5, namely from
approximately 10.0 to 2.5. The interval error is
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not improving for more than 100 data points.
Notably, the interval error for the dihedral angle
C1-C2-C3-C4 fluctuates around approximately
14, independent of the number of data points.
This behavior is expected since we are neither
learning nor optimizing dihedral angles, whose
atoms are neither fully part of a fragment nor
form the connector of a fragment pair, in the
backmapping algorithm (see Supporting Infor-
mation Section S7 for a detailed explanation).
The interval error progression over the number
of data points for all dihedral angles of undecan-
1-ol can be found in Supporting Information
Figure S14. The runtime to build the database
increases non-linearly with the number of data
points (Figure 5), primarily due to the com-
putationally expensive hierarchical clustering
step. For the subsequent analyses, we used 500
data points to build our database of fragment
pairs, which is a compromise between runtime
and accounting for a potentially worse training
behavior of different molecules. Similar to the
sampling time selection, this is a conservative
choice.

3.2 Backmapping via ART-SM
and its Comparison to Back-
ward

After selecting a suitable sampling time of 500 ps,
an optimal number of 500 data points per frag-
ment pair to train the RDFs and estimating
the number of steps for the EM and position
restraint simulations to 200 and 5000, respec-
tively, (see Supplementary Information Subsec-
tion S5.4) we examined the performance of ART-
SM by backmapping a variety of CG structures:
Artificial CG structures (Section 3.2.1), real
CG simulations (Section 3.2.2), a molecule not
used for training (Section 3.2.3), a larger five-
bead molecule (Section 3.2.4), and water (Sec-
tion 3.2.5). The chemical accuracy of the result-
ing reverse transformed structures was evalu-
ated by comparing distributions of bond lengths
and angles via the Bhattacharyya distance58

(see Supporting Information Section S6.4 for de-
tails) and of dihedral angles via the Wasserstein
distance and interval error to those of atom-

istic simulations. Furthermore, the backmapped
snapshots were re-coarse-grained, and the dis-
tances of each bead to the corresponding beads
in the original CG structure were computed.
This comparison estimates how representative
the reverse transformed structures are for the
original CG ones. Moreover, we backmapped
the same structures using the state-of-the-art
method Backward34 and compared the respec-
tive results to ART-SM. For the dihedral angle
distributions of undecan-1-ol (see Figure 6) and
the runtime analysis, we also compared differ-
ent stages of the respective algorithms. More
precisely, ART-SM has the consecutive stages
(i) projection consisting of fragment prediction
with ML and optimization, (ii) EM, and (iii) po-
sition restraint simulation, whereas Backward’s
wrapper initram performs after the projection
itself the successive steps EM 1, EM 2, MD 1,
MD 2, MD 3, and MD 4. A visual example of
the molecule undecan-1-ol at the different stages
is given in Figure 7). We compared the struc-
tures of ART-SM to Backward after projection,
after EM and EM 2, and after position restraint
simulation and MD 4. In the subsequent sec-
tions, we call these defined stages projection,
EM, and final, respectively.

3.2.1 Artificial Coarse-grained Simula-
tions

As shown in Table 2 section a) the mean Bhat-
tacharyya distances for bonds and angles are be-
low one for ART-SM at the final stage across all
molecules, implying an optimal agreement with
atomistic simulations. While Backward leads
to similar values for angles, the Bhattacharyya
distances for bonds are consistently above 60
as the distributions are too narrow compared
to atomistic ones (see Supporting Information
Figure S16). The distance to the original CG
structure is between 1.0 and 1.3Å for ART-SM
and 1.3 to 2.1Å for Backward. In particular,
using Backward for the tripeptide Ala-Ala-Gly
results in an exceptionally large mean distance
of 2.03Å.

Concerning dihedral angle distributions,
ART-SM performs very well for undecan-1-
ol, heptan-1-ol, and 1-hydroxypropan-2-one
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Table 2: Evaluation of backmapped structures at the final stages of ART-SM and Backward. The
initial coarse-grained (CG) systems were artificially generated from atomistic simulations a), stem
from real CG simulations b), contain molecules that were not used for training c), consist of five-bead
molecules d). Dihedral angle distributions of the backmapped structures (40 to 200 snapshots
depending on the simulated system - see Table 1 and Section 2.5) were evaluated via the Wasserstein
distance and interval error. The bond and angle distributions were evaluated via the Bhattacharyya
distance. Atomistic data was always used as a reference. Additionally, the distance to the original
CG structures was computed by re-coarse-graining the reverse transformed structures. The mean
values and standard deviations were obtained from five repetitions.

Molecules Method Wasserstein
Distance (◦)

Interval
Error

Bhattacharyya
Angle

Bhattacharyya
Bonds

Distance to
CG (Å)

a)

Undecan-1-ol ART-SM 6.58 ± 2.90 3.13 ± 1.47 0.07 ± 0.03 0.02 ± 0.01 1.01 ± 0.03
Backward 14.64 ± 9.62 7.50 ± 4.77 0.66 ± 0.42 70.51 ± 2.97 1.38 ± 0.06

Heptan-1-ol ART-SM 5.37 ± 2.24 2.45 ± 1.09 0.03 ± 0.01 0.03 ± 0.01 1.06 ± 0.03
Backward 9.70 ± 6.18 4.74 ± 2.83 0.73 ± 0.56 70.05 ± 3.56 1.44 ± 0.06

Propan-1-ol ART-SM 10.46 ± 0.70 4.64 ± 0.34 0.05 ± 0.01 0.05 ± 0.02 1.27 ± 0.03
Backward 60.20 ± 0.44 28.37 ± 0.22 0.20 ± 0.20 67.66 ± 4.26 1.63 ± 0.05

Ala-Ala-Gly ART-SM 21.09 ± 10.11 10.11 ± 7.14 0.66 ± 0.58 0.22 ± 0.24 0.97 ± 0.05
Backward 21.05 ± 15.68 9.91 ± 8.35 1.87 ± 3.37 83.87 ± 31.02 2.03 ± 0.13

1-hydroxypropan-2-one ART-SM 2.50 ± 0.00 0.70 ± 0.11 0.01 ± 0.00 0.02 ± 0.00 1.07 ± 0.02
Backward 4.34 ± 0.01 1.06 ± 0.17 0.15 ± 0.08 64.31 ± 8.26 1.35 ± 0.04

S-2-bromo-2- ART-SM 5.16 ± 0.02 2.22 ± 0.00 0.02 ± 0.02 0.02 ± 0.01 1.23 ± 0.03
chloropropan-1-ol Backward 27.38 ± 0.08 11.70 ± 0.01 0.56 ± 0.36 77.05 ± 10.25 1.33 ± 0.04

b)
Heptan-1-ol ART-SM 8.00 ± 2.20 3.68 ± 1.11 0.07 ± 0.01 0.03 ± 0.01 1.24 ± 0.03

Backward 10.60 ± 6.06 5.00 ± 2.78 0.90 ± 0.59 69.98 ± 3.52 1.82 ± 0.06

Mixed System ART-SM 11.01 ± 3.99 4.95 ± 2.29 0.06 ± 0.04 0.15 ± 0.17 1.24 ± 0.02
Backward 18.87 ± 14.02 8.75 ± 6.88 0.37 ± 0.33 70.49 ± 6.83 1.53 ± 0.04

c) 1-10-decandiol ART-SM 7.00 ± 2.99 3.22 ± 1.54 0.05 ± 0.02 0.02 ± 0.01 1.00 ± 0.03
Backward 12.59 ± 9.78 6.31 ± 4.80 0.60 ± 0.41 69.85 ± 3.82 1.22 ± 0.06

d) Butyl-pentadecanoate ART-SM 6.68 ± 2.87 3.26 ± 1.29 0.06 ± 0.06 0.05 ± 0.02 1.01 ± 0.03
Backward 16.39 ± 14.34 9.32 ± 9.25 1.49 ± 2.26 70.84 ± 5.72 1.38 ± 0.07

Figure 6: Ridge plots depicting the distributions of the fragment, connector, and not-learned dihedral
angles O-C1-C2-C3, C2-C3-C4-C5, and C7-C8-C9-C10, respectively, for undecan-1-ol at the different
stages of ART-SM (blue) and Backward (orange). The distributions are based on 40 snapshots
containing 104 undecan-1-ol molecules. The atomistic reference is plotted in gray at the bottom
row. The Wasserstein distance (W) and interval error (I) relative to the corresponding atomistic
distribution are listed next to each distribution. The atom naming is consistent with Supporting
Information Figure S1.
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as the mean Wasserstein distances are below
7.0◦ and the standard deviations are lower
than 3.0◦. For comparison, Backward leads
to higher Wasserstein distances ranging from
4.34◦ for 1-hydroxypropan-2-one to 14.64◦ for
undecan-1-ol.

For undecan-1-ol, the distributions of one frag-
ment, connector, and not-learned dihedral angle
are exemplarily shown at different key stages in
Figure 6 and for all dihedral angles in Support-
ing Information Figure S15. After the projection
stage of ART-SM, the distributions of fragment
and connector dihedral angles are reasonably
close to those of the atomistic ones. Thus, the
subsequent short EM is enough to restore the
atomistic distributions accurately. For the dihe-
dral angles that are neither part of a fragment
nor a connector, the distributions are compara-
tively uniform and do not have distinct peaks.
Therefore, to obtain accurate backmapping re-
sults, the entire 5000 steps of position restraint
simulation are required, as expected from our
analysis on the optimal number of relaxation
steps. For Backward, the dihedral angle distri-
butions of the projected structures are either
uniform or peak at around 180◦. The subse-
quent EMs and MD simulations of Backward
restore the correct distributions only for the lat-
ter. Note that this behavior does not generalize
to other molecules. The dihedral angle distribu-
tions after the projection with Backward and,
thus, whether the atomistic distributions can be
restored only depends on the provided mapping
file (not identical to the ART-SM mapping file),
which contains instructions on how to build the
projected structure. Optimizing these mapping
files requires a lot of trial and error and exten-
sive expert knowledge and might still fail due to
the limited functionality of Backward’s mapping
files.

For propan-1-ol, ART-SM at the final stage
results in a slightly higher mean Wasserstein
distance of 10.46◦ than for the previously an-
alyzed molecules. Propan-1-ol has a single di-
hedral angle, and its atomistic distribution has
three peaks: two less populated ones at around
−60◦, and 60◦, and one significantly populated
at 180◦ (see Supporting Information Figure S17).
While the shape of the distribution is well re-

produced, the small peaks are slightly overpopu-
lated, which leads to the mentioned increase in
the Wasserstein distance. This effect is far more
pronounced for Backward. In fact, the peaks at
−60◦ and 60◦ are higher than the peak at 180◦,
which leads to the large Wasserstein distance of
60.20◦. This is because each dihedral angle is
almost equally likely in the initially projected
structure, and the subsequent EMs and MD sim-
ulations of Backward cannot fully recover the
correct dihedral angle distribution.

This is also the case for S-2-bromo-2-
chloropropan-1-ol, where ART-SM leads to
a Wasserstein distance of 5.16◦ compared to
27.38◦ for Backward. Moreover, it is important
to note that in rare cases (≤ 0.05%), the final
molecules of Backward are in the R instead of
the S configuration.

The mean and standard deviation of the
Wasserstein distance of the tripeptide Ala-Ala-
Gly are comparatively high at 21.09◦ and 10.11◦

for ART-SM at the final stage. One reason is
that the cis-trans isomerism of peptide bonds is
incorrect for a few molecules. Moreover, some di-
hedral angle distributions have additional peaks
that are not present in the atomistic distribu-
tions. Backward also gives a high Wasserstein
distance for Ala-Ala-Gly of 21.05◦ and addi-
tionally a higher standard deviation of 15.68◦.
Despite Backward recovering the cis-trans iso-
merism of the peptide bond, some dihedral an-
gle distributions have shifted, or the number of
peaks differs from the atomistic ones. These
deviations are more pronounced than with ART-
SM. Histograms for propan-1-ol, S-2-bromo-2-
chloropropan-1-ol, and Ala-Ala-Gly are exem-
plarily shown for the final stages of ART-SM
and Backward in Supporting Information Fig-
ures S16, S17, and S17, respectively. Note that
we only discussed the Wasserstein distance in
this section since the interval errors are highly
correlated. Usually, they are approximately
half of the Wasserstein distance, except for 1-
hydroxypropan-2-one, where they amount to
about one-fourth.

In summary, ART-SM outperforms Backward
at reproducing atomistic dihedral angle and
bond length distributions due to the more advan-
tageous configurations after the projection step,
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except for the tripeptide Ala-Ala-Gly. Here,
ART-SM might profit from a specific adjust-
ment to proteins in the future, for instance, by
geometric corrections of the backbone. Further-
more, the reverse transformed structures better
represent the original CG structures in the case
of ART-SM.

3.2.2 Real Coarse-grained Simulations

Until this point, we backmapped structures that
were prepared by re-coarse-graining atomistic
snapshots. This is because we initially required
matching sets of atomistic and CG structures
for training RDFs and thus building the frag-
ment pair database, and we tested the perfor-
mance of ART-SM on data similar to that from
training. However, real CG simulations are
less accurate than atomistic simulations due to
their lower particle resolution and, thus, overall
structural information content. Consequently,
structural characteristics such as bead distances
and angles might differ between real and arti-
ficial CG snapshots, potentially leading to fea-
ture values not seen during training. To in-
vestigate the effect on backmapping, we simu-
lated 190 molecules of heptan-1-ol and a mixed
system consisting of 100 molecules of undecan-
1-ol, propan-1-ol, S-2-bromo-2-chloropropan-1-
ol, and 1-hydroxypropan-2-one, each, and 200
molecules of heptan-1-ol at CG resolution with
the Martini force field for 105 ns (see Supporting
Information Section S5.2 for simulation parame-
ters). Subsequently, snapshots were extracted
approximately every 500 ps, and the resulting
213 structures were backmapped with ART-SM
and Backward.

The results at the final stage are presented
in Table 2 section b). For the snapshots of
pure heptan-1-ol, the Wasserstein distance in-
creased from 5.37◦ to 8.00◦ for ART-SM and
9.70◦ to 10.60◦ for Backward compared to the
artificial CG structures. An analogous increase
can be observed for the interval error. More-
over, the distance to the original CG structure
increased from 1.06Å to 1.24Å and 1.44Å to
1.82Å for ART-SM and Backward, respectively.
The Bhattacharyya distances for bond lengths
and angles remain unchanged. For the mixed

system, the Wasserstein distance and interval
error for ART-SM amount to 11.01◦ and 4.95,
which is higher than for any individual molecule
of the artificial CG structures. For Backward,
the Wasserstein distance and interval error of
18.87◦ and 8.75 are comparable to the mean over-
all individual artificial CG molecules of 20.99◦
and 9.69◦. Notably, the respective standard de-
viations of 14.02◦ and 6.88◦ are exceptionally
large because Backward converts S-2-bromo-2-
chloropropan-1-ol and propan-1-ol worse than
other molecules. The final structures of ART-
SM and Backward are slightly less representative
of the original CG structures as the respective
distances increased from 1.12Å and 1.42Å to
1.24Å and 1.53Å, respectively. Similar to pure
heptan-1-ol, the Bhattacharyya values for the
bonds and angles are comparable to the ones of
the artificial CG structures for both methods.
In summary, most evaluation criteria slightly
worsened for the backmapped structures of real
CG simulations compared to artificial CG sim-
ulations for ART-SM and Backward. However,
the difference is relatively small.

3.2.3 Transferrability to Molecules with
Identical Fragment Pairs

One strength of fragment-based approaches
is that once a database has been built, any
molecule with identical fragments, or in the case
of ART-SM fragment pairs, can be backmapped.
To verify this statement, we generated a small
database only from the atomistic simulation
of heptan-1-ol and backmapped the three-bead
molecule 1-10-decandiol with ART-SM. As de-
picted in Table 2 section c) at the final stage, the
Wasserstein distance amounts to 7.00◦, the inter-
val error to 3.22, the Bhattacharyya values for
bonds and angles to 0.02 and 0.05, and the dis-
tance to the original CG beads to 1.00Å. This
implies an excellent agreement with the simu-
lated system at an atomistic level and is com-
parable to previous results. Consistently with
other systems, Backward has a higher Wasser-
stein distance and interval error for dihedral an-
gles of 12.59◦ and 6.31, a higher Bhattacharya
value of 69.85 for bonds, and deviates further
from the original CG structure (1.22Å).
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Figure 7: Exemplary visualisation of undecan-1-ol at different backmapping stages for ART-SM
and Backward. Carbons are colored via a sequential grayscale, oxygens are depicted in red, and
hydrogens in white. The corresponding Martini coarse-grained model is shown as transparent
spheres.

3.2.4 Extension to Larger Molecules

Thus far, we have focussed on short molecules of
at most three CG beads. This section examines
whether ART-SM can also accurately backmap
larger molecules despite learning only local fea-
tures for each fragment pair. For this pur-
pose, we have atomistically simulated, manually
coarse-grained, and backmapped the five-bead
molecule butyl-pentadecanoate and compared
the results at the final stage with Backward. As
shown in Table 2 section d), ART-SM provides a
quality of backmapped structures that is similar
to shorter molecules. Namely, bond lengths and
angle distributions are correctly reproduced, the
mean distance to the original CG structure is
1.01Å, and the Wasserstein distance and interval
error are 6.68◦ and 3.26 with standard deviations
of 2.87◦ and 1.29, respectively, which indicates
an excellent agreement with atomistic distribu-
tions across all dihedral angles. Similarly to
other investigated molecules, Backward’s struc-
tures of butyl-pentadecanoate are characterized
by too-narrow bond length distributions, poorer
dihedral angle distributions indicated by the
higher Wasserstein distance and interval error
of 16.39◦ and 9.32 together with high standard
deviations of 14.34◦ and 9.25, and diminished
representativeness of the original CG structure
(mean distance of 1.38Å).

3.2.5 Water

Water, a fundamental component of many sim-
ulations, is a special case because multiple wa-

ter molecules are represented by a single CG
bead. During the backmapping process, ART-
SM places, similar to Backward, predefined
groups of four water molecules at the position
of the respective CG bead. However, ART-SM
uses six different water groups extracted from
an atomistic simulation compared to only one in
Backward and rotates them in an optimization
step to avoid atom clashes. We backmapped 201
snapshots consisting of 729 CG water beads with
ART-SM and Backward. Subsequently, we de-
termined the oxygen-oxygen radial distribution
functions (RDF) using GROMACS’s tool gmx
rdf with a cutoff of 15Å for each backmapped
snapshot (see Figure 8). The RDF for the refer-
ence atomistic simulation is zero for distances
smaller than 2.5Å and rapidly rises afterward
to the maximum of 2.8 at approximately 2.7Å.
Subsequently, it decreases to a local minimum
of 0.9 at 3.8Å and levels out at 1.0 for larger dis-
tances. ART-SM at the final stage reproduces
the atomistic RDF accurately, with a slightly
too pronounced first maximum of 3.5 and a
local minimum of 0.8 at approximately 2.7Å
and 3.5Å. On the other hand, Backward has a
lower first maximum of 1.9 and minimum of 0.8,
and the minimum is shifted to approximately
4.5Å. Moreover, Backward’s RDF has multiple
maxima and minima for distances larger than
5.0Å, which are not present in the atomistic
RDF. This is due to the low default simulation
temperature of 200K for the MD simulations of
Backward compared to 310K for the atomistic
and ART-SM simulations. We also compared
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the RDFs after the EM and projection stages in
the Supporting Information Section S4.3.

Figure 8: Oxygen-oxygen radial distribution
functions after the final stages of ART-SM (blue)
and Backward (red) for the TIP3P water model.
The atomistic reference is shown in gray. The
solid lines show the mean values over 200 snap-
shots and the shaded areas denote the corre-
sponding standard deviations.

3.2.6 Runtime

Finally, we examined the runtime performance
of ART-SM compared to Backward by backmap-
ping undecan-1-ol systems containing various
numbers of CG beads, ranging from 312 to
67 392. This corresponds to 3744 up to 808 704
atoms in the backmapped atomistic structures.
To generate the respective CG structures, we
multiplied the smallest system in the x, y, and
z directions and adjusted the simulation boxes
accordingly. Subsequently, each structure was
backmapped ten times on an Intel(R) Xeon(R)
Gold 6226R CPU 2.90GHz with ART-SM and
Backward using one core, respectively. Addi-
tionally, an NVIDIA GeForce RTX 3090 GPU
was used for the EMs and position restraint
simulations following the projections with ART-
SM. As the EM 1 step of Backward utilizes en-
ergy exclusions to optimize individual molecules
without considering the surrounding atoms, the
group cutoff scheme has to be used, which is in-
compatible with GPUs. Also, due to the nearby
clashes of the atoms resulting from the backward
projection, EM 1 cannot be run in parallel.

Both algorithms scale linearly with the num-
ber of atoms (see Figure 9), whereby the slope is
steeper for Backward than for ART-SM. Conse-
quently, backmapping the smallest system with
ART-SM is about two times faster than Back-
ward with 15.3 compared to 29.3 seconds, while
for the largest system, ART-SM is roughly three
times faster with 39.6 compared to 114.9 min-
utes. We emphasize that the outlier for Back-
ward at 808 704 atoms, which took exceptionally
long, was thereby not considered. It is impor-
tant to note here, that the projected structure
of both algorithms may contain atom clashes
or unfavorable conformations which lead to fail-
ure of the consecutive EM or position restraint
simulation. In our test systems, ART-SM failed
less often than Backward. In more detail, out of
60 conversions, 59 were successful for ART-SM,
in contrast to only 37 for Backward. Thereby,
the success rate of Backward declined as the
number of atoms increased. For Backward, we
observed that crashes usually happened during
the second EM, i.e., after switching off the en-
ergy exclusions.

4 Conclusions
We developed ART-SM, an open-source
fragment-based backmapping algorithm that
exploits ML to learn the Boltzmann distri-
bution from atomistic simulation data. Its
user-friendliness is ensured by requiring min-
imal user input, having multiple supporting
tools, for instance, to generate mapping files
automatically, and the easy installation via
pip. ART-SM improves traditional approaches,
which only use one rigid conformation per frag-
ment for backmapping, by selecting suitable
fragment conformations based on the Boltzmann
distribution and the underlying CG conforma-
tion. Furthermore, individual fragments are
connected by rotating them in space, thus
optimizing specific bond lengths, angles, and
dihedral angles. This approach yields preferable
conformations that can be easily relaxed within
a few steps of an EM and a position restraint
simulation.

In this study, we backmapped artificial
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Figure 9: Average runtime comparison between ART-SM and Backward. The cumulative runtimes
of the individual stages are plotted for ART-SM (left) and Backward (right). The success rates,
i.e., the percentages of successful backmapping attempts, are plotted in gray. For about 808 704
atoms, one of the final molecular dynamics simulations of Backward required an exceptionally long
computing time. The runtime without this outlier is plotted as a dashed orange line. The standard
deviations are omitted to improve readability.

and real Martini CG structures containing
short molecules of up to three beads, such
as undecan-1-ol or S-2-bromo-2-chloropropan-
1-ol, and showed that the resulting bond
length, angle, and dihedral angle distributions
closely match the atomistic reference (see Sec-
tion 3.2.1 and 3.2.2). Re-coarse-graining of
the backmapped structures revealed that they
are representative of the original CG struc-
tures as the distance between original and re-
coarse-grained beads was, on average, approx-
imately 1.1Å. ART-SM also generalized well
to molecules not seen during training, given
that they share identical fragment pairs with
molecules included in the training data set
(see Section 3.2.3). This was tested for 1-10-
decandiol, which has the same fragment pairs
as heptan-1-ol. Furthermore, ART-SM accu-
rately backmapped the five-bead molecule butyl-
pentadecanoate, indicating that the incremental
pairwise backmapping approach can be applied
to larger molecules as well (see Section 3.2.4).
Nevertheless, ART-SM was not tested on large
molecules with complex structural features such
as branched and cyclic structures yet and should
be used with caution in these cases. Additionally,
a robust backmapping procedure was success-
fully developed and tested for the 3-point water

model TIP3P. In all instances, ART-SM outper-
formed the widely used backmapping algorithm
Backward34 in terms of similarity to atomistic
bond length and dihedral angle distributions, ex-
cept for the tripeptide Ala-Ala-Gly where both
algorithms provided comparable results (see Ta-
ble 2). Moreover, the re-coarse-grained struc-
tures of ART-SM were closer to the original
CG structures, and our algorithm was about
two to three times faster with significantly fewer
crashes than Backward (see Section 3.2.6).

In summary, we illustrated that our algorithm
accurately backmaps Martini CG systems con-
sisting of small molecules, as bond length, an-
gle, and dihedral angle distributions are well
recovered. Moreover, the resulting atomistic
structures closely resemble the CG structures.
Additionally, ART-SM outperformed Backward
in terms of runtime, success rate, and our eval-
uation criteria in all studied cases except for
the tripeptide Ala-Ala-Gly. In the future, we
will extend our algorithm to lipids, proteins,
and other macromolecules. Moreover, coarse-
graining schemes of more than six heavy atoms
per bead will be investigated.
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in this study (see Supplementary Information
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and atom names of molecules whose bonds, an-
gles, or dihedral angles (e.g. O-C1-C2-C3) are
directly described in the manuscript. Figure S2:
Boltzmann distribution of the dihedral angle
O-C1-C2-C3 of undecan-1-ol based on atomistic
data. Section S2: Angle and main conforma-
tion metrics used in the backmapping process of
ART-SM. Section S3 and Figure S3: Details on
the optimization of connectors in the backmap-
ping process of ART-SM. Includes connector
definition, algorithmic steps, and optimization
functions. Section S4.1, S4.2, and Figure S4:
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ing together with the resulting dendrogram and
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ure S5: Oxygen-oxygen radial distribution func-

1https://github.com/chrispfae/ART-SM.git

tions for water after projection and energy min-
imization with ART-SM and Backward. Figure
S6: Visualization of all molecules used in this
study in atomistic and coarse-grained resolu-
tion. Figure S7: Illustration of the transition
time differences between undecan-1-ol and S-
2-bromo-2-chloropropan-1-ol. Section S5 and
Figure S8: GROMACS simulation parameters
for atomistic, coarse-grained, and flat-bottomed
position restraint simulations and determina-
tion of optimal number of relaxation steps after
projection by ART-SM. Figures S9, S10, and
S11: Evaluation of energy minimized and fi-
nal structures of ART-SM dependent on the
number of steps, respectively. Analyzed were
the distances to the original CG structure, the
Wasserstein distance for bonds and angles, and
the maximum force that occurred during the
energy minimizations. Section S6 and Figure
S12: Explanation of the comparison between
atomistic and backmapped (ART-SM and Back-
ward) bond length, angle, and dihedral angle
distributions with the interval error, Wasserstein
distance, and Bhattacharyya distance. Section
S7 and Figure S13: Classification of dihedral
angles into the categories fragments, connec-
tors, and not-learned. Figure S14: Interval er-
rors between ART-SM projected and atomistic
structures dependent on the number of train-
ing data points used for undecan-1-ol. Figure
S15: Dihedral angle distributions of undecan-
1-ol for different stages of ART-SM and Back-
ward depicted as ridge plots. Figures S16, S17,
S18, and S19: Example histograms of the bond
lengths (undecan-1-ol), angles (undecan-1-ol),
and dihedral angles (propan-1-ol, S-2-bromo-2-
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