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Abstract 19 
Open mass spectral libraries (OMSL) are critical for metabolite annotation and machine learning, especially given the 20 
rising volume of untargeted metabolomic studies and the development of annotation pipelines. Despite their importance, 21 
the practical application of OMSLs is hampered by the lack of standardized file formats, metadata fields, and supporting 22 
ontology. Current libraries, often restricted to specific topics or matrices such as natural products, lipids, or the human 23 
metabolome, may limit the discovery potential of untargeted studies. FragHub addresses these challenges by integrating 24 
multiple OMSLs into a single comprehensive database, supporting various data formats and harmonizing metadata. It 25 
also proposes some generic filters for mass spectrum using a graphical user interface. Additionally, a workflow to 26 
generate in-house libraries compatible with FragHub is proposed. FragHub dynamically segregates libraries based on 27 
ionization modes and chromatography techniques, thereby enhancing data utility in metabolomic research. The FragHub 28 
Python code is publicly available under a MIT license, at the following repository: 29 
https://github.com/eMetaboHUB/FragHub. Generated data can be accessed at 30 
https://doi.org/10.5281/zenodo.11057687. 31 

 32 
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Introduction 37 
Liquid Chromatography-Mass spectrometry (LC-MS) chemical profiling provides hundreds to 38 

thousands of features (m/z × RT pairs) from a single biological matrix. The process of dereplication, 39 

which involves annotating all detected spectral signatures, is a major bottleneck in LC-MS based 40 

metabolomics1. Annotations rely on a “body of evidence” approach initially formalized by the 41 

Metabolomics Standards Initiative, stratified into four confidence levels: level 1, identified metabolites 42 

using authentic standard compounds; level 2, putatively annotated metabolites using public/commercial 43 

spectral libraries; level 3, putatively characterized metabolites based on diagnostic ions and/or partial 44 

spectral similarities to known compounds of a chemical class; and level 4, unknown metabolites2. These 45 

confidence levels have been further refined to include new strategies such as mass spectral similarity 46 

network or low library match score (level 2b), in silico based annotation (level 3), molecular formula 47 

match (level 4) and unknown spectral signals (level 5)3. A comprehensive dereplication may maximize 48 

annotation level 1 but involve a LC-MS/MS spectral library setup in identical analytical condition of 49 

matrix chemical profiling and is further limited to pure standards availability. Actually, authentic 50 

standard-centric annotation may identify only 1% to 10 % of all detected signals in a biological matrix 51 

but can be enriched using open mass spectral library (OMSL) resources to fill gaps with annotation 52 

level 24.  53 

Many OMSLs are freely available, such as GNPS, MassBank, MoNA, RIKEN, and HMDB5–8 and 54 

immensely valuable for dereplication purposes. However, dealing with these resources is challenging 55 

due to the lack of standardized file formats and architecture. These libraries encompass a variety of file 56 

structures for mass spectral data, including ASCII-based formats like Mascot Generic Format (.MGF) 57 

and NIST MSP (.MSP), as well as MassBank records, JavaScript Object Notation (.JSON), Extensible 58 

Markup Language (.XML) or in the form of an SQLITE database9. While these formats generally follow 59 

a similar organizational schema—detailing compound spectra with core metadata on chemical 60 

identifiers (SMILES, INCHI, name, or adduct forms), experimental conditions (collision energy, 61 

ionization mode, polarity, or instrument type), and extended metadata for experimental measurements 62 

(m/z values, MS/MS fragments, and their intensities)—there is no uniformity in metadata field names, 63 

sequencing, or minimal requirements. This lack of standardization restricts OMSL compatibility with 64 

open-source processing software, making them prone to parsing and reading errors. For instance, 65 

OpenMS10 only supports .MGF format while MS-DIAL11 manages generic .MSP or MassBank records 66 

and MZMine12 imports as .JSON, .MGF and .MSP files but may face parsing issues. Additionally, each 67 

OMSL favors a unique file format with its own metadata structure, based on undocumented and 68 

unversioned data models, limiting interoperability among LC-MS processing software and hindering 69 

the integrated use of multiple databases. MassBank is one of the few resources to offer guidelines 70 

describing these records based on a versioned repository (V2.6.0).  71 

Recently, the Python package MatchMS13 has proposed a pipeline to harmonize metadata and clean 72 

experimental values but focus mainly on data exploration using various MS/MS similarities measures. 73 
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For metadata enrichment related to chemical identifiers, another Python package MSMetaEnhancer 74 

have been added to MatchMS satellites tools14. Another shortcoming arises when using an OMSL: 75 

extracting a subset of interesting data proves difficult, given that most downloadable files are a 76 

concatenation of the two ionization modes, several collision energy methods, several instrument types, 77 

and a mix of predicted and experimental data. As a result, despite the great value of using one or several 78 

OMSLs, this appears challenging for dereplication of tandem mass spectra in daily work. 79 

To bridge this gap, we introduce FragHub, a workflow that integrates diverse mass spectral libraries 80 

to streamline and enhance the annotation process. FragHUB support multiple OMSL formats (.MSP, 81 

.MGF, .JSON, .CSV, .XML) and harmonizes metadata using RDKit15 and internal dictionaries. It allows 82 

for user-defined filtering options and handle outputs from MZMine's spectral library generation module, 83 

ensuring seamless integration of in-house databases. FragHub not only concatenates libraries from 84 

diverse sources into a unified format but also classifies the spectra according to chromatographic 85 

methods (GC/LC-MS), ionization modes (positive/negative), and data origin (predicted/experimental). 86 

Available as a Python package with a straightforward user interface, FragHub supports flexible 87 

parameter settings.  88 

The processed libraries are compatible with Metabolomics data processing software such as MS-89 

DIAL, MZMine3 or Flash Entropy Search16, but also interoperable with spectral data management 90 

software such as PeakForest17. A PeakForest instance for FragHub is accessible online, providing tools 91 

for viewing, browsing, and filtering spectral data through a web portal or API (available at 92 

https://fraghub.peakforest.org/).  93 

 94 
Materials and Methods 95 

FragHub's workflow was meticulously designed to parse and standardize spectral data across various 96 

formats, including .MSP, .MGF, .JSON, .CSV, and .XML, as derived from several widely utilized open 97 

mass spectral libraries. These operations involve detailed metadata normalization steps using RDKit, 98 

ensuring that data entries from disparate sources become interoperable. To validate and benchmark our 99 

approach, we utilized datasets encompassing over 790,000 spectra, demonstrating FragHub's ability to 100 

efficiently process and refine these entries for better usability in metabolic studies. 101 

1. Open Mass Spectral Library Resources 102 

The workflow was tested with a diversity of public software libraries (different data formats, diversity 103 

of metadata), four OMSLs were selected and downloaded in early January 2024 (see table 1). 104 

Additionally, an in-house database was created using MZMine3 to test outputs compatibility with 105 

FragHub. A step-by-step tutorial to create an in-house library is available in supplementary data. The 106 

dataset gathered for this work comprises 794,985 MS/MS spectra with the associated metadata. 107 

 108 
Tableau 1:OMSL list used to develop FragHub 109 
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 110 

  111 

2. FragHub Workflow 112 

    113 

 114 
Figure 1: FragHub workflow showing the 4 steps from OMSLs input to export files 115 

 116 

The initial step of the FragHub workflow involves parsing various data file formats, such as .MSP, 117 

.MGF, .JSON, .CSV, and .XML, into field names and their corresponding values as delineated in Table 118 

1. The workflow employs a mapping dictionary to translate current keys into standardized keys that 119 

adhere to GNPS naming conventions, thereby ensuring compatibility with data reprocessing software 120 

like MS-Dial, MZmine, and Flash Entropy Search which utilizes MSP and JSON for annotation.  121 

To effectively manage duplicates and facilitate further data processing, FragHub generates a unique 122 

hashing key (SHA-256) for each spectrum using the InChIKey and fragmentation spectra; if an 123 

InChIKey is unavailable, the hashing key is derived from all available spectral data. This unique 124 

identifier, termed 'FragHubID', simplifies the tracking and elimination of duplicate spectra both within 125 

and across OMSLs. FragHubIDs are recorded in the “update.json” file, which helps in maintaining a 126 

Spectral library name URL 
File 

format 
Version License Spectra 

MoNA 
https://mona.fiehnlab.ucdavis.e

du/downloads 
.JSON 2024.01 CC-BY 4.0 190,359 

MS-DIAL-VS17 
http://prime.psc.riken.jp/comp

ms/msdial/main.html#MSP 
.MSP 2022.08 CC-BY 4.0 376,430 

GNPS 

https://gnps-

external.ucsd.edu/gnpslibrary  

 

.MGF 
2024.01 

GNPS only 
CC-0 1.0 63,935 

MassBank 

https://github.com/MassBank/

MassBank-data 

 

.MSP 2023.11 CC-BY 4.0 164,261 
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repository of processed spectra, ensuring that only new spectra are processed upon the addition of new 127 

OMSL entries, as configured by the user. 128 

The workflow conducts a thorough cleaning and normalization of compound metadata and spectral 129 

data. It verifies the accuracy of SMILES, InChI, and InChIKey assignments, reallocating them as 130 

needed, and eliminates any spectra lacking both InChI and SMILES. RDKit is utilized to standardize 131 

chemical identifiers and calculate both exact and average molecular masses. Unparsable identifiers are 132 

removed, and any missing 'name' data are substituted with the corresponding molecule’s InChI, where 133 

applicable. Non-specific values such as 'RT: 0.0' or 'adduct: unknown' are replaced with the placeholder 134 

“UNKNOWN”. The workflow also updates adduct values, ion mode keys, and MS levels using a 135 

comprehensive mapping dictionary from the data directory, and tentatively calculates empty m/z 136 

precursor values based on the exact mass and identified adduct.  137 

Instrument details (e.g., model types like QTOF or FT) and ionization modes (such as ESI or APCI) 138 

are normalized using the HUPO PSI mass spectrometry controlled vocabulary via an in-house 139 

hierarchical decision tree available in the data directory. 140 

Spectra lacking essential information like SMILES, InChI, or a valid precursor m/z value, as well as 141 

those failing to meet user-specified filter criteria, are excluded. A detailed list of discarded spectra is 142 

compiled, highlighting the reasons for their removal.  143 

Furthermore, FragHub annotates the 'predicted' field to distinguish between experimental and 144 

predicted spectra and normalizes retention times to minutes. Following metadata normalization, user-145 

defined filters are applied through the graphical user interface to refine the peak list (Table S2).  146 

Finally, the workflow segregates the spectra by ion detection mode (positive/negative), separation 147 

techniques (LC or GC), and categorizes them as experimental or predicted, removing any potential 148 

duplicates based on similar InChIKeys and their fragment lists. The entire process is efficiently 149 

completed in less than twenty minutes on a desktop computer equipped with an Intel Core i9-13900 and 150 

128 GB RAM DDR5, handling over a million spectra in various test formats. 151 

 152 

 3. OMSL benchmarking for annotation 153 

 154 

In order to benchmark each OMSL for annotation purposes on a real dataset, raw data from Nicolle 155 

et al.18 were used (https://doi.org/10.5281/zenodo.8421008). Quality control (pool of whole Arabidopsis 156 

thaliana extracts) and blank thermo .RAW data were imported into MS-Dial v5.231120. 157 

Chromatograms were deconvoluted, aligned using the same parameters as Nicolle et al. Then, filtered 158 

with the help of integrated MS-CleanR19 with a blank ratio of 0.8; incorrect mass and ghost peak 159 

removed; a relative standard deviation of 40 and a relative mass defect between 50 and 3500. The 160 

alignment result was submitted to MS/MS based annotation using each OMSL processed by FragHub 161 

applying all default filters and exported in .MSP format. The following parameters were used for 162 
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spectral matches: Dot product score > 600; weighted dot product > 600; reverse dot product > 800; 163 

matched spectrum percentage > 25% and minimum number of matched peaks = 3. 164 

 165 

 166 

 167 

 4. Chemical space representation 168 

 169 

Chemical classes were deciphered using NPclassifier API20. PathwayNP and superclassNP were kept 170 

for each compound for figures coloration. The t-distributed Stochastic Neighbor Embedding (t-SNE) 171 

dimensionality reduction was calculated from PubChem fingerprints using a perplexity of 30 and an 172 

exaggeration of 1. 173 

 174 

5. PeakForest database 175 

 176 

PeakForest is a multi-platform digital infrastructure for interoperable metabolite spectral data and 177 

metadata management. It captures and stores different types of metabolomics data from mass 178 

spectrometry and Nuclear magnetic resonance (NMR), providing users with valuable insights into 179 

metabolite identification and annotation processes. The infrastructure consists of a structured database, 180 

Application Programming Interfaces (API), a web interface and web services offering tools for 181 

browsing, managing and curating spectral data and metadata. Standardised procedures and formats have 182 

been implemented to guarantee information quality and interoperability. These features provide users 183 

with intuitive access to spectral data, facilitating efficient data annotation and analysis workflows. 184 

Finally, PeakForest is designed to facilitate the centralisation of data at laboratory level and to facilitate 185 

sharing between laboratories and public databases. 186 

 187 

  188 

https://doi.org/10.26434/chemrxiv-2024-dc48x-v2 ORCID: https://orcid.org/0000-0002-6321-9005 Content not peer-reviewed by ChemRxiv. License: CC BY-NC 4.0

https://doi.org/10.26434/chemrxiv-2024-dc48x-v2
https://orcid.org/0000-0002-6321-9005
https://creativecommons.org/licenses/by-nc/4.0/


7 
 

Results 189 
FragHub, developed in the Python programming language, leverages four widely used open mass 190 

spectral libraries (OMSLs) for LC-MS-based metabolomic analysis. In this study, we specifically 191 

utilized GNPS-tagged databases in the .MGF format, comprising 13,507 compounds and 63,935 192 

spectra. Mona (MassBank of North America) significantly enriches our dataset with 21,839 unique 193 

compounds across 190,359 spectra, available in .MSP, .SDF, and .JSON formats. MassBank stands out 194 

for its spectral diversity, offering over 164,261 spectral datasets associated with 8,358 compounds. 195 

MSDial-VS17 represents a unique integration, merging several databases and in-house acquired spectra 196 

accounting for 376,430 spectra and 22,282 compounds. This dataset is the only library pre-split into 197 

positive ionization (PI) and negative ionization (NI) modes. For these latter two databases, the .MSP 198 

format has been utilized within FragHub. To showcase FragHub's adaptability, multiple formats were 199 

processed (as detailed in Table 1). The integration of these four OMSLs yields a combined total of 200 

794,985 spectra for 35,673 unique chemical identifiers. The FragHub data integration workflow refines 201 

this further to 602,744 spectra for 32,193 unique chemicals, as illustrated in Figure 2. Detailed logs of 202 

the spectra excluded during the OMSLs processing are maintained in Table S4. 203 

 204 

 205 
Figure 2: Integration Output Analysis 206 
Bar plot displaying the counts of MS/MS spectra and unique InChIKeys derived from each OMSL. The left y-axis represents 207 
the number of spectra while the right y-axis shows the number of unique chemical identifiers. This visualization underscores 208 
the harmonization capabilities of FragHub, demonstrating its efficacy in integrating and deduplicating spectral data from 209 
diverse libraries. 210 

Approximately 45% of chemicals are shared between two or more open mass spectral libraries 211 

(OMSLs), highlighting the interconnected nature of these resources. Conversely, 19,419 compounds 212 

are exclusive to a single OMSL. The FragHub workflow effectively reduces redundancy by eliminating 213 

about 200,000 duplicate spectra from an initial pool of 794,985, underscoring the diverse chemical 214 

compositions and experimental conditions—such as collision energy, instrument type, and adduct forms 215 
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of isolated pseudo-molecular ions—that characterize each library. The median number of spectra per 216 

compound ranges from 2 in GNPS to 12 in MassBank, illustrating significant spectral redundancy that 217 

can be tailored based on user preferences. 218 

 219 

 220 
Figure 3: Compound Overlap among OMSLs 221 
Venn diagram and upset plot illustrating the intersection of unique compounds across various OMSLs. Each bar indicates the 222 
number of unique compounds exclusive to a single library or shared between multiple libraries, highlighting the 223 
complementary nature of the integrated libraries in covering broader chemical space. 224 

 225 

For example, applying a filter to remove spectra with fewer than three MS/MS signals results in a 226 

15% reduction in entries, as depicted in Figure 4. Further refinement is achieved through a second filter, 227 

which excludes spectra unless they meet a minimum threshold of three signals and two MS/MS peaks 228 

with intensities above 5%. This stringent criterion retains 81% of the total spectra while incurring a 229 

substantial loss of compounds, amounting to 3,5%, thereby optimizing the dataset for higher-quality 230 

annotations. 231 

 232 

 233 
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 234 
 235 

Figure 4: Filter Impact Analysis 236 
Bar plot quantifying the impact of applying default FragHub filters on the spectral and compound data retained from integrated 237 
OMSLs. The plot compares the percentages of spectra and compounds retained with and without filtering, showcasing the 238 
effectiveness of filters in enhancing data quality without significant loss of chemical diversity. 239 
 240 

To assess the enhanced utility of integrated OMSLs for annotation tasks, we analyzed chemical 241 

fingerprints from Arabidopsis thaliana using MS-Dial. The annotations were performed independently 242 

on each OMSL as well as on the integrated dataset processed through the FragHub workflow. After 243 

applying MS-CleanR filtration, a total of 435 features were detected in positive ionization mode. The 244 

annotation process did not consider the retention time values and relied solely on accurate mass and 245 

MS/MS fragmentation patterns. 246 

The outcomes, depicted in Figure 5, demonstrate a direct relationship between the richness of the 247 

compound library in each OMSL and the number of matches achieved: MassBank, with its 41 matches, 248 

contrasts with the three other OMSLs, which, containing over 5,000 unique compounds each, yielded 249 

between 55 and 81 matches. Remarkably, the consolidated file from FragHub, utilizing default filtering 250 

criteria, successfully annotated 102 features, corresponding to 24% of the total detected features. 251 

 252 

 253 
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 254 
Figure 5: Annotation Efficiency Comparison 255 
Bar plot showing the number of features successfully annotated from the Nicolle et al. dataset using individual and integrated 256 
OMSLs under standard query conditions. This plot demonstrates the increased annotation capabilities achieved through the 257 
integrated dataset, reflecting FragHub's enhancement for real dataset annotation. 258 

 259 

The distribution of chemical classes across each OMSL highlights the unique chemical diversity they 260 

cover. Fatty acids predominate in GNPS and MassBank, whereas alkaloids are prominently featured in 261 

GNPS and MSDial-VS17. Mona is rich in carbohydrates, amino acids, and peptides. In contrast, 262 

shikimates, phenylpropanoids, and terpenoids are more evenly distributed across the OMSLs, as shown 263 

in the top panel of Figure 6. The chemical space of each OMSL was analyzed using a t-SNE 264 

dimensionality reduction approach based on PubChem fingerprints. This method effectively reveals 265 

local clusters and the overall spatial distribution of compounds, facilitating an intuitive visualization of 266 

how different chemical classes aggregate. Typically, compounds within the same class cluster together, 267 

with each class occupying distinct regions in the t-SNE plot. GNPS and MSDial show denser 268 

distributions, particularly in the areas representing terpenoids and alkaloids, whereas Mona spans a 269 

broader area for carbohydrates, and MassBank is extensively spread across regions rich in shikimates 270 

and phenylpropanoids. Collectively, the integration of these OMSLs through FragHub achieves a 271 

comprehensive and dense coverage of chemical space across all compound classes. 272 
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 273 
Figure 6: Chemical Space Coverage 274 
t-SNE plots overlaid with donut charts depicting the distribution of metabolite classes within each OMSL and the integrated 275 
dataset. The t-SNE plots provide a two-dimensional representation of the chemical spaces covered by each library, with colors 276 
indicating different chemical classes based on NPclassifier ontology. The donut charts further detail the proportion of each 277 
metabolite class, illustrating the enriched diversity achieved through data integration. 278 
Discussion 279 

 280 

The growing number of publications in metabolomics underscores its significance within the omics 281 

landscape, yet the relevance of the results stemming from this approach is largely dependent on the 282 

quality of annotations derived from spectrometric signals21. In this context, OMSLs are key for 283 

supporting experimental spectral matching and enhancing annotation rate from untargeted LC-MS 284 

fingerprints. The aim of FragHub workflow is to optimize the use of OMSLs for end-users in the field 285 

of untargeted LC-MS based metabolomic. Four OMSLs have been used in various formats to 286 

demonstrate the FragHub integration pipeline (Figure 2). A primary challenge in this integration was 287 
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the normalization of data fields and values from diverse sources. For example, we identified ten distinct 288 

keys for ionization states and normalized 487 instrument names and 154 adduct descriptions to 307 and 289 

111, respectively, as detailed in Table S1. The harmonization of collision energies was not addressed 290 

due to their varied and non-standardized measures (around 70 different formats), highlighting the 291 

critical need for standardized data practices as recommended by MassBank.as recommended in the 292 

MassBank documentation for instance22. 293 

Approximately 50% of unique compounds and 20% of spectral duplicates were observed across the 294 

OMSLs, indicating that while high redundancy can improve annotation rates, it might also lead to 295 

inconsistencies, particularly when using dot product and reverse dot product scoring systems that are 296 

highly sensitive to fragment number and intensity. To mitigate these issues, FragHub implements filters 297 

that maintain data integrity without compromising compound diversity, as shown in Figure 4. 298 

Furthermore, MS/MS data denoising may be applied by plugging FragHub outputs to Libgen23 or 299 

alternative scoring approach24.  300 

The integration of OMSLs used here significantly expands the compound diversity and chemical 301 

space coverage and increase annotation rate of untargeted chemical profiling (Figure 5 and 6). In the 302 

context of holistic approaches, deciphering the interplay of metabolome dynamics across organisms or 303 

environments is challenging. The use of large mass spectral libraries extends metabolome coverage 304 

outside of expected results enabling a comprehensive understanding of complex systems. We measured 305 

32,193 unique compounds after OMSLs integration which is rather low compared to the diversity of 306 

natural products estimated to be several million molecules25. Moreover, the chemical classes covered 307 

by OMSLs contrast with the distribution of natural products databases such as the Dictionary of Natural 308 

Products with an over-representation of alkaloids and polypetides in OMSL, while terpenoids and fatty 309 

acids represent the most diverse group in natural product catalogues26. This disparity underscores the 310 

necessity for orthogonal strategies to fill this gap like raw data digging of mass spectral similarity 311 

networks27 or in silico MS/MS prediction tools based on chemical identifiers28. The FragHub integration 312 

workflow may help to organize data and explore fragmentation mechanism behavior to set up training 313 

sets for deep learning-based strategies. 314 

The FragHub code can handle various input formats and has been multithreaded to process 315 

approximately 100,000 spectra per minute (table S3) which allows the integration of large OMSLs in 316 

reasonable time on a personal computer. A simple graphical user interface enables users to select 317 

filtering options and data format outputs using distinct profiles. This allows shaping scenarios for 318 

specific needs such as in-house database handling or simple .CSV outputs to analyze OMSLs, then filter 319 

on specific metadata (e.g., instrument type) and reintegration in .MSP or .JSON formats for instance. 320 

To demonstrate the potential of this data standardization and structuring work, the compounds and 321 

their LC-MSMS spectra were also imported and stored in a dedicated PeakForest database. The web 322 

application provided enables users, for example, to browse and search for specific chemical names or 323 

https://doi.org/10.26434/chemrxiv-2024-dc48x-v2 ORCID: https://orcid.org/0000-0002-6321-9005 Content not peer-reviewed by ChemRxiv. License: CC BY-NC 4.0

https://doi.org/10.26434/chemrxiv-2024-dc48x-v2
https://orcid.org/0000-0002-6321-9005
https://creativecommons.org/licenses/by-nc/4.0/


13 
 

spectral metadata. It also provides a REST web service to support massive queries submitted by third-324 

party software or bioinformatics pipelines for metabolomics data annotation. PeakForest has been 325 

initially developed to store and manage high-quality spectral data in terms of metadata. The FragHub 326 

instance of PeakForest can be used to put online a collection of sub-banks in MSP format, compiled for 327 

example by instrument type. By exploiting the various resources made available by the community and 328 

used in the FragHub pipeline, we were able to compile a very large number of MSMS spectra. This 329 

work once again highlights the need to open up more and more new spectral data, acquired on recent 330 

instruments and supplemented with rich, controlled metadata, in order to increase annotation coverage 331 

of LC-MS fingerprints.  332 

The integration of multiple mass spectral libraries through FragHub represents a significant advance 333 

in the metabolomics field, facilitating a deeper understanding of metabolite environments through 334 

enhanced data quality and accessibility. Moreover, FragHub's flexible architecture allows for the rapid 335 

incorporation of new data sources, which is critical given the rapid evolution of mass spectrometry 336 

libraries. By addressing the critical challenges of data standardization and compatibility, FragHub 337 

provides researchers with powerful tools to unlock the full potential of metabolomic studies. 338 

 339 
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SUPPORTING INFORMATION 444 

• Supplementary Tables comprising table S1 to S4 in .PDF 445 
• Tutorial for FragHub installation and usage in .PDF 446 
• Tutorial to set-up in-house library using MZMine in .PDF 447 

 448 
AVAILABILITY 449 
FragHub code can be forked, cloned or downloaded on GitHub at the following address: 450 
https://github.com/eMetaboHUB/FragHub. 451 
FragHub is available with a pre-built data structure to facilitate the end-user processing. A tutorial is available on GitHub 452 
repository and in supplementary data. 453 
OMSLs processed in this study are available on Zenodo repository: https://doi.org/10.5281/zenodo.11057687. 454 
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