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Abstract

In this work, we introduce peptidy – a lightweight Python library that facilitates converting peptides
(expressed as aminoacid sequences) to numerical representations suited to machine learning. peptidy is
free from external dependencies, integrates seamlessly into modern Python environments, and supports
a range of encoding strategies suitable for both predictive and generative machine learning approaches.
Additionally, peptidy supports peptides with post-translational modifications, such as phosphorylation,
acetylation, and methylation, thereby extending the functionality of existing Python packages for peptides
and proteins. peptidy is freely available with a permissive license on GitHub at the following URL:
https://github.com/molML/peptidy.

1 Introduction

Peptides are relevant molecular entities in chemistry
and biology, with applications ranging from drug
discovery [1, 2] to food technology [3, 4]. Machine
learning has accelerated peptide discovery, e.g., for
de novo design, sequence optimization, and prop-
erty/bioactivity prediction [5–8].
A key step for machine learning is peptide rep-

resentation [9, 10], whereby relevant structural in-
formation is converted into numerical formats for
model training. Several strategies can be adopted
to encode peptide information, e.g., via description
of physicochemical features [10], one-hot encoding
[11], and/or evolutionary information [12]. Each of
these approaches captures different structural infor-
mation, might be suited for different machine learn-
ing approaches [13], and might uniquely contribute
to model performance [11, 14]. While public imple-
mentations are available for specific encoding meth-

ods (e.g., [15,16]), bringing them together into a sin-
gle project often requires dependency alignment and
possible incompatibility hurdles.

Here, we introduce peptidy – a light-weight
Python library that implements various peptide rep-
resentations for machine learning. Key features of
peptidy are the following:

• it has no external dependency and integrates
smoothly into all modern Python environments;

• it encompasses a range of strategies for peptide
encoding, useful for predictive and generative
machine learning applications;

• it supports several post-translational modifi-
cations to amino acids e.g., phosphorylation,
acetylations, and methylation, extending the ca-
pabilities of existing Python packages.

Thanks to its light-weight character, peptidy is
expected to accelerate the analysis of different pep-

1

https://doi.org/10.26434/chemrxiv-2024-bm3lv ORCID: https://orcid.org/0000-0002-4052-9721 Content not peer-reviewed by ChemRxiv. License: CC BY 4.0

https://github.com/molML/peptidy
https://doi.org/10.26434/chemrxiv-2024-bm3lv
https://orcid.org/0000-0002-4052-9721
https://creativecommons.org/licenses/by/4.0/


Table 1: Description of encoding methods in peptidy. For each approach, the chemical information captured
and the output dimension are reported (L: number of amino acids in the sequence.)

Method Information captured Dimension

Peptide descriptorsa Captures 48 physicochemical properties of peptides as nu-
meric values (descriptors). A full description of the avail-
able properties can be found in the technical documenta-
tion. The selection of a subset is possible.

48× 1

Amino acid descriptorsa,b Encodes 18 physicochemical properties at the amino acid
level (selection of a subset possible). A full description of
the available properties can be found in the technical doc-
umentation.

L× 18

BLOSUM62 encodinga,b Represents amino acids in terms of their evolutionary sim-
ilarity to each other and represents the peptide as the se-
quence of such vectors.

L× 21

One-hot encodinga,b Creates fixed vectors per amino acid type (where 1 indicates
its presence in a specific position in the sequence, and 0
indicates its absence).

L× 28

Label encodinga,b Maps each amino acid to an integer (label) and represents
the peptide as a sequence of labels.

L× 1

a Supports post-translational modifications.
b Supports generative deep learning.

tide representation strategies for machine learning,
and to be easy to adopt and expand upon. Compre-
hensive online documentation and user guides were
developed to facilitate the adoption of peptidy by
the scientific community. We expect peptidy to fur-
ther contribute to the application of machine learning
for peptide discovery and optimization.

2 peptidy

peptidy is a light-weight and easy-to-use Python
package (v3.6 or greater) to convert amino acid
sequences into machine-learning-ready representa-
tions. Five popular peptide encoding methods are
available in peptidy v0.0.1, with support for post-
translational modifications in the sequences. The
initial release of peptidy supports twenty standard
amino acids and eight post-translational modifica-
tions, extending the capabilities of existing peptide
processing tools. All the available representations
(except for global descriptors) are also suited for gen-

erative deep learning, which is achieved by adding
special elements to indicate the beginning and end
of a given peptide sequence (see the technical docu-
mentation accompanying peptidy for more informa-
tion). The implemented peptide representations are
briefly described below and summarized in Table 1.

Peptide descriptors. peptidy implements a to-
tal of 48 global descriptors that capture physico-
chemical properties (e.g., charge density, isoelectric
point). Selecting a subset of descriptors is possible.

Amino acid descriptors. This encoding ap-
proach brings the physicochemical knowledge down
to the amino acid level by representing a peptide as
a sequence of amino acids, where each amino acid
is encoded as predefined physicochemical properties.
By default, this approach returns an L × 18 dimen-
sional list, where L is the number of amino acids in
the peptide and a sub-selection of properties is pos-
sible.

2

https://doi.org/10.26434/chemrxiv-2024-bm3lv ORCID: https://orcid.org/0000-0002-4052-9721 Content not peer-reviewed by ChemRxiv. License: CC BY 4.0

https://doi.org/10.26434/chemrxiv-2024-bm3lv
https://orcid.org/0000-0002-4052-9721
https://creativecommons.org/licenses/by/4.0/


BLOSUM62 encoding. BLOSUM62 is a matrix
that contains amino acid similarities based on the
reserved (sub)sequences on the phylogenetic trees
[12]. Similar to descriptors, BLOSUM62 also in-
troduces domain knowledge to the model, but en-
codes evolutionary information rather than physico-
chemical properties. BLOSUM62 encoding produces
amino acid vectors such that each element in the
vector encodes BLOSUM62 similarity score of one
aminoacid to another particular amino acid. In other
words, BLOSUM62 vectors represent amino acids
in terms of their similarity to other amino acids.
peptidy integrates post-translational modifications
to BLOSUM62 representation by adding a new bi-
nary dimension (optional). This function returns
L× 21 matrices by default, where 20 dimensions en-
code the standard amino acids and the added dimen-
sion encodes post-translations.

One-hot encoding. One-hot-encoding represents
the peptide sequence in an n-dimensional vocabu-
lary such that each dimension encodes the presence
of a particular amino acid in a particular position
(denoted with a 1 if present). peptidy assigns a
pre-defined position to each amino acid and post-
translational modification in the vocabulary, and rep-
resents the peptide sequences accordingly. This func-
tion returns a L× 28 dimensional matrix by default,
where each column encodes the existence of an amino
acid or a post-translation, for a total of 28 elements
in the dictionary.

Label encoding. Label encoding assigns a unique
index (‘label’) to each sequence element and repre-
sents sequences as a (random) list of integers. When
combined with deep learning this encoding allows to
learn optimal representations during training, start-
ing from randomly initialized labels. This differs from
one-hot encoding, where the vectors are fixed and
pre-defined. Our implementation of label encoding
supports the post-translational amino acid modifica-
tions.

3 Discussion

Machine learning for peptide discovery has been a
fruitful research endeavour in the last decade, and is
expect to gain further traction. Despite the availabil-
ity of tools to compute peptide descriptors and repre-
sentations, those tools often introduce friction during
integration. This creates entry barriers for such an
interdisciplinary field. peptidy aims to bridge the
gap between peptide sequences and machine learn-
ing libraries by offering accessible encoding solutions
out-of-the-box. peptidy not only makes popular en-
coding approaches as accessible as possible, it also
extends the capabilities of available tools by support-
ing post-translational modifications that are critical
to peptide properties.
peptidy is accompanied by extensive documenta-

tion and tutorials to facilitate accessibility. It is also
open-sourced to allow feedback from researchers and
extend its capabilities. We expect peptidy to be a
useful tool for new machine learning researchers in
the field.

Data and code availability

The Python code is available on GitHub at the fol-
lowing URL: https://github.com/molML/peptidy.
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