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Abstract

Heterogeneous catalysis plays a critical role in many industrial processes, includ-

ing the production of fuels, chemicals, and pharmaceuticals, and research to improve

current catalytic processes is important to make chemical industry more sustainable.

Despite its importance, the challenge of identifying optimal catalysts with the required

activity and selectivity persists, demanding a detailed understanding of the complex

interactions between catalysts and reactants at various length and time scales. Density

functional theory (DFT) has been the workhorse in modelling heterogeneous catalysis

for more than three decades. While DFT has been instrumental, this review explores

the application of quantum computing algorithms in modelling heterogeneous cataly-

sis, marking a paradigm shift in our approach to understanding catalytic interfaces.

Bridging academic and industrial perspectives, focusing on emerging materials such as

multi-component alloys, single-atom catalysts, and magnetic catalysts, we delve into

the limitations of DFT in capturing strong correlation effects and spin-related phenom-

ena. The review also presents important algorithms and their applications relevant to

heterogeneous catalysis modelling, showcasing advancements in the field. Addition-

ally, the review explores embedding strategies where quantum computing algorithms

handle strongly correlated regions, while traditional quantum chemistry algorithms
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address the remainder, offering a promising approach for large-scale heterogeneous

catalysis modelling. Looking forward, ongoing investments by academia and indus-

try reflect a growing enthusiasm for quantum computing’s potential in heterogeneous

catalysis research. The review concludes by envisioning a future where quantum com-

puting algorithms seamlessly integrate into research workflows, propelling us into a new

era of computational chemistry and thereby reshaping the landscape of heterogeneous

catalysis.

1 Introduction

Heterogeneous catalysis, a dynamic field at the intersection of chemistry, materials science,

and engineering, plays a pivotal role in enabling efficient and sustainable chemical trans-

formations.1 Heterogeneous catalysis involves the utilization of solid catalysts to accelerate

chemical reactions by providing an alternative reaction pathway with lower activation en-

ergy. Unlike homogeneous catalysis, where the catalyst and reactants exist in the same

phase, heterogeneous catalysis leverages the unique properties and high surface area of solid

catalysts to facilitate reactions between gas, liquid, or solid reactants.2 This ability to oper-

ate in diverse reaction conditions and effectively couple different phases makes heterogeneous

catalysis an indispensable tool in a wide range of industries, including energy production,3

environmental remediation,4 and chemical synthesis.5

A key aspect driving the evolution of heterogeneous catalysis is its central role in sustain-

able chemistry.3 The pursuit of greener and more sustainable chemical processes necessitates

catalysts that can enable highly efficient and selective reactions while minimizing energy

consumption and waste production. Heterogeneous catalysis provides a promising avenue to

achieve these goals by enabling the design of catalysts with tailored properties, such as active

site engineering,6 incorporation of nanoparticles,7 and optimization of surface morphology.8

The surfaces of heterogeneous catalysts act as active sites, where reactant molecules un-

dergo adsorption, diffusion, and subsequent reactions.6 These surfaces offer interactions of
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different types, such as Pauli repulsion, physisorption (weak bonding), chemisorption (strong

bonding), which dictate the overall catalytic activity and selectivity. The complexity of these

processes, coupled with the dynamic nature of catalysts, necessitates a deep understand-

ing of the underlying principles governing surface chemistry and catalytic mechanisms.9 In

recent years, the field of heterogeneous catalysis has witnessed tremendous advancements

driven by both experimental and theoretical investigations. State-of-the-art characteriza-

tion techniques, such as surface-sensitive spectroscopy and microscopy, have unraveled the

intricate details of catalyst structure and composition, shedding light on the correlation be-

tween surface properties and catalytic performance.10–18 Moreover, computational methods,

ranging from various electronic structure methods for transition state characterization, ab

initio molecular dynamics and advanced sampling, machine learning algorithms, multiscale

modelling, etc., have emerged as powerful tools for elucidating reaction pathways, catalyst

design, and high-throughput screening of new materials.19–31

Density functional theory (DFT) has emerged as the workhorse for modelling hetero-

geneous catalysis, providing a powerful and efficient framework for understanding catalytic

processes at the atomic and molecular level.19,21 DFT offers a practical approach to calcu-

late electronic structure and predict reaction energetics, allowing researchers to explore the

activity, selectivity, and stability of catalysts. It has been successfully employed to study

a wide range of catalytic phenomena, including adsorption, surface reactions, reaction dy-

namics and catalytic cycles.21 However, despite its wide applicability, DFT has inherent

limitations,32 most importantly its reliance on approximate exchange-correlation function-

als, which can introduce errors in the description of non-local and strong correlation effects.

In heterogeneous catalysis, where open-shell systems like transition metals and delocalization

of electrons are common, strong correlation effects are often present, necessitating methods

that go beyond the single-reference/single-configuration approach.32–35 Multireference/multi-

configuration methods, such as complete active space self-consistent field (CASSCF)36,37

combined with multireference perturbation theory (MRPT), for instance complete active

5
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space second-order perturbation theory CASPT238–40 or N-electron valence state second-

order perturbation theory (NEVPT2)41–43 are essential to capture static and dynamic cor-

relation and accurately describe the electronic structure and energetics of complex catalytic

systems. These advanced methods are crucial for understanding the details of catalytic reac-

tion mechanisms and designing more efficient and selective catalysts for sustainable chemical

processes.

In CASSCF calculations, the computational complexity is directly influenced by the size

of the active space. As this active space expands to encompass more orbitals and electrons,

the number of potential configurations increases factorially due to the combinatorial nature

of this way of treating electron correlation.44 This factorial scaling renders these calculations

computationally demanding, particularly for larger and more complex molecular systems.

For large active spaces, the memory requirements become prohibitively large, making it

impractical to store the full wavefunction explicitly. This limitation restricts the application

of CAS methods to relatively small active spaces and limits the size and complexity of

systems that can be studied accurately. The largest CAS calculations performed so far

involve active spaces of up to a 44 orbitals and 44 electrons.45–47 To overcome the limitations

of explicit wavefunction storage, various methods have been developed to exploit sparsity

and exploit tensor network representations, such as density matrix renormalization group

(DMRG),48 matrix product states (MPS)49 or tree tensor networks (TTN),50 to represent the

wavefunction more compactly. These approaches offer a way to approximate and compress

the wavefunction information, enabling the treatment of larger active spaces than would be

possible with traditional storage techniques. However, even with these advancements, the

scalability of CAS calculations on a classical computer is still a formidable challenge.

The emerging field of quantum computing offers an alternative and compelling avenue for

pushing the boundaries of heterogeneous catalysis modelling.51–54 Its ability to harness the

principles of quantum mechanics unlocks unprecedented computational power and enables

the exploration of complex electronic structure calculations, accurate modelling of reaction
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kinetics, and high-throughput screening of catalytic materials. Quantum computing methods

provide the means to tackle the challenges posed by strong correlation effects, nonadiabatic

processes, and large-scale systems that are beyond the reach of classical approaches.52,54 In

principle, quantum algorithms and quantum computers have the advantage of providing a

method in the future error-corrected quantum processing units (QPU) to extract the energy

and other properties such as density matrices of a wavefunction that is too complex1 to

be stored and manipulated on a classical device.55,56 This could enable the inclusion of

larger active spaces and the treatment of stronger electron correlations, leading to more

accurate results for larger and more complex systems. By leveraging quantum algorithms

and simulations, we could gain insights into elusive reaction intermediates, elucidate intricate

catalytic mechanisms, and design novel catalysts with enhanced performance and selectivity.

The application of quantum computing to study heterogeneous catalysis holds tremendous

potential, offering unprecedented precision that can aid in the discovery of highly efficient

and sustainable catalysts for a wide range of chemical transformations.

In the rapidly evolving landscape of quantum computing, extensive reviews on its ap-

plications to various domains of quantum chemistry have emerged, including energy appli-

cations,57 biochemistry,58,59 drug development,60 and fusion.61 However, to our knowledge,

despite the growing interest in harnessing quantum computing for catalysis,62 a notable gap

exists in the literature regarding dedicated reviews on the topic of quantum computing for

heterogeneous catalysis or chemical reactions at surfaces, in general. Therefore, this review

article aims to fill this gap by providing an in-depth exploration of the emerging field of

quantum computing for quantum chemistry applications in the context of heterogeneous

catalysis. By surveying the latest advancements in quantum algorithms and applications,

methodologies, and challenges, this review seeks to provide a comprehensive overview and

critical analysis of the potential and challenges associated with utilizing quantum computing

for advancing the field of heterogeneous catalysis.

1N qubits have the capacity to represent 2N complex numbers, equivalent to requiring 2N+7 bits for
representation in double precision on classical computers.
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2 Atomistic modelling of heterogeneous catalysis: Sta-

tus and Challenges

In heterogeneous catalysis, the presence of a catalyst in a distinct phase, typically solid,

accelerates a reaction involving reactants in a different phase, such as liquid or gas. Among

the various forms of heterogeneous catalysts, dispersed metal nanoparticles on oxide supports

are widely prevalent.7 However, accurately modelling the complex interface comprising the

oxide support, metal nanoparticle, and reactants under operational conditions of temperature

and pressure presents significant computational challenges.18,28 To gain insights into the

underlying mechanisms of these reactions, researchers often study simplified models, such as

clean two-dimensional surfaces representing the most exposed facet of the metal nanoparticle.

While these models capture the rate-determining steps, the effects of reactant concentration

and pressure are typically excluded, model limitations referred to as the ”materials gap” and

”pressure gap,” respectively.1 To incorporate the influence of reaction temperature, various

approaches like the sudden model63 and ab initio molecular dynamics64 are employed. To

be able to include the thermodynamic effects viz., pressure and temperature and to obtain

thermodynamic quantities like Gibbs free energies ab initio thermodynamics (AITD) can be

used.65,66 Overcoming these gaps remains a notable challenge in the field.

In heterogeneous catalysis, understanding the catalytic cycle and predicting catalytic ac-

tivity involves considering multiple levels viz., atomic scale, molecular scale, mesoscale and

macroscopic scale, of modelling and analysis (Fig. 1). Electronic structure calculations play

a crucial role in providing detailed and predictive information about individual elementary

processes within the catalytic cycle at the atomic scale, such as adsorption and reaction

energies and energy barriers associated with chemical reactions. At the molecular scale,

one examines the dynamics of molecules on the catalyst surface, accounting for tempera-

ture effects, generally, within the harmonic approximation. Occasionally, effects beyond the

harmonic approximation and pressure effects are also incorporated at this modelling stage.
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Atomic scale Molecular scale Mesoscale Macroscopic scale

Time: fs to ps

Length: Angstroms 
(10-10 m)

Processes:
Movement and 
interactions of 
individual atoms. 
Electronic structure

Examples: bond 
breaking and 
formation during 
surface reactions.

Time: ps to ns

Length: Nanometers
(10-9 m)

Processes: Dynamics 
of molecules on the 
catalyst surface. 
Temperature and 
pressure effects.

Example: Adsorption 
and desorption of 
molecules; molecular 
rearrangements.

Time: ns to ms

Length: Micrometers
(10-6 m)

Processes: Nanoparticle 
dynamics, and surface 
intermediates formation. 
Reaction kinetics.

Example: Scale bridges 
the atomic and 
macroscopic levels. 

Time: ms to s

Length: mm to cm 
(10-3 - 10-3 m)

Processes: Heat and 
mass transfer, and bulk-
phase reactant/product 
dynamics.

Example: Scale is relevant 
to reactor-level behavior.

Figure 1: Time and length scales in heterogeneous catalysis. Illustrating processes
across atomic, molecular, mesoscopic, and macroscopic scales. The figure depicts an increase
in both time and length scales from left to right, capturing the intricate dynamics of catalytic
reactions at progressively longer time and larger length scales.

Building upon this, in the mesoscale first-principles microkinetic models utilize the electronic

structure information to assess the intricate interplay between all elementary processes, en-

abling the determination of the intrinsic catalytic activity. In real catalysts, an intermediate

step is needed to appropriately coarse-grain the microstructure of the catalyst, ensuring the

effective integration of catalytic activity with transport models. Finally, to fully understand

the overall macroscopic flow of heat and mass in real catalysts, it becomes necessary to in-

tegrate the intrinsic catalytic activity into transport models. In this macroscopic scale, it is

important to consider how catalytic activity interfaces with larger-scale processes governing

heat and mass transfer.

2.1 Industrial relevance of computational modelling in heteroge-

neous catalysis

Heterogeneous catalysis is vital for sustainable energy applications,3 but material selection

has relied on intuition and serendipity for a long time. Nanoscale systems like oxide supports,
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alloys, and dopants are too complicated to be represented in full atomistic detail in a model,

but representative smaller models that can be treated computationally aid in understanding

reaction mechanisms and provide descriptors to aid in rational catalyst design.21,67 In this

regard, DFT-based computational modelling of heterogeneous catalysis has established it-

self also as crucial in industrial research68,69 with the atomistic simulations offering insights

into the parameters relevant for catalyst design such as electronic properties and reaction

energies. Descriptors like the d-band center, volcano plots, Sabatier principle, and BEP rela-

tionships have proven successful in catalyst design.19 Various surface and energy descriptors

contribute to predicting catalytic performance, supporting catalyst optimization.70–73 A re-

cent study outlines a general approach to identify the best catalyst by analyzing a dataset of

reactions under kinetic control, calculating normalized key performance indicators (KPIs),

and using KPI plots to demonstrate the optimal catalyst selection in two case studies: acety-

lene hydrochlorination for vinyl chloride production and the selective oxidation of methane

to methanol.74

While density functional theory (DFT) provides valuable data, integrating first-principles

rate constants into higher-scale models raises important questions regarding error propaga-

tion.75 Computational calculations have proven beneficial in various aspects of heterogeneous

catalysis research, and the integration of ab initio molecular dynamics (AIMD) with high-

level theories for complex catalytic site models has become increasingly practical in recent

times.69,76 Bridging the gap between different scales in heterogeneous catalysis modelling

remains a challenge,9 requiring efforts to integrate complexity levels for a comprehensive

understanding. The emerging synergy between computational modelling and machine learn-

ing31 holds promise for determining surface properties and chemical reactivity, opening av-

enues for future advancements in catalysis research and the efficient development of catalysts

with industrial applications.

As we seek more efficient and selective catalysts for various chemical reactions, including

multi-component alloys,77 single-atom catalysts,78 magnetic catalysts,79,80 etc., addressing
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the challenges posed by strong correlation effects81 and spin-related phenomena82 becomes

imperative. While DFT-based computational studies have been valuable in addressing nu-

merous aspects of heterogeneous catalysis, our focus is on two important research areas

with significant future potential: 1) studying strong correlation effects in heterogeneous

catalysis and 2) investigating spin effects in heterogeneous catalysis. Strong correlation ef-

fects, arising from electron-electron interactions in transition metal complexes, bimetal and

alloy catalysts, demand advanced computational approaches beyond standard DFT meth-

ods32 as the mean-field approach taken by Kohn-Sham DFT has limitations in predicting

reaction pathways and accurate energetics for systems with such complicated, open-shell,

electronic structures. Additionally, effects related to electron spin in heterogeneous catal-

ysis, particularly in magnetic catalysts or systems with pronounced spin-polarized states,

further complicate computational modelling.80,83,84 The interaction between electron spins,

which determines the catalyst’s magnetic properties, introduces complexities challenging the

predictive capabilities of DFT. These challenges hinder DFT’s ability to provide precise in-

sights into spin-dependent catalytic processes, limiting the reliability of calculated reaction

mechanisms and electronic structures. Overcoming these challenges is crucial for advancing

computational methodologies in heterogeneous catalysis.

2.2 Strong correlation in heterogeneous catalysis

At the atomic scale, wavefunction-based methods with atom-centered basis sets are effective

in describing gas-phase reactions. Conversely, for bulk and surface systems, the prevalent

approach is periodic DFT utilizing plane wave basis sets. In the context of heterogeneous cat-

alytic reactions, especially those involving metal atoms and two-dimensional surfaces with

periodicity, this combination has therefore become the predominant modelling approach.

Within the realm of DFT, various exchange-correlation functional approximations have been

developed, ranging from local density approximation (LDA) to generalized gradient approx-

imation (GGA), meta-GGA, and hybrid functionals.85 Dispersion interactions can be in-
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cluded as well, either via the economical methods developed by Grimme,86–88 Tkatchenko

and coworkers,89 many-body dispersions90 or more explicitly by performing random phase

approximation (RPA) calculations.91 GGA functionals are preferred for their trade-off be-

tween cost and accuracy for large scale modelling of heterogeneous catalysis reactions. While

DFT with standard GGA functionals proves successful in many cases, it encounters chal-

lenges when charge or electron transfer is involved between the molecule and the metal

surface as shown in Fig. 2.92
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Figure 2: The relationship between the difference in work function of the metal surface (W)
and the electron affinity (Eea) of the molecule (in electron volt, eV). This correlation high-
lights the influence on the accuracy of GGA exchange-based density functionals in predicting
barrier heights for direct electron transfer in the studied systems. The color-coded scheme
(red and green) indicates the efficacy of density functionals (DF) based on GGA exchange,
with red (large electron transfer) denoting scenarios not suited for GGA/DFT and green
(small electron transfer) representing successful candidate GGA/DFT for describing ener-
getics and dissociative chemisorption dynamics in various molecule-metal surface reactions.
Re-plotted data from.92 Creative Commons CC-BY-NC-ND.

In numerous molecule-metal surface systems, GGA exchange density functionals (DFs)

face limitations as they tend to be overly reactive, surpassing experimental reactivity.92 A

critical determinant for the applicability of GGA functionals in capturing the barrier to disso-

ciative chemisorption with chemical accuracy lies in a property which characterizes molecule-

metal surface systems. This property, the difference (W - Eea) between the metal’s work
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function (W) and the molecule’s electron affinity (Eea), is indicative of the system’s tendency

for charge transfer.93,94 The work function (W) of a material represents the minimum energy

required to remove an electron from its surface, measured in electron volts (eV). A lower work

function indicates easier electron emission. Electron affinity, also measured in eV, reflects the

energy change when adding an electron to a neutral atom or molecule to form a negative ion.

A higher electron affinity suggests a greater tendency to accept an additional electron. The

comparison of difference between work function and electron affinity empirically determines

the amount of charge transfer (Fig. 2). In molecule-metal systems, when the W - Eea exceeds

7 eV, generalized gradient approximation (GGA) in density functional theory effectively de-

scribes the energetics and dynamics of the dissociative chemisorption processes. However, if

it’s below 7 eV, GGA-DFT struggles to produce reliable energetics and dissociative sticking

probabilities, often attributed to significant charge/electron transfer. While nonadiabatic

effects are ruled out95 as the primary explanation for this failure of the GGA, ascending

the DFT ladder to higher functionals, such as meta-GGA or hybrid DFs, proves effective in

addressing errors in barriers for gas-surface reactions. The success of meta-GGA DFs, par-

ticularly in semi-quantitative agreement with experimental results,92 suggests the viability

of an electronically adiabatic approach, emphasizing the importance of the electronic struc-

ture treatment. The study of strong correlation effects in molecule-metal interfaces plays a

crucial role in advancing our understanding of heterogeneous catalysis.32,33,81 In this context,

several examples of strong correlation phenomena have been observed, shedding light on the

complex nature of chemical reactions at the atomic level. One of the classic examples is the

H2 dissociation on Li4 and Li6 clusters.33,96 Previous research, has highlighted the limitations

of conventional computational methods in accurately describing H2 dissociation on Si(100)

surfaces due to the presence of strong correlation effects.97,98

An intriguing example that highlights the limitations of standard DFT is the O2 dis-

sociation on metal surfaces.99 In this reaction, the spin-flipping of O2 on numerous metal

surfaces poses a challenge that previous studies failed to address adequately. Moreover, the
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ability to confirm or refute the occurrence of O2 spin-flip when the molecule approaches

the metal surface remains elusive. It is well known that molecular O2 exists in a ground

state as a triplet (two electrons unpaired), which is unreactive, while the excited singlet

(no unpaired electrons) state readily engages in reactivity. The mechanism underlying the

conversion between the triplet and singlet states during O2 dissociation on metal surfaces

still remains a mystery. Behler et al.100–102 found that the absence of a barrier in DFT

for O2/Al(111) results from DFT predicting charge transfer at large O2-surface distances.

They addressed this by using locally constrained DFT, enforcing the O2 molecule to stay in

its triplet state, revealing a barrier. The success of this method prompted exploration into

the role of spin selection rules in gas-surface interactions. Furthermore, to understand the

dynamics on potential energy surfaces corresponding to different spin states, non-adiabatic

models were also developed.103–105 Libisch et al. proposed that the barrier for O2 dissocia-

tion on Al(111) is not governed by spin conservation rules but arises when charge transfer is

adequately treated,95 demonstrated using embedded correlated wave-function methods.106

Their approach, employing DFT for surface energy and correlated wave-function theory for

O2 interaction, produced two-dimensional potential energy surfaces (PESs) consistent with

experimental observations. However, the definition of an overall electronic state of the en-

tire molecule-surface reaction remains unclear within periodic DFT. Despite indicating that

spin is likely not the primary reason, and charge transfer plays a crucial role in the theory-

experiment discrepancy, concrete evidence disproving the role of the spin of the incoming

O2 molecule and the magnetic moments of the Al(111) surface is lacking. It is essential to

determine whether the model wave function is strongly multiconfigurational as this gives

a good indication of strong correlation effects. At present, it is worthwhile to pursue re-

search on both the role of charge-transfer and of spin flipping until one of the hypotheses is

conclusively disproved.
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2.3 Role of spin in heterogeneous catalysis

Spin, an inherent property of elementary particles, characterizes their intrinsic angular mo-

mentum and entails magnetic properties for particles with non-zero spin. In quantum com-

puting, spin is a fundamental property, serving as the foundation for qubits, analogous to

classical bits, and facilitating quantum information processing and algorithms. Extensive

research has explored the role of spin in both homogeneous, inorganic and biochemistry

catalysis, leading to valuable insights.107,108 One of the most relevant examples that caught

the attention in the field of quantum computing for drug discovery is the enzyme cytochrome

P450s, wherein a change in spin state is observed.109,110 The other example, is obviously the

most celebrated FeMo-cofactor of nitrogenase enzyme that can convert nitrogen to ammonia

in plants.62,111 However, in line with the focus of this review on heterogeneous catalysis,

the discussion on spin will specifically center around its significance in chemical reactions

occurring at surfaces and nanoparticles.

The role of spin in chemical reactions at surfaces and its significance in heterogeneous

catalysis have garnered considerable attention in recent years. Early proposals on spin

catalysis112,113 laid the foundation for exploring the influence of spin in catalytic processes.

The original d-band center model, proposed by Hammer and Norskov,114 provided insights

into the reactivity of metals, but it was later revised to incorporate the effects of spin

polarization.115 The importance of spin is evident in reactions involving OCCO and CO2

intermediates,116 as well as in ammonia synthesis,117 where spin was found to play a crucial

role. Recently, Cao and Norskov conducted a systematic study that further underscored the

significance of spin in chemical catalysis.84 They showed that inclusion of spin polarization

decreased chemisorption strengths. A similar conclusion was also reached in earlier studies

for N2 adsorption on various transition metal surfaces115 and for O adsorption on Pt3-

transition metal alloys.82 The lowering of chemisorption energies was attributed to filling

of anti-bonding states of the predominant up-spin in the spin-polarized density of states.

Experimental evidence supporting the predictions of spin effects in O2 interactions with
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pristine and defective graphene/graphite surfaces has only recently emerged, reinforcing the

relevance and importance of spin effects in surface chemistry and heterogeneous catalysis.118

Spin effects have also been observed in other catalytic systems, such as phthalocyanines,119

electrocatalysis,120 and photocatalysis reactions.121

Given the prominence of DFT in heterogeneous catalysis, it is important to note that,

in spin-DFT for open-shell systems, the spin density can be qualitatively inaccurate, espe-

cially in low-spin states, often requiring a broken-symmetry description.107 In nonrelativistic

scenarios, setting up Kohn Sham-DFT involves choosing between spin-restricted and spin-

unrestricted formulations. While the former ensures the wavefunction of the noninteracting

reference system is always an eigenfunction of S2, its spin density deviates from the cor-

rect one. Conversely, spin-unrestricted KS-DFT provides the correct spin density for the

non-interacting reference system but precludes it from being an eigenfunction of S2. Devel-

oping exchange–correlation functional approximations is possible for either formalism, but

the choice of restricted vs. unrestricted imposes different constraints such as on the fractional

occupancy of spin orbitals,122

We will highlight two practical examples where spin plays a crucial role in catalytic

activity: single atom catalysts (SACs) and Pt3M catalysts, both involved in the oxygen

reduction reaction (ORR). These examples were chosen because of the complex nature of the

interacting species, involving pronounced strong correlation effects and the unconventional

triplet ground state of O2. The subsequent sections will offer a detailed exploration of these

examples.

2.3.1 Single atom catalysts (SACs)

Single-atom catalysts (SACs) are materials where individual isolated metal atoms act as

catalytically active sites.123 Unlike traditional heterogeneous catalysts, where metal parti-

cles or clusters contribute to the catalytic activity, SACs consist of individual metal atoms

dispersed on a support material. SACs have gained attention in catalysis research due to
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their potential for improving efficiency, selectivity, and atom utilization in various chemical

reactions, offering advantages in terms of diversity of applications124,125 and economic and

environmental sustainability.126

The unique electronic and geometric properties of these isolated metal atoms can lead

to enhanced catalytic performance, as they expose a maximum number of active sites and

often exhibit distinct reactivity.127 The computational chemistry community is particularly

intrigued by SACs due to their distinct ability to catalyze important reactions using a sin-

gle active center. Despite the apparent simplicity of SACs, modelling their activity poses

significant complexity and challenges for theorists, highlighting the difficulty in constructing

realistic models that faithfully represent the intricacies of the active site. Numerous com-

putational studies were conducted on this topic to understand the origin of reactivity and

the electronic effects governing catalytic activity and selectivity in SACs.128–130 In SACs, the

metal atom is typically in a low coordination environment, and the unsaturated d shell then

gives rise to strong local electron correlation. These correlation effects are hard to describe

with traditional DFT methods,130 making SAC modelling quite sensitive to the choice of

functional approximation.130 To illustrate this, we discuss below the spin-related aspects of

SACs by considering a few specific examples.

The crucial role of spin in SACs for the ORR was studied with DFT using octahedral

transition metal complexes and Fe-based SACs in N-doped graphene.131 This study high-

lights the sensitivity of spin state ordering and reactivity predictions to the chosen functional

approximation. An increased Hartree-Fock (HF) exchange fraction was found to enhance

accuracy, a trend transferable across various ligand environments. To advance the under-

standing of SACs, a multi-level approach is likely needed: addressing challenges related to

spin as the Fe-center and graphene itself with high-level methods, while employing relatively

affordable DFT with range-separated hybrids for larger periodic simulations. Concurrently,

research on single metal atoms supported for catalysis has shown promising progress, partic-

ularly in N-coordinated Fe single atoms distributed over axial carbon micropores (d-FeN4).
78
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These SACs exhibit notably higher intrinsic activity in ORR compared to other catalysts.

The unique spin characteristics of d-FeN4 contribute to faster kinetics during ORR, provid-

ing a valuable starting point for advanced energy catalysis. For understanding the operation

of SACs containing 3d-metal single sites, their magnetic nature necessitates in-depth explo-

ration of the oxidation state and spin state of the active site, as well as the investigation of

spin polarization, indicated by its magnetic moment.132 DFT-calculated partial density of

states (PDOS) and Wannier function analyses provide some first descriptors to this end. Us-

ing first-principles calculations, the two-dimensional ferromagnetic metal-organic framework

Mn2C18H12 was identified as a highly efficient SAC for spin-triplet O2 activation and CO

oxidation.133 The mechanism proposed, known as ’concerted charge-spin catalysis’ involved a

synergistic process of charge transfer from the hosting Mn atom and spin selection facilitated

by its nearest neighboring Mn atoms during O2 activation. This synergistic mechanism was

proposed to exhibit broad applicability in O2 adsorption on magnetic frameworks X2C18H12

(X = Mn, Fe, Co, and Ni), showing a linear scaling dependence between chemical activity

and spin excitation energy. Computational study on the catalytic activity of Fe single-atoms

supported on C2N (C2N–Fe) in the ORR reaction uncovered a direct relationship between

changes in electronic spin moments of Fe and O2, induced by molecular-catalyst adsorption,

and the amount of electron transfer from Fe to O2.
134 This electron transfer was found to

enhance the ORR catalytic activity of C2N–Fe. Due to the observed linear correlation, the

electronic spin moment was proposed as a promising catalytic descriptor for Fe-based SACs.

Magnetic (spin) effects can also used to explain the weakening of the binding energies of

adsorbates on SACs, especially for ORR.135 However, when magnetic SACs are involved,

the functionals used for simulations affect the predicted relative stability of different spin

states and, since the spin state may vary during the reaction process,129 potentially also

the predicted minimum energy reaction pathway. From these examples it is evident that the

electronic structure and spin-related phenomena in SACs demand the utilization of advanced

computational methodologies, to check and improve the predictions made by DFT. Specifi-
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cally, the application of multi-reference/multi-configuration methods is likely imperative to

reliably model the spin transitions occurring at the active sites, especially for applications

in ORR.

2.3.2 Pt3M catalysts

Proton-exchange membrane fuel cells (PEMFC) hold promise for sustainable energy appli-

cations, relying on catalytic reactions such as the hydrogen oxidation reaction (HOR) and

ORR.136,137 While platinum (Pt) has conventionally served as the standard catalyst, its high

cost has prompted the search for more economical alternatives, leading to the exploration

of Pt3M alloys (M = 3d transition metals). These catalysts are composed of a combination

of Pt and another less expensive transition metal (denoted as M) in a ratio of 3:1. Apart

from reducing the platinum content, the choice of the other metal influences significantly the

catalytic performance and can thereby be used as a tuning parameter.

Past studies have established the enhanced catalytic activity of Pt3Ni and Pt3Co al-

loys for ORR, attributed to the inhibition of PtOHad formation and electronically modified

Pt atoms.138–140 However, the underlying reasons for the increased activity on Pt3Ni and

Pt3Co alloys remained unclear for a considerable period. The origin for enhanced activ-

ity was attributed to the synergy among ligand (or electronic structure) effects, strain (or

geometric) effects, and ensemble effects.141 Conversely, by comparing spin-polarized and

non-spin-polarized calculations,81–83,142 the influence of spin and magnetic effects, particu-

larly the role of quantum spin exchange interactions (QESI), was elucidated as being a likely

cause for the enhanced reactivity of these strongly correlated Pt3M catalysts.82,83 QSEIs and

ferromagnetic spin-electron interactions play crucial roles in facilitating milder chemisorp-

tion and spin-selective electron transport, making magnetic catalysts appealing for various

applications.80

This section underscores the growing importance of incorporating spin effects into catal-

ysis research, highlighting recent advancements in understanding spin-related phenomena at
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surfaces. While it is common practice to follow reactions along a single spin-state potential

energy surface using spin-polarized DFT, certain reactions exhibit two-state reactivity where

spin-orbit coupling becomes crucial. The modified d-band center approach,115 emphasizing

the role of spin in catalysis and explicitly considering two spin channels, has shown promise,

particularly in reactions with significant spin involvement. In addition, DFT+U approach

also has alleviated some problems related to strong correlation in magnetic catalysis and

materials.80,143,144 However, as the field progresses, despite the robustness of DFT for cataly-

sis modelling, there is a recognized need to integrate more accurate wave function electronic

structure theories, such as multi-reference/multi-configuration methods.32,145

Nevertheless, given the high computational demands of multi-reference methodologies,

as well as their increased complexity in employing them, such as the crucial active space

selection and the more complicated interpretation of results,44 these methods are still hard

to employ routinely. In addition we note that geometry optimizations with CASPT2 is

challenging, so that DFT is often used to generate potential energy surfaces, with the mul-

tireference methods used only for single-point energy calculations. However, if the DFT

model is qualitatively inaccurate for these types of reactions, the reliability of the potential

energy surface can be compromised. This situation calls for improved methodology that of-

fer the possibility to work with large active spaces and cover large fractions of the potential

energy surfaces of the different spin states to shed light on the interplay between spin and

chemical reactivity when designing and optimizing heterogeneous catalytic systems. Since

classical computational methods are, due to the factorial scaling of the configuration space

with the size of the CAS space, intrinsically limited,46,47 quantum computing algorithms

hold promise in treating strongly correlated systems for catalysis research. With the emerg-

ing role of spin in catalysis, this incorporation of such advanced computational modelling

techniques can aid in optimizing and designing new materials.
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2.4 The prospects of quantum computing

In the previous sections, we argued that DFT, the most commonly used method, struggles

to accurately capture strong correlation effects in heterogeneous catalysis. As securing a sus-

tainable future creates a large demand for new catalysts, research on sophisticated materials

such as multi-component alloys is important. For modelling chemical reactions facilitated by

these types of catalysts it is imperative to reliably treat strong correlation effects. Quantum

computing provides a potential solution by offering an effective means to work with strongly

multiconfigurational wavefunctions—an essential ingredient to better treat the regime of

strong correlation. Industries have recognized the potential of quantum computing in het-

erogeneous catalysis and are actively investing in exploring its use cases, aiming to enhance

catalyst design and optimization in heterogeneous catalysis.

Collaborations between quantum companies (companies building quantum computers

and/or developing quantum algorithms) and companies seeking use cases have been estab-

lished as a promising path towards technological advancements. Microsoft Azure Quantum

has partnered with notable companies like Johnson Matthey, BASF, Ford, and Toyota-

Tsusho Corporation to explore various applications.146,147 Johnson Matthey, for instance,

focuses on finding improved catalysts for hydrogen fuel cells and seeks alternatives to plat-

inum, including the exploration of alloy catalysts. BASF, a leader in catalysis, collaborates

with Microsoft Azure Quantum to advance catalytic processes. Ford and Toyota-Tsusho

Corporation engage in partnerships to explore battery materials and technologies.

IBM has established collaborations with renowned companies such as Daimler AG (Mer-

cedes Benz), Exxon Mobil, Boeing, Mitsubishi Chemical, JSR, and the University of Keio.148–152

The collaborations aim to tackle diverse challenges. For instance, Daimler AG works with

IBM to identify candidates for energy-dense battery technology, particularly focusing on

lithium-sulfur (Li–S) batteries.148 Exxon Mobil utilizes IBM’s expertise in optimization

to address problems related to maritime inventory mapping.149 Boeing presents two distinct

challenges: the optimization of ply design, a critical aspect of aircraft manufacturing, and the
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development of advanced corrosion-resistant chemicals for airplane coatings.150 Mitsubishi

Chemicals and JSR, in collaboration with the University of Keio, delve into organic light-

emitting diodes and the crucial Li superoxide rearrangement step in Li–O batteries.151,152

Another notable consortium in the quantum technology realm is the Quantum Tech-

nology and Application Consortium (QUTAC).153 Its founding members include BASF,

BMW Group, Boehringer Ingelheim, Bosch, Infineon, Merck, Munich Re, SAP, Siemens, and

Volkswagen. QUTAC acts as a platform for collaboration and knowledge exchange among

these industry leaders in quantum computing for chemistry and materials. BASF lever-

ages the consortium to pursue novel catalysts for various chemical transformations,154 while

Boehringer Ingelheim seeks to accelerate drug discovery processes.155 These collaborations

between quantum companies and industry leaders demonstrate the growing recognition of

quantum technologies’ potential across multiple sectors,156 ranging from catalysis and energy

storage to drug discovery and material science. By combining expertise and resources, these

partnerships aim to drive innovation and shape the future of technology-enabled solutions.

In the subsequent sections, we delve into a detailed exploration of some of the most

promising quantum algorithms in the context of heterogeneous catalysis. Additionally, we

examine recent applications in periodic simulations that leverage quantum algorithms, such

as calculating bulk lattice constants and simulating electronic band structures, as well as ex-

ploring molecule-surface interactions involving metals and metal oxides. These applications

reflect collaborative efforts between academia and industry.

3 Quantum computing algorithms for heterogeneous

catalysis modelling

Quantum computing presents exciting opportunities for tackling complex chemistry prob-

lems, with several major quantum algorithms proving promising in this field. Among these,

the variational quantum eigensolver (VQE)157 and quantum phase estimation (QPE)158 im-
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mediately stand out. In addition, algorithms due to Harrow-Hassidim-Lloyd (HHL)159 are

used in uncertainty quantification in heterogeneous catalysis. Moreover, more versatile algo-

rithms like linear combination of unitaries (LCU)160,161 and quantum singular value trans-

formation (QSVT)162,163 are gaining traction for various applications in the field of quantum

chemistry.164

QPE is the pioneering algorithm demonstrating efficient estimation of eigenvalues of uni-

tary operators, offering insights into the energy spectra and electronic structures of quantum

systems.158 Although QPE holds significant potential for chemistry applications, its imple-

mentation on current noisy intermediate-scale quantum (NISQ) devices165 faces challenges

such as circuit depth, high error rates, limited qubit connectivity, and scalability. The esti-

mated number of ancilla qubits (ω) required for phase estimation, given a precision of n bits

and success probability p, is determined by Nielsen’s equation:166

ω = n+ ⌈log2

(
2

p
+ 1

)
⌉ (1)

Despite recent progress, these methods involve large gate counts and the inability to per-

form a (large-scale) inverse quantum Fourier transform (QFT), requiring fault-tolerance,167

thereby poses challenges for near-term quantum computers. As quantum technologies ad-

vance and error correction techniques improve, QPE is in the long run expected to offer the

most accurate and efficient solutions to chemistry problems on quantum computers. Alter-

native approaches are, however, required for practical chemistry simulations on the currently

existing and upcoming quantum hardware.

The VQE, which integrates classical optimization techniques with quantum state prepa-

ration and measurement to determine ground state energies of molecular systems, was intro-

duced as a more practical option for near-term quantum computers.157 Recent developments

have enabled studies on interaction energies between molecules and extended the treatment

to periodic systems, which makes this algorithm relevant for heterogeneous catalysis reac-

tions.168 In this section we will explore the potential of VQE, briefly touch upon a few
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VQE-inspired algorithms applied in the context of periodic systems, and discuss VQE’s ap-

plication to excited states. Following that, other quantum algorithms relevant to quantum

chemistry, including QPE, HHL, and QSVT, will be briefly discussed.

3.1 Variational quantum eigensolver (VQE)

Figure 3: The schematic of the variational quantum eigensolver (VQE) method:
This method combines classical (green) and quantum (blue) computing resources, optimizes

the Hamiltonian energy ⟨ψ(θ⃗)|Hel|ψ(θ⃗)⟩ by adjusting variational parameters θ⃗. It involves
constructing a fermionic Hamiltonian, mapping it to a qubit Hamiltonian, and initializing the
wave function’s ansatz with θ⃗0. The trial state is prepared as a quantum circuit on a quantum
computer. Iterative measurement of Hamiltonian terms helps update the parameters θ⃗k+1

via a classical algorithm until convergence is achieved. Reused from.169 Creative Commons
CC BY 4.0 DEED.

The VQE algorithm, originally proposed and realized by Peruzzo et al.157 in 2014 on a

photonic quantum processor for computing the ground-state energy of HeH+, has emerged as
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a practical tool for calculations of ground state energies in molecular and materials science

using quantum computers. VQE belongs to the broader category of variational quantum

algorithms (VQA),170 which are designed to solve a range of optimization problems. In

essence, VQE employs the Rayleigh-Ritz variational principle to optimize a parameterized

wave function or parametrized quantum circuit (PQC), ultimately minimizing the cost func-

tion, which for quantum chemistry problems is the electronic ground state energy. VQE

is a hybrid quantum-classical algorithm wherein there is a loop over classical and quantum

processes, green and blue blocks, respectively in Fig. 3. The quantum processor is used to

evaluate the energy, through the expectation value of operators, while the classical com-

puter runs the optimization algorithm that yields the parameter updates (θ⃗). In the NISQ

era, VQE stands out as one of the best candidates for exploring the usefulness of quantum

computers in chemistry simulations. In this discussion, we will provide an overview of the

various steps and workings of the VQE. For more comprehensive reviews on VQE, interested

readers can refer to excellent resources on the topic cited in the references:.168,169,171

A step-by-step workflow for implementing the VQE is given below:

1. Step 1. Define the Hamiltonian operator: Define the molecular Hamiltonian op-

erator, Hel, which describes the energy of the quantum system, in second quantization.

Hel =
∑
p,q

hpqa
†
paq +

1

2

∑
p,q,r,s

gpqrsa
†
pa

†
rasaq (2)

Here, a†p and aq are fermionic creation and annihilation operators for placing or deleting

an electron in spin orbitals p and q, respectively. The first term in the above equation

corresponds to single-electron excitations, and the second term corresponds to two-

electron excitations; hpq and gpqrs are matrix elements of the one- and two-electron

operators in the molecular orbitals basis that can be computed with N5 or lower

computational cost on a classical computer.

2. Step 2. Fermion-to-qubit mapping: Next, fermion-to-qubit mapping is performed
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for encoding molecular systems into quantum circuits i.e., as a linear combination of

Pauli operators and coefficients. This process involves representing fermionic opera-

tors as qubit operators, utilizing techniques like Jordan-Wigner,172 Bravyi-Kitaev,173

parity174 transformations etc.

Hel =
∑
j

αjPj (3)

where,

Pj =
∏
i

σj
i , σ

j
i ∈ I,X, Y, Z. (4)

Here, I, X, Y and Z are identity, Pauli X, Pauli Y and Pauli Z matrices (operators),

respectively.2

3. Step 3. Define the quantum circuit: Then we define a parameterized quantum

circuit, often denoted as U(θ⃗), where θ⃗ represents a vector of variational parameters.

4. Step 4. Prepare the trial state: Use the quantum circuit to prepare a trial state∣∣∣Ψ(θ⃗)
〉

by applying U(θ⃗) to an initial reference state (|0⟩), often chosen as the Hartree-

Fock state:

|Ψ(θ⃗)⟩ = U(θ⃗)|0⟩ (5)

5. Step 5: Calculate the expectation value: Calculate the expectation value of the

Hamiltonian Hel with respect to the trial state
∣∣∣Ψ(θ⃗)

〉
:

E(θ⃗) = ⟨Ψ(θ⃗)|Hel|Ψ(θ⃗)⟩ (6)

6. Step 6: Minimize the energy: Utilize a classical optimization algorithm (e.g.,

gradient descent or a variational optimizer) to minimize the energy E(θ⃗) by adjusting

the variational parameters θ⃗:

2Can also be written as
Pj =

⊗
i

σj
i , σ

j
i ∈ I,X, Y, Z
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θ⃗optimal = argminθ⃗E(θ⃗) (7)

7. Step 7: Extract the ground state energy: After optimization, the minimum

energy E(θ⃗optimal) provides an estimate of the ground state energy of the quantum

system.

The iterative process, illustrated in Fig. 3, continues until a satisfactory approximation

of the ground state energy is achieved. VQE leverages the quantum computer’s efficient

trial state preparation while classically optimizing variational parameters to minimize the

energy. It is a generic tool for quantum chemistry simulations allowing for various ansatzes

for the unitary operator used in Step 3. The final energy estimate serves as an approximate

solution to the optimization problem, constituting an upper bound to the true ground state

energy due to its variational nature. To practically estimate E(θ⃗), achieved through mul-

tiple samplings of the energy in Step 5, is in practice a bottleneck for the algorithm. The

number of samples needed is crucial and scales with the desired precision, denoted by ϵ.

This scaling comparison is notable: VQE exhibits a scaling of 1/ϵ2, contrasting with the 1/ϵ

scaling of fault-tolerant algorithms like QPE and those approaching the Heisenberg limit.

This distinction underscores the trade-off between precision and computational resources,

prompting ongoing efforts to optimize sampling strategies and improve VQE’s efficiency. To

validate the solution, comparisons can be made with the currently available quantum hard-

ware or simulators, often with known exact solutions. When this is no longer possible and

VQE calculations surpass what is classically computable, one may still examine consistency

of solutions by validation with known symmetries or other system properties. This valida-

tion step ensures the reliability of the VQE-derived solution. The obtained energy and its

derivatives can be applied for predictive purposes or decision-making based on the optimized

parameters. For instance, it can help identify optimal molecular configurations or calculate

interaction energies such as adsorption and reaction energies in heterogeneous catalysis.
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3.2 Excited states

Several VQE extensions have been developed to compute excited states of a given Hamilto-

nian H. Quantum subspace expansion (QSE) is a method that resembles the configuration

interaction approach in quantum chemistry and is particularly useful for mitigating noise

errors in NISQ devices.175 Subspace-search VQE (SS-VQE) is an algorithm designed for this

purpose, enabling the identification of excited states beyond the ground state.176 Addition-

ally, multistate, contracted VQE (MC-VQE) is an extension of VQE that calculates excited

states of the Hamiltonian H, resembling a simplified version of the SS-VQE algorithm.177

Moreover, two papers propose an alternative approach to compute excited states sequentially

by incorporating overlap amplitudes between the ansatz state |ψ(θ⃗)⟩ and previously-found

eigenstates into the cost function of VQE.178,179 These extensions offer valuable tools for ef-

ficiently obtaining a comprehensive understanding of the excited states of quantum systems.

This review will highlight two types of approaches to give an impression of what is cur-

rently possible. Quantum Subspace Expansion (QSE), utilized for computing excited states

in periodic systems180–183 and addressing error mitigation,53,184–186 is briefly discussed be-

low. Furthermore, we consider state-averaged approaches187,188 which provide a democratic

description of both ground and excited states, as is valuable when studying photocatalytic

reactions.

3.2.1 Quantum Subspace Expansion (QSE)

Quantum Subspace Expansion (QSE) is employed in quantum chemistry for calculating

excited-state properties of molecular systems.175 It extends the framework of the VQE to

capture the excited states by introducing a subspace spanned by a set of trial wave functions

created from the optimized ground state wave function. The excited states are then obtained

by diagonalizing the Hamiltonian within this subspace. This method resembles the classical

configuration interaction method and is applicable to a wide range of quantum systems.

Starting with a VQE, the trial wave function |Ψ(θ)⟩ is parameterized by a set of vari-
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ational parameters θ. The ground-state energy E0 is minimized by optimizing these pa-

rameters. To extend this approach to excited states, QSE introduces additional parame-

ters ϕi to create a subspace of trial wave functions. The excited states are then obtained

by diagonalizing the Hamiltonian within this subspace, leading to the eigenvalue problem

H|Φi(ϕ)⟩ = Ei|Φi(ϕ)⟩, where H is the molecular Hamiltonian. The excited-state wave

functions |Φi(ϕ)⟩ are constructed as linear combinations of the ground-state |Ψ(θ)⟩ and

the subspace generated via the operation of a set of operators (Oj) on the ground state.

Mathematically, this can be expressed as |Φi(ϕ)⟩ = (1 +
∑

j ϕjOj)|Ψ(θ)⟩, where Oj are the

additional operators introduced to create excited states. The subspace expansion allows

for a flexible representation of excited states, and can capture complex wave functions in a

computationally efficient manner. QSE has been successfully applied to study various molec-

ular systems, providing accurate and reliable results for excited-state properties in quantum

chemistry simulations. Some examples of application of QSE to periodic systems, especially

to the prototypical strong correlation benchmark model of hydrogen chains are discussed in

Section 4.1.

3.2.2 State-averaged orbital optimized variational quantum eigensolver (SA-

OO-VQE)

In heterogeneous photocatalytic reactions, where both the catalyst and the initiation of the

reaction by light play a role, being able to model both ground and excited states is crucial.

Performing separate calculations for the ground state and excited state is time-consuming

and does (unless the excited state has a different symmetry) not guarantee that the obtained

excited state is fully orthogonal to the ground state as it should be for an exact solution. To

address this issue and provide a democratic description of ground and excited states in pho-

tochemical reactions, the state-averaged orbital optimized variational quantum eigensolver

(SA-OO-VQE)187 method was developed. The main steps of the algorithm are explained in

the diagram depicted in Fig. 4. The method was later extended to be able to calculate an-
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alytical gradients and non-adiabatic coupling vectors, thereby enabling the study of excited

state dynamics.188 The method can also be used to detect conical intersection, a point in

the potential energy surface where two electronic states are degenerate and non-adiabatic

transitions between the states occur in photochemical reactions.189 So far, this approach

has been primarily applied to a prototype of a single-molecule photoisomerization reaction.

Our research group is currently exploring the application of this method to heterogeneous

photocatalytic systems, specifically focusing on H2O dissociation on TiO2.

State-averaged 
variational 
quantum 

eigensolver
(SA-VQE)

State-averaged 
Orbital 

Optimization
(SA-OO)

Optimal correlated states

Optimal transformed Hamiltonian

Classical: Newton-
Raphson method

(MO coefficients are 
optimized)

Hybrid quantum-
classical

(Ansatz parameters 
are optimized)

The SA-OO-VQE algorithm

Figure 4: Schematic diagram of the SA-OO-VQE method, which achieves a balanced treat-
ment of multiple electronic states in quantum computing for computational chemistry. It
employs two algorithms in a cyclic manner: SA-VQE (hybrid quantum-classical, blue block)
and SA-orbital-optimization (purely classical, green block). SA-VQE uses a quantum circuit
to determine multiple low-lying eigenstates via state-averaged energy minimization. The
correlated states are then transferred to SA-OO, which optimizes the molecular orbitals us-
ing the full orbital space to allow for further energy minimization. The process iterates,
making the SA-OO-VQE algorithm a better scaling alternative to CASSCF for studying
heterogeneous photocatalysis reactions on quantum computers.

3.3 Other quantum algorithms relevant to heterogeneous catalysis

3.3.1 Quantum Phase Estimation (QPE)

The Quantum Phase Estimation (QPE) algorithm is a quantum algorithm designed to effi-

ciently estimate the eigenvalues of a unitary operator, which is typically represented by the
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Hamiltonian of the quantum system of interest in chemistry.158 The key idea behind QPE is

to encode the eigenvalue information of the Hamiltonian into the phase of a quantum state.

The algorithm requires two quantum registers: the control register, typically prepared in

a superposition of states, and the target register, initialized in an eigenstate of the unitary

operator ( state with some considerable overlap with the ground state of the given molecule).

The quantum circuit used to illustrate the different steps of the QPE algorithm is shown in

Fig. 5.

Quantum circuits
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Figure 5: Quantum circuit for quantum phase estimation (QPE). The quantum cir-
cuit for the QPE algorithm involves several essential components. Firstly, the control register
containing t qubits are initialized to a uniform superposition of states using Hadamard (H)
gates. Next, a sequence of controlled unitary operations is performed on the input state |ψ⟩,
incorporating the unitary operator for which we aim to estimate the eigenvalues. Through
these controlled operations, the input state becomes entangled with the a control qubits,
encoding the phase information from the eigenvalues. Following the controlled unitary op-
erations, the circuit proceeds to the quantum phase estimation process, where an inverse
quantum Fourier transform (QFT) is applied to extract the phase information from the
control qubits. Finally, the outcome of the QFT is measured in the computational basis,
providing an estimation of the phase, which corresponds to the eigenvalue of the unitary
operator.

The QPE algorithm essentially involves two main steps:

1. Phase kickback: In this step, a controlled unitary operation is applied between the

control and target registers, where the control qubits are set to a superposition of states

using Hadamard (H) gates. The controlled unitary operation effectively ”kicks back” the
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phase of the target register’s state based on the eigenvalue corresponding to the eigenstate

of the Hamiltonian. This phase information is encoded in the quantum state of the target

register.

2. Inverse quantum Fourier transform: After phase kickback, the inverse quantum

Fourier transform (QFT) is applied to the control register. The inverse QFT transforms

the superposition of states in the control register into a state whose phases represent the

eigenvalues of the Hamiltonian. Measuring the control register then provides an estimation

of the eigenvalues.

By repeating the QPE algorithm multiple times and using post-processing techniques,

more accurate estimates of the eigenvalues can be obtained. These estimated eigenvalues

directly correspond to the energy levels and electronic properties of the molecular system of

interest. However, it is worth mentioning that Fig. 5 primarily outlines the multi-auxiliary

qubit QPE algorithm, offering a simplified representation without delving into the complex-

ities of single-auxiliary qubit QPE.190 In the context of multi-auxiliary qubit QPE depicted

in Fig. 5, a single execution of the algorithm yields the complete phase up to t digits repre-

sented by the number of auxiliary qubits in Fig. 5. It’s important to note that in practical

scenarios, especially when the input state is not an eigenstate, multiple runs are necessary.

This is because sampling the entire spectrum of the Hamiltonian relies on the probability

distribution of the coefficients of the input eigenstate. In contrast, with single-auxiliary qubit

QPE, it requires additional runs for a comparable outcome. Nevertheless, leveraging classical

post-processing techniques in single-auxiliary qubit QPE can enhance efficiency, particularly

in terms of gate-depth.

Implementing QPE on current NISQ devices faces enormous challenges,191 including cir-

cuit depth, error rates, qubit connectivity, as well as limitations in implementing the inverse

quantum Fourier transform (QFT†). To address these limitations, much research is focused

on advancing the error mitigation techniques and otherwise optimizing implementations.192

Both such algorithmic advances as well as hardware scale-up will be needed to bring the
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potential of the QPE algorithm for quantum chemistry applications to life. As quantum

technologies keep maturing, QPE is expected to become valuable in quantum chemistry

research, and increasingly suitable to address the challenges in describing the strongly corre-

lated electronic states encountered in the discovery of new catalytic materials and in studying

chemical reaction mechanisms.

3.3.2 Harrow-Hassidim-Lloyd (HHL) algorithm

The HHL (Harrow-Hassidim-Lloyd) algorithm159 is a quantum algorithm specifically de-

signed for solving linear systems of equations, which play a crucial role in various scientific

and engineering applications, including quantum chemistry. In the context of heterogeneous

catalysis, the HHL algorithm has been proposed to be used in uncertainty quantification

(UQ).193–195 UQ is the process of assessing and representing uncertainties in model simula-

tions such that their impacts on the quantities of interest can be determined.

phase estimation R(�̃�1)rotation inverse phase estimation

n

n

|0i R |1i

|0i⌦n H⌦n FT † FT H⌦n |0i⌦n

|bi U U |xi

2

Input register

Clock register

Auxiliary register

Figure 6: Quantum circuit for implementing the Harrow-Hassidim-Lloyd(HHL)
algorithm. The HHL quantum circuit involves three main steps: quantum phase estimation
(QPE), rotation, and inverse QPE. In the QPE step, the algorithm encodes a classical vector
into a quantum state, and using QPE, it estimates the eigenvalues of a given linear system’s
matrix. In the rotation step, the quantum state is rotated based on the eigenvalue estimation.
Finally, in the inverse QPE step, the algorithm uncomputes the eigenvalue estimation, and
the result of the quantum computation is the solution to the linear system, which can be
efficiently obtained from the quantum state amplitudes.

The HHL algorithm can efficiently solve the linear system Ax = b, where A is a Hermitian

matrix representing the quantum system’s Hamiltonian, x is the unknown vector representing

the solution, and b is the input vector encoding the problem to be solved. In short, the HHL

algorithm, employs QPE to encode the eigenvalues of matrix A into the quantum state and
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then performs controlled rotations to extract the desired solution x. The final step involves

performing measurements on the quantum state, yielding the solution to the linear system

with high probability. To provide a bit more detail, the HHL algorithm follows a structured

sequence of three steps designed to solve linear systems (Fig. 6). The first step is the QPE

(Section 3.3.1), which allows one to approximate the eigenvalues of a Hermitian matrix A

when the input state |b⟩ is one of its eigenvectors. The eigenvalues λj and eigenstates |uj⟩

of A are computed with certain precision through QPE. The clock register stores the values

of the phase of the eigenvalues of the A matrix after the QPE. Subsequently, we move to

the second step, where a controlled rotation, dependent on λj, is implemented. To achieve

this, a third auxiliary register initialized as |0⟩ is introduced, and a controlled σy-rotation is

performed based on our λj estimate stored in the clock register. When this is successful, the

result resembles the answer |x⟩ that we are looking for. In the third step, the uncomputation

is done by using inverse QPE i.e., we undo the QPE to set the register that contained the

estimate back to |0⟩. In this step, the qubits in the clock register and the b-register are

disentangled and the input-register |b⟩ stores the solution |x⟩.

While the HHL algorithm holds potential for quantum chemistry applications, especially

in uncertainty quantification for heterogeneous catalysis and other scientific fields, its imple-

mentation on current NISQ devices faces challenges similar to other fault-tolerant quantum

algorithms like QPE.196 The algorithm offers exponential speedup in solving linear systems

of equations, particularly beneficial for sparse or structurally specific matrices,197 closely tied

to the QPE algorithm for efficient eigenvalue determination. However, for solving general

large-scale linear systems, the HHL algorithm offers a polynomial, not exponential, speedup

over classical methods.198 Despite its theoretical potential, practical implementation is hin-

dered by issues such as quantum gate errors, decoherence, and the need for error correction.

Nevertheless, with the advancements in quantum computing hardware and error correction

techniques, the HHL algorithm is anticipated to make positive contributions in uncertainty

quantification for computational heterogeneous catalysis.
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3.3.3 Quantum Singular Value Transformation (QSVT)

The spectral theorem in quantum chemistry facilitates the diagonalization of Hermitian op-

erators, simplifying complex quantum systems by expressing these operators as a sum of

eigenvalues and orthogonal projectors. Singular value decomposition (SVD) is a valuable

mathematical tool widely used in quantum chemistry for matrix analysis, allowing dissec-

tion of matrices into key components: unitary matrices U and V †, and a diagonal matrix Σ

with singular values. Unlike the spectral theorem, SVD is applicable to rectangular matrices,

making it more versatile for application in quantum chemistry where rectangular matrices

often occur. Quantum Singular Value Transformation (QSVT),162 a quantum algorithm

analogous to SVD, applies polynomial transformations to singular values using quantum

computers, serving as a generalization of Quantum Signal Processing (QSP).199–201 QSP

systematically applies quantum gates to qubits, initially designed for square matrices and

extended to non-square matrices through QSVT. Together, QSP and QSVT form a versatile

framework recognized as the ’grand unification of quantum algorithms,’163 providing a uni-

fying foundation for fault-tolerant quantum algorithms, such as QPE and HHL algorithms

discussed above, showcasing its potential in advancing fault-tolerant quantum computing

methodologies. While delving into the details of how each algorithm is constructed within

this framework lies beyond the scope of this review, it is noteworthy that the QSVT frame-

work provides an abstract and versatile approach that underlies the development of these

fault-tolerant quantum algorithms. Despite its potential, the QSVT algorithm faces chal-

lenges in constructing accurate polynomial approximations for desired functions, particularly

as matrix size and complexity increase. Researchers actively explore strategies to enhance

the applicability and efficiency of QSVT in quantum algorithms and simulations.202–205

3.4 First quantization and plane waves

It has been already discussed that DFT is a powerful tool for understanding the electronic

structure and reactivity of catalyst surfaces in heterogeneous catalysis.21,206 By employing
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periodic boundary conditions and expanding the wavefunctions in terms of plane waves,

DFT can relatively accurately capture the periodicity of the crystal lattice and the inter-

actions between the catalyst surface and adsorbates. This allowed for the investigation of

key processes involved in catalytic reactions, such as adsorption, activation, and reaction

pathways. Recently, there have been proposals to utilize plane waves within the framework

of first quantization for fault-tolerant quantum computing.207–209 First quantization refers

to the direct description of a quantum system in terms of its wavefunctions and operators,

without resorting to the second quantization formalism (creation and annihilation opera-

tors) commonly used in quantum chemistry. The use of plane waves in first quantization

approaches aims to harness their periodic nature and Fourier transform properties to effi-

ciently represent and manipulate quantum states in large-scale quantum computations. Two

such examples are discussed in Section 4.4.3 and Section 4.4.4.

4 Application of quantum computing algorithms for

simulating periodic systems

When modelling periodic systems, integrals are to be evaluated in reciprocal space, typically

at points within the first Brillouin zone (BZ). Calculations performed at the central point

of the BZ, denoted as the Γ-point, is akin to modelling molecules. In systems with periodic

boundary conditions (PBC), integral calculations extend across the BZ, requiring assess-

ment at multiple k-points. The accuracy increases with the number of k-points, but such an

increase also leads to a higher computational cost. For bulk materials PBC are needed in

all three spatial dimensions and balancing accuracy and computational cost is crucial. For

surfaces, which only exhibit periodicity in the x- and y-directions one may devise a dedi-

cated approach, but simpler is to introduce a vacuum in the z-direction. The latter approach

allows for straightforward use of the full periodic plane wave approach, but requires careful

consideration of k-point sampling. If the vacuum is sufficiently extended (around 15 Å),
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modelling surfaces with just one k-point along the z-axis is feasible. Surfaces, lacking the

full symmetry of bulk systems, require larger unit cells, increasing computational demands.

In addition, the high density of electronic states near the Fermi level found in surface mod-

els does further increase computational costs.206 DFT implies the use of a density function

approximation (DFA) for the exchange-correlation energy. For molecules such DFAs usually

incorporate a fraction of non-local ”exact” exchange to improve their performance. Thus

going beyond pure DFT, various hybrid DFAs demonstrate improved performance relative

to the best (semi-)local functionals, especially in systems with strong correlation. However,

using non-local exchange for electronic band structures and molecule-surface interactions is

computationally demanding and the improvement in performance is often problem-specific.85

The surge in interest in quantum computing, coupled with advancements in quantum hard-

ware and software, has prompted studies addressing electronic structure calculations in pe-

riodic systems and molecule-surface interactions relevant to heterogeneous catalysis. This

offers promising avenues to overcome computational and methodological challenges encoun-

tered in the DFT approaches. Variational quantum algorithms170 Section 3.1 rooted in the

second quantization of the electronic Hamiltonian have also been considered for simulating

periodic systems as we will discuss below. Quantum simulations using plane wave basis sets

Section 3.4, while not offering substantial advantages in the near-term,207 are also discussed

in this review, highlighting the potential of quantum computing both in the near-term and

the fault-tolerant era.

4.1 Hydrogen chains

The VQE algorithm, described in (Section 3.1), has shown to be applicable for computing

ground state energies of molecular systems. Building upon this success, researchers have

extended the VQE algorithm to be able to simulate periodic systems. As a proof of principle

that can be studied with a small number of qubits, initial applications of the VQE to periodic

systems focused primarily on the ground state properties of one-dimensional hydrogen chains
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.180–182

Using PBC and the Hartree-Fock method to obtain orbitals, one-dimensional hydrogen

chains were studied using VQE by Liu and coworkers.180 They compared the performance

of three ansatzes: unitary coupled cluster singles and doubles (UCCSD),210 unitary coupled

cluster generalized singles and doubles (UCCGSD)211 and adaptive derivative-assembled

pseudo-trotter (ADAPT)212 method. Looking at the potential energy curve as a function of

the H-H lattice distance, they found UCCSD-VQE and ADAPT to deviate significantly from

the full CI reference result, while the absolute error of UCCGSD-VQE ansatz was acceptable.

The problem in the former two ansatzes is due to the imaginary component of the periodic

wave function which invalidates an assumption made when deriving the energy optimization

algorithm. To overcome this problem and to be able to model periodic systems at various

k-points in the Brillouin zone, Liu et. al.,180 proposed two modified VQE algorithms: VQE-

K2G and VQE/QSE. The VQE-K2G approach involves the conversion of HF orbitals at

sampling k-points in a unit cell into real orbitals at Γ-point in the corresponding supercell.

Subsequently, the wave function and Hamiltonian are then defined in the real space so that

the optimization method is valid again. This change of basis allows VQE-K2G for periodic

systems to match the accuracy of VQE-K2G accuracy to VQE for molecular systems. The

second approach, combining VQE with QSE, referred to as VQE/QSE was also proposed to

enhance the accuracy of VQE. In VQE/QSE, a reference state is prepared using VQE, and

the ground-state wavefunction is obtained by diagonalizing the Hamiltonian sampled in the

linear-response space of the reference state. VQE/QSE could provide a reliable estimation

of the exact wave function, provided that VQE can generate a suitable reference state. Their

calculations demonstrate that both VQE-K2G and VQE/QSE approaches provide reasonable

results for describing the potential energy surfaces of one-dimensional hydrogen chain with

the SVZ3 basis set together with GTH pseudopotentials.214,215 It was also noted that for

achieving converged results with practically relevant systems and also for the long-term, other

3While the authors mention SVZ, we think it is split valence polarized (SVP) because we could not find
a SVZ basis set within PySCF basis-set library213

38

https://doi.org/10.26434/chemrxiv-2024-d2l1k ORCID: https://orcid.org/0000-0003-4509-8454 Content not peer-reviewed by ChemRxiv. License: CC BY-NC 4.0

https://doi.org/10.26434/chemrxiv-2024-d2l1k
https://orcid.org/0000-0003-4509-8454
https://creativecommons.org/licenses/by-nc/4.0/


type of basis sets, such as plane waves, should be used. Among these ansatzes, UCCGSD-

VQE was found to be more stable than UCCSD-VQE. However, in the comparison between

UCCGSD and ADAPT, no clear winner emerges due to the trade-off between flexibility,

accuracy, and cost.

A hybrid quantum-classical algorithm, extending the unitary coupled cluster (UCC)

framework, was utilized to calculate the electronic structure of periodic systems (linear hy-

drogen chains and dimer hydrogen chains), determining ground states and quasiparticle band

structures.182 A variation of QSE was employed for the computation of the quasiparticle band

structure. This approach shares conceptual similarities with ionization-potential/electron-

attached EOM-CC (IP-EOM-CC, EA-EOM-CC),216 a variant of equation-of-motion coupled

cluster (EOM-CC).217 The algorithm’s efficiency was validated in simulating the hydrogen

chain for both weakly and strongly correlated electronic structures using the VQE.

In another study, the adaptation of the UCC ansatz to periodic boundary conditions is

presented in both real space and momentum space representations showing the application

of VQE in the simulation of solid-state crystalline materials.181 This adaptation involves the

direct mapping of complex cluster operators to a quantum circuit ansatz, capitalizing on the

reduced number of excitation operators and Hamiltonian terms due to momentum conserva-

tion. A translational Quantum Subspace Expansion method (TransQSE) is proposed for the

localized representation of the periodic Hamiltonian. The investigation includes a compar-

ative analysis of accuracy and computational costs across various geometries for 1D chains

of dimerized hydrogen, helium, and lithium hydride, incorporating an increasing number of

momentum space grid points. Additionally, VQE calculations are demonstrated for two-

dimensional and three-dimensional hydrogen and helium lattices. The UCCSD-PBC ansatz

is identified as the most favorable in the momentum space representation, considering cir-

cuit depth. Notably, the adoption of a smaller supercell, proves effective in trading accuracy

against the expensive scaling associated with the full UCCSD-PBC approach. However, the

authors emphasize that this strategy is applicable exclusively to insulating systems, where
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orbital occupation remains constant across different k-points. For metals, characterized by

band lines crossing the Fermi level, the transformation introduces complexity, mixing occu-

pied and virtual orbitals, making the preparation of the reference state nontrivial.

Furthermore, Mizuta et al.218 introduced an enhanced version of the DeepVQE proto-

col,219 emphasizing the efficient computation of low-energy eigenstates, with a particular

focus on simulating periodic materials. The refined DeepVQE approach was specifically de-

signed and tested using a periodic hydrogen chain system for its simplicity. Advancements

over the initial DeepVQE proposal involve optimized strategies for handling periodicity, en-

suring precise simulations of periodic materials. In addition, the updated protocol integrates

advanced techniques to minimize the number of parameters in the quantum circuit, enhanc-

ing the efficiency of computations for low-energy eigenstates.

These studies share a common thread in their utilization of the VQE adapted for systems

governed by PBCs. Notably, each study applied their respective methodologies to compute

the energy of the one-dimensional hydrogen chain, with some extending their analysis to

encompass two- and three-dimensional model systems. An additional noteworthy parallel

lies in the incorporation of the QSE method for calculating excited state energies across these

investigations. The collective findings signify an increasing interest in quantum computing

methodologies tailored for periodic systems, as evidenced by the adaptation of established

algorithms from molecular studies. While these studies primarily serve as a proof of concept,

there is a growing imperative to extend investigations beyond hydrogen chains to more

realistic systems. The evolving landscape of quantum algorithms promises insights into

their performance compared to established methods like DFT and their applicability in

modeling various periodic systems. This exploration aims to uncover advantages in accuracy,

computational efficiency, and adaptability across different material types.

40

https://doi.org/10.26434/chemrxiv-2024-d2l1k ORCID: https://orcid.org/0000-0003-4509-8454 Content not peer-reviewed by ChemRxiv. License: CC BY-NC 4.0

https://doi.org/10.26434/chemrxiv-2024-d2l1k
https://orcid.org/0000-0003-4509-8454
https://creativecommons.org/licenses/by-nc/4.0/


4.2 Bulk bcc-Fe: Quantinuum-Nippon

The bulk lattice constant refers to the equilibrium lattice parameter or the optimal in-

teratomic distance in a crystalline material in its bulk or three-dimensional form. It is a

fundamental property of a crystal and is often a key parameter in characterizing its struc-

ture. Computationally, to find the equilibrium lattice constant, one performs calculations for

different lattice constants, varying the interatomic distances. The lattice constant at which

the total energy is minimized corresponds to the equilibrium lattice constant. Quantum

hardware calculations were conducted for solid-state model systems under PBCs, focusing

on a distorted hydrogen chain and fcc and bcc iron crystals (Inset of Fig. 7.I).220 Utilizing

two-qubit one-parameter ansatz, the translational quantum subspace expansion (TransQSE)

method181 was applied to the hydrogen chain, while the PBC-adapted VQE method was em-

ployed for iron crystals. Variational optimization employed classical algorithms, Rotosolve221

and Stochastic Gradient Descent (SGD),222 for both methods. Quantum hardware experi-

ments were executed on the IBM Quantum Falcon processor, specifically ibmq casablanca.

Noise mitigation techniques, including state preparation and measurement (SPAM)223 and

partition-measurement symmetry verification (PMSV),220 significantly improved accuracy

compared to exact values obtained through classical simulations (Fig. 7.I and II). Despite

the simplicity of the model systems, these results serve as a foundational step for advancing

quantum chemical calculations on quantum computers, with potential improvements antici-

pated as quantum hardware evolves to accommodate larger basis sets and k-point grids for

more accurate total energy estimates.

4.3 Electronic properties: Band structures

Nardelli and coworkers224–227 explored the evaluation of band structures, an essential aspect

for understanding electronic properties of solid materials. They developed an approach to

compute properties of periodic solids, exemplified by calculating the band structure of silicon

using the VQE algorithm on Rigetti Aspen and IBMQ Armonk quantum hardware.224 Com-
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I

II

Figure 7: Lattice constants of bcc and fcc iron crystals. Panel I: Evolution of energy
∆E during the Rotosolve optimization process and Panel II: Evolution of energy ∆E during
the stochastic gradient descent optimization process for both bcc and fcc iron crystals (crystal
structure shown in inset). Blue circles represent hardware results from the ibmq casablanca
device. The dashed black lines indicates ∆E for the model Hamiltonian. Application of noise
mitigation schemes SPAM (red triangles) and SPAM+PMSV (black triangles) (see text) is
shown, presenting raw and noise-corrected ∆E for each optimization step to illustrate noise
mitigation effects. Reused from.220 Creative Commons CC BY 4.0 DEED.

42

https://doi.org/10.26434/chemrxiv-2024-d2l1k ORCID: https://orcid.org/0000-0003-4509-8454 Content not peer-reviewed by ChemRxiv. License: CC BY-NC 4.0

https://doi.org/10.26434/chemrxiv-2024-d2l1k
https://orcid.org/0000-0003-4509-8454
https://creativecommons.org/licenses/by-nc/4.0/


parative calculations were performed on Quantum Virtual Machine (QVM) and Quantum

State Simulator (QSS). While the quantum-computed bands generally align with classically-

computed bands, slight deviations are observed near high-symmetry points (G and L) for

Rigetti and IBM, respectively (Fig. 8I). The authors suggest that various sources of errors,

including probabilistic aspects and noise simulation, may contribute to these discrepancies,

with gate noise and readout errors influencing measured energy and shifting expectation

values toward different eigenstates.

A hybrid quantum-classical algorithm was designed for determining the band structure

of periodic systems described by tight-binding models.225 To illustrate its effectiveness, the

algorithm is applied to compute the band structure of a simple-cubic crystal with one s

and three p orbitals per site, serving as a model for polonium. The computations include

simulations on quantum simulators with varying noise levels, concluding with experiments

conducted on IBM quantum computers (Fig. 8II). The findings demonstrate the algorithm’s

reliability in low-noise environments, functional adaptability to present-day noisy quantum

computers, and a scaling complexity similar to classical counterparts.

The next study explores an approach to quantum computing in materials science by fo-

cusing on the calculation of a periodic system’s single-electron band structure. Traditional

methods involve constructing unique Hamiltonian operators for each k-point, requiring nu-

merous optimizations to generate a single band. The proposed approach adopts a direct

space method, utilizing a hybrid qubit mapping to construct a single Hamiltonian and cost-

function suitable for solving the entire electronic band structure.227 The results of band

structures calculated for model systems in one, two, and three dimensions are shown in

Fig. 8III. This approach supposedly simplifies the quantum algorithm for band structure

calculations, offering technical and conceptual advantages over previous methods proposed

by this group.
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I II

Figure 8: Electronic band structures. I. (a) Comparison of the two-band electronic
structure of silicon along the X-G-L line, obtained through classical diagonalization (black
solid line), a hybrid quantum–classical algorithm on a Quantum State Simulator (QSS, blue
squares), and a Quantum Virtual Machine (QVM, yellow circles). (b) Similar comparison
as in (a) but executed on the Quantum Processing Units (QPUs) of IBM (red squares) and
Rigetti (green circl1es - before and after correction for readout errors). II. (a). The band
structure of a simple cubic lattice along the high-symmetry path. Solid curves: classical
(exact) diagonalization. Diamonds: median optimization result from a noiseless statevector
simulator. (b). Simulating low-fidelity qubits, along with rudimentary calibration. Left
column: raw optimization results. Right column: energy obtained by QPE refinement.
Gray dots: results from each of 32 trials, with each band given its own row (l = 0, 1, 2, 3).
Asterisks and crosses: the median and mean, respectively. Squares and diamonds: energies
measured on quantum devices ibmq santiago and ibmq athens respectively, using the least-
error optimization results obtained with the calibrated simulation data. III. Band structures
of model systems in one-, two- and three-dimensions, with N = 8 for each dimension and
3 qubits per dimension. Analytically calculation using the standard classical algorithm
(solid curves). Values estimated through the simulation of the quantum algorithm (squares).
Values obtained under ideal conditions, featuring perfect optimization and no sampling noise
(crosses). Figure used with permission from224–227

Creative Commons CC BY 3.0 DEED and Creative Commons CC BY 4.0 DEED.
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4.4 Heterogeneous catalysis: Chemical reactions at surfaces

4.4.1 H2O dissociation on Mg(001): IBM-Boeing

A novel method for modelling surface reactions on quantum computers was introduced,228

featuring active-space orbital selection based on the electronic density and its effect on en-

ergy, employing the VQE for the calculation of expectation values. Efficiency is enhanced by

evaluating the active-space Hamiltonian’s expectation value over a simplified quantum circuit

through Clifford transformations, reducing qubit and gate count. Illustrated with magne-

sium corrosion by water, this workflow advances DFT-based calculations, offering valuable

applications for studying reactions like water adsorption on metal surfaces on near-term

quantum computers.

The study begins with classical preprocessing and employs simple PBC calculations at the

Γ-point for a time-reversal-symmetric Hamiltonian. To enhance convergence, twist-averaged

boundary conditions (TABC)229 are applied. Main highlight of this work is the proposal

of two strategies for constructing active spaces (Fig. 9A), both initiating with the local-

ization of occupied and virtual DFT orbitals projected onto an active region encompassing

molecules involved in the reaction and a small surface portion. Method 1, known as the

density difference (DD) approach, ranks occupied DFT orbitals based on their contribution

to the electronic density difference, resulting in monotonically decreasing ground-state ener-

gies with increasing active-space size. However, this method exhibits slow convergence with

increasing active-space size. Method 2, termed the density difference and natural orbitals

(DD+NO) method, incorporates a coupled-cluster singles and doubles (CCSD) calculation

in the active space, utilizing the five highest-ranking occupied DFT orbitals and all virtual

orbitals. The inclusion of natural orbitals, sorted by decreasing occupation number, provides

a systematic approach to defining active spaces in systems with strong correlation. The com-

parison reveals that DD+NO achieves faster convergence (Fig. 9B), typically requiring only

15-20 natural orbitals as opposed to around 200 natural orbital with DD, but comes at a
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A

B C

Figure 9: H2O dissociation on Mg(001). Panel A: Common steps (a, b) shared by both
methods, with left blocks (c, d) illustrating Density Difference (DD) method steps, and right
blocks (e, f) depicting Density Difference + Natural Orbitals (DD+NO) method steps. Panel
B: Comparison of CCSD and energy differences ∆E calculated in active spaces constructed
with DD and DD+NO methods. Panel C: Depiction of energy differences ∆E derived from
both noiseless classical simulations and hardware experiments. In 10-orbital active spaces,
QCC was implemented with 50 Pauli operators (purple crosses) on classical simulators and
with 2 and 5 Pauli operators (∆E=2P and ∆E=5P) on quantum hardware. Reused from.228

Creative Commons CC BY 4.0 DEED.
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higher computational cost compared to DD. Both methods can be used complementarily to

enhance the efficiency and accuracy of quantum chemical simulations.

Hardware simulations reveal a statistically consistent performance with noiseless classical

simulations utilizing the same quantum circuit (Fig. 9C). The study explores the efficacy of

the VQE algorithm through Trotterized implementations of unitary CCSD (qUCCSD),230

entanglement forging (EF),231 and qubit coupled cluster (QCC).232 The calculated energy

differences with QCC display a non-trivial dependence on the number of Pauli operators

in the ansatz, notably with 50 Pauli operators deviating from qUCCSD by approximately

0.1-0.3 eV. The incorporation of EF results at the Γ-point facilitates effective handling of

(2e,2o)4 and (10e,10o) active spaces with 2 and 10 qubits, respectively, delivering results in

good alignment with qUCCSD and QCC. It should be noted that the current implementation

is restricted to Hamiltonians with time-reversal symmetry.

4.4.2 O2 dissociation on Pt(111): Quantinuum-BMW

The ORR on Pt and Co@Pt surfaces, was studied using the ADAPT-VQE algorithm212 on

the H1-1 trapped-ion quantum computer. Static correlation exploration involved a complete

active space approach on quantum hardware, while dynamic correlation was addressed with

second-order perturbation theory (QRDM NEVPT2).234 The selection of the active space

utilized the automatic regional embedding variant of the automatic valence active space

(AVAS/RE) method.235,236 High-symmetry adsorption sites on the Pt and Co@Pt surfaces,

the potential energy profile for O2 dissociation to dissociatively chemisorbed O atoms in

cis- and trans- configurations and the initial, transition state and final configurations are

displayed in Fig. 10 (a), (b) and (c). For the 3-layer atomistic model, the AVAS/RE active

space incorporated valence and higher orbitals of the ‘Pt19O2’ fragment Fig. 10 (c). In the

Co@Pt system, a model comprising 29 atoms was constructed, guided by density change

analysis, traditional CAS notations, and the assurance that AVAS active orbitals were local-

4Here, e and o represents electrons and orbitals.
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Figure 10: O2 dissociation on Pt(111). Panel (a) shows different high symmetry sites on
a Pt(111) surface. Panel (b): Energy profiles calculated using nudged-elastic band (NEB)
method connecting the initial adsorbed state (O2) to the final dissociated state (2 O) on
Pt(111) surface for the ’cis’ (purple squares) and ’trans’ (violet circles). Activation energy
Ea taken from literature is shown as a violet patch. Panel (c): Atomistic DFT models
illustrate the reference initial O2, *O2 rotated TS, and 2O-‘cis’/-‘trans’ states adsorbed on a
Pt(5×5×5) slab, each associated with a Path Length value (0.00, 0.4, and 1.00, respectively)
in panel (b). Panel (d): The Pt19O2 fragment using solid spheres, emphasizing potential
oxygen occupation sites. In Panel (e) - (f), a comparison of adsorption (Eads), activation
(Ea) and dissociation energies (Ed) calculated using various methods with respect to the
initial state (O2 adsorbed) are presented. Panel (e) shows results from DFT and mean-field
HF level calculations; panel (f) shows VQE calculations on the state vector simulator (SV)
and Quantinuum ‘H1-1’ device (H1), and panel (g) showcasing VQE+NEVPT2 results on
same devices. Figure used with permission from.233
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ized on O and the nearest Pt atoms. A smaller Hamiltonian was then formed with a (2e,3o)

active space, compatible with hardware. The initial state preparation involved the use of

ADAPT-VQE and (k=1)-UpCCGSD. Reference converged DFT calculations demonstrated

accurate results for the pure Pt catalyst with a small active space, while the Pt/Co catalyst

required a larger active space to capture correlation energy, confirming strong correlation in

the magnetic core-shell system.

DFT calculations indicated a halving of the barrier and a doubling of the driving force

(Fig. 10 (e)). The analysis of results, particularly in classical VQE statevector (SV) simula-

tions (Fig. 10 (f)), revealed a low correlation energy at the adsorption site. Simulations on

H1 quantum computer aligned well for reactant (R) and product(P) states, while results for

the TS state suggested an overestimation of Ea both with the SV and H1 simulations.

Challenges arose with the AVAS procedure due to finite magnetization in an restricted

open-shell situation. The exclusion of half-filled Co 3d orbitals, contributing to total mag-

netism, was necessary to focus on correlations during O2 dissociation. Successful optimiza-

tion of VQE state variational parameters on a classical CPU was achieved, but subsequent

measurements of the active space Hamiltonian and spin-traced 1- and 2-RDM operators on

both quantum hardware and the quantum noisy emulator presented complications.

4.4.3 Battery materials: Xanadu-Volkswagen

In classical simulations of materials, pseudopotentials are commonly employed to represent

the effective potential arising from the nucleus and core electrons. A recent work introduces

a quantum algorithm that leverages pseudopotentials to enhance the efficiency of simulating

periodic materials on a quantum computer.209 The algorithm utilizes a qubitization-based

QPE approach, employing a first-quantization representation of the Hamiltonian in a plane-

wave basis. Addressing the challenge of pseudopotential complexity in quantum simulations,

optimized compilation strategies for qubitization237–241 are developed. The computational

cost of applying the algorithm to simulate lithium-excess cathode materials for batteries is
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estimated, including the required number of qubits and Toffoli gates for accurate simulations

(Fig. 11). For the calculation of resources, η values are 408 (808), 468 (968), 428 (836), and

100 (150), and N values are 5,473 (5.8 × 108), 67,767 (8.7 × 108), 57,655 (6.4 × 108), and

19,549 (5.46 × 107) for Li0 · 5 MnO3, Li0 · 75 [Li0 · 17 Ni0 · 25 Mn0 · 58 ]O2, Li0 · 75 MnO2F, and

Li2FeSiO4, respectively. The numbers outside the parentheses refer to pseudopotential, and

numbers within the parentheses correspond to the all-electron implementation for both η

and N . The optimized compilation strategies result in a pseudopotential-based quantum al-

gorithm with a Toffoli cost four orders of magnitude lower than the previous state-of-the-art

method, maintaining fixed target accuracy. They develop quantum read-only memories as a

key component, minimizing complex arithmetic operations on a quantum computer and fa-

cilitating tradeoffs between qubit and gate numbers. Overall, the quantum algorithm’s cost

is reduced by about four orders of magnitude compared to the all-electron approach when

applied to simulating lithium-excess materials (Fig. 11). However, realizing the full poten-

tial of quantum computing necessitates ongoing efforts to further reduce algorithmic costs,

addressing aspects such as the quality of initial state preparation methods,242 particularly

for states with poor overlap, where repeated rounds of QPE may be required.
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Figure 11: Li-excess battery materials resource estimation. Resource estimation for
the pseudopotential (PP) and all-electron (AE) algorithms using η number of electrons in
the supercell structural models and N number of plane waves required to converge the
ground-state energy of the material at the level of density functional theory (refer text for
the exact numbers). Qubit cost is represented in terms of logical qubits. Plot made from
data published in Table 2 of.209 Creative Commons CC BY 4.0 DEED.
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4.4.4 Transition metal oxides: Riverlane-Johnson Matthey

While VQE possesses merits in specific scenarios, the prevailing consensus suggests superior

scaling with system size for QPE.60 Therefore in a recent study, the efficiency of QPE in

estimating the ground-state energy of crystalline solids on error-corrected quantum com-

puters is explored.208 The two most widely used basis sets, namely Bloch and Wannier

representations,243 were employed in the context of qubitized QPE.237–241 Employing the

sparse qubitization approach, the research estimates the resources required for calculating

the ground-state energy of crystals with a supercell of approximately 50–70 atoms. The es-

timated number of T gates ranges from 1010 to 1012 when considering a basis set of 300–500

spatial orbitals. However, for realistic solids demanding at least double-zeta polarized (DZP)

or triple-zeta polarized (TZP) basis sets, the T-gate count would be higher. To enable simu-

lations of solids with larger basis sets on error-corrected quantum computers, an alternative

approach involves selecting an active space within a few hundred orbitals or utilizing quan-

tum embedding methods was suggested (Section 5). While this paper focuses solely on the

single-shot cost of the total QPE circuit, it is noted that the effectiveness of QPE in estimat-

ing ground-state energy depends on the overlap between the initial state (e.g., Hartree-Fock

state) and the true ground-state wave function,242 although this aspect was not explored in

this paper.

Fig. 12(a) shows the runtime for a single shot of the QPE circuit with a 50 meV/f.u.

permissible error. It indicates that small-unit-cell simulations of NiO and PdO (8 and 16

atoms, respectively) take under 10 days, while larger computational cells like LiH (64 atoms)

require about 50 days, even with a 0.1% physical error rate. NiO (64 atoms) and PdO

(72 atoms) in supercells need approximately 100 days at a 0.1% physical error rate. A

tenfold reduction in the physical error rate to 0.01% roughly halves the runtime for all

systems. Figures Fig. 12(b) and Fig. 12(c) display physical and logical qubit counts. The

smallest simulations need a few million physical qubits at a 0.01% error rate, while the

largest simulations of NiO and PdO require around 65 million physical qubits. For a 0.1%
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Figure 12: NiO and PdO resource estimation. Resource estimation for the calculation
of ground-state energy in various solid-state systems employing Wannier and Bloch func-
tions is provided. The estimations are based on L2-norm truncation, and the Hamiltonian
simulations maintain an accuracy of 50 meV/f.u. (1.8 mHa/f.u.). The cycle duration of
the code is 10-6 s, and the physical error rates are assumed to be 0.1% and 0.01%. The
figures illustrate: (a) Runtime in days, (b) Number of physical qubits, and (c) Number of
logical qubits. The x-axis denotes the total number of spin orbitals. The numerical value
alongside the crystal name indicates the number of atoms in the supercell and the size of the
k-point mesh used for Wannier and Bloch basis sets, respectively. Reused from.208 Creative
Commons CC BY 4.0 DEED.
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error rate, quantum error correction raises the required number of physical qubits 4–5 times.

Fig. 12(c) indicates that small-cell simulations need a few thousand logical qubits, while

large supercells require around 105 logical qubits.

5 Embedding approaches

So far we have explored the potential of quantum computers in simulating molecular and

material properties, highlighting promising algorithms for both NISQ and fault-tolerant sys-

tems with examples from academia and industry. However, current quantum computers are

limited to performing ab initio calculations on only a few states due to qubit constraints. To

tackle complex chemistry and material science problems with NISQ computers, it’s crucial

to reduce the number of electrons treated explicitly with high accuracy. We already saw

an example of the speed-ups that can be obtained when introducing a pseudopotential ap-

proach to treat the chemically inert core electrons. In a similar fashion, one may separate a

complex system into a part that is relevant for the property of interest and an environment

that can be treated with a more approximate method or be neglected. In the context of

quantum computing one may think of a hybrid approach, in which most of the calculation

is done with a classical computer, letting the quantum computer tackle only that part of

the problem that can not be described well by classical algorithms. To succesfully utilize

near-term quantum computers for larger systems, such hybrid quantum-classical methods

are necessary, focusing on quantum computation only for specific parts of the system. This

is particularly relevant for molecules and solids, where precision in the active region is higher

than that of the surrounding (bath) region. Many embedding theories have been proposed

to address this challenge, as discussed in previous sections Section 3. Before we delve into

the details of the individual techniques and their applicability to heterogeneous catalysis, we

explain the general idea of embedding here.

Embedding is a powerful technique for studying complex chemical systems, particularly
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Figure 13: The general idea for the embedding approaches: Embedding involves di-
viding the entire system into two parts: the strongly correlated region (active space) and
its surrounding environment or bath. The active space includes electronic states described
by an effective Hamiltonian, solvable through traditional quantum chemistry methods such
as multiconfigurational self-consistent field (MCSCF) + complete active space second-order
perturbation theory (CASPT2)/n-electron valence state second-order perturbation theory
(NEVPT2), or full configuration interaction (FCI), represented by the dark yellow arrows.
Quantum algorithms, such as quantum phase estimation (QPE) (Section 3.3.1) and varia-
tional quantum eigensolver (VQE) (Section 3.1), represented by light yellow arrows, can also
be employed to calculate the energies of the strongly correlated regions.

those involving large molecules (inorganic complexes) or extended systems (heterogeneous

catalysis).244 The central theme of embedding involves partitioning the full system into an

active region, treated using highly accurate quantum mechanics or quantum algorithms, and

an environment region, treated using low-accuracy methods Fig. 13. An embedding poten-

tial is used to account for the effects of the surrounding environment on the subsystems.

An embedding Hamiltonian describes the interaction between the active region and the en-

vironment, facilitating the transfer of information and correlation between the two regions.

This approach significantly reduces computational costs compared to a full quantum me-

chanical treatment while maintaining high accuracy. Numerous embedding techniques have

been developed for quantum computing and periodic systems. In the upcoming discussion,

we will explore these techniques, some of which have been mentioned in preceding sections,

providing detailed insights into each method.
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5.1 Embedding using localized molecular orbitals (LMO)

Molecular orbitals (MOs) play a crucial role in understanding chemical concepts and prop-

erties. Mean-field calculations such as Hartree-Fock (HF) or Kohn-Sham density functional

theory (KS-DFT) yield valence orbitals with a well defined energy, which is useful when

studying electronic excitations and spectroscopy. A drawback for extended systems is, how-

ever, the spatial delocalization that MOs typically exhibit. Spatially localized MOs can be

constructed to provide a better understanding of chemical bonding and photochemistry of

the system.245 Such localized MOs (LMOs) are particularly important in local correlation

treatments within post-HF methods. These LMOs serve as excellent starting orbitals for

multi-configuration calculations, such as state-averaged complete active space self-consistent

field (SA-CASSCF),246,247 as well as for quantum calculations like state-averaged orbital-

optimzied variational quantum eigensolver (SA-OO-VQE).187,188 Various schemes exist for

generating localized orbitals, and for a comprehensive list, please refer to the introduction

section of earlier reviews.245,248 One notable scheme is the introduction of intrinsic atomic

and bonding orbitals by Knizia,249 initially for occupied MOs and later extended to molec-

ular fragments and relativistic spinors250 as well as to provide additional localized virtuals

for correlation and use in time-dependent DFT.251 The procedure comprises two steps, def-

inition of intrinsic fragment orbitals, followed by localization of the occupied and virtual

subspaces by a generalization of the Pipek-Mezey localization algorithm.252 This scheme

has been implemented in a standalone program known as the Reduction of Orbital Space

Extent (ROSE), which has been interfaced with various quantum chemistry packages250 and

was demonstrated by application in systems such as benzene, acrylic acid, ferrocene, Irppy3,

microsolvated astatine anion, and tellurazol oxide complexes.250 While LMOs do not have a

well-defined energy, they can be re-canonicalized within each fragment to make them better

suited for embedding purposes. Such a set of re-canonicalized orbitals was recently used

for calculating charge transfer states in chlorophyll dimer253,254 within the linear response

framework of time-dependent density functional theory (TDDFT).251 By considering molec-
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ular fragments instead of isolated atoms, the convergence of the localization procedure can

be improved, which is particularly valuable for embedding techniques such as the automated

valence active space method.235 In summary, the use of LMOs yields a simple approach to

define a reduced size local Hamiltonian that is compatible with many electronic structure

methods, including the quantum algorithms discussed in this review.

Figure 14: From canonical molecular orbitals (CMOs) to re-canonicalized intrinsic
localized molecular orbitals (RILMOs: Illustration of the Fock matrix in various bases,
with color-coded blocks denoting non-zero matrix elements, while smaller squares depict
individual matrix elements. Reused from.251 Creative Commons CC BY.

In the following paragraph, the procedure followed in the construction of re-canonicalized

molecular orbitals is summarized. The process of embedding using LMOs begins with a

supersystem HF calculation, which yields a set of canonical molecular orbitals (CMOs) for

the supersystem. Subsequently, these CMOs are explicitly localized within each subsystem

(I). This localization procedure aligns with the concept of intrinsic atomic and bonding

orbitals, as introduced by Knizia (referred to as IAOs and IBOs), which has been exteneed

to molecular fragments in ROSE. In this approach, the localization is carried out within a

minimal basis of intrinsic fragment orbitals (IFOs), and the reference orbitals are defined by

fragment MOs (RFOs) acquired through separate HF SCF calculations for each subsystem.

For the details of the construction of the IFOs and the re-canonicalized LMOs we refer

the reader to references.250,251 Briefly, the steps for the construction of the re-canonicalized

LMOs can be summarized as:
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1. Construction of Intrinsic Fragment Orbitals (IFOs) using a predefined set of RFOs.

2. Separate localization of the occupied, valence virtual and hard virtual orbitals gener-

ating the so-called intrinsic LMOs (ILMOs).

3. Diagonalization of the Fock matrix in the ILMO basis insie each fragment generating

our fianl re-canonicalized intrinsic localized molecular orbitals (RILMOs). (Fig. 14).

These RILMOs provide a foundation for detailed analyses and computations in the con-

text of embedding and quantum chemistry. Additional technical details related to the LMO

construction process can be explored in the literature for a more comprehensive understand-

ing of the methodology. This procedure has been implemented in the Reduction of Orbital

Space Extent (ROSE) code,255 a standalone code which is independent of the underlying

electronic structure code used. This code can be used to generate LMOs that can be used

as a starting point for any quantum chemistry calculation on quantum computers.

5.2 Dynamical mean-field theory (DMFT)

Dynamic Mean Field Theory (DMFT) is a powerful theoretical framework in quantum chem-

istry and condensed matter physics that focuses on capturing the effects of strong electron-

electron correlations in strongly correlated systems, such as transition metal compounds and

high-temperature superconductors.256–262 DMFT, a variant of the popular mean field theory

(MFT), takes into account the dynamics of the system, hence its name. DMFT achieves this

by self-consistently embedding the Green’s function of local fragments within a fluctuating

environment.

One of DMFT’s significant contributions is its ability to extend quantum chemical meth-

ods, originally designed for finite systems, to tackle infinite periodic problems while employ-

ing a local correlation approximation. This locality of correlation suggests that the daunting

computational scaling with Brillouin zone (BZ) size can be circumvented, as DMFT effec-

tively operates as a self-consistent theory for a single unit cell within a crystal lattice.263 For
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example, consider a crystal lattice composed of unit cells, where one unit cell is embedded in

the surrounding medium constituted by the rest of the crystal. This arrangement, dictated

by translational symmetry, necessitates a self-consistent embedding theory. While an exact

embedding calculation would be as computationally intensive as a full crystal calculation,

DMFT offers a solution. By neglecting intercell correlations based on their localized na-

ture, DMFT efficiently addresses the computational challenges associated with the scaling

of the Brillouin zone size. This approximation enables DMFT to treat the crystal effectively,

considering it as a self-consistent theory focused on a single unit cell. Effectively, DMFT

replaces the description of a solid with a simplified model where each lattice site is coupled to

a self-consistent medium. This medium captures local many-body correlations on each site,

effectively treating the system as a collection of single atoms interacting with this medium.

This approach allows DMFT to capture electron-electron interactions and correlations in

strongly correlated systems. This idea can be extended to the application of DMFT to

modelling molecule-surface reactions (Fig. 15) relevant to heterogeneous catalysis. In this

context, the strongly correlated region of interest, such as a localized molecular orbital or

an adsorbate on a surface, is effectively treated as the ”local moment” within DMFT. This

region interacts with an effective bath formed by the rest of the system, which accounts for

the non-local correlations and interactions. This description is consistent with the general

framework of DMFT, where the local properties of the strongly correlated region are coupled

to an effective environment.

DMFT’s formulation revolves around Green’s functions and is structured as a self-consistent

theory for the Green’s function of a unit cell, which could be a primitive cell or a compu-

tational supercell. Notably, the local correlation approximation in DMFT assumes that the

self-energy is local, implying that intercell elements of the self-energy vanish or, in momen-

tum space, that the self-energy is momentum-independent. It’s worth emphasizing that while

DMFT considers correlation effects between unit cells through the embedding method (e.g.,

DMFT+LDA will have LDA correlations between unit cells; LDA - local density approxi-
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Effective 
interacting bath

Active region

Molecule

Surface

Figure 15: The idea of dynamical mean-field theory (DMFT). DMFT replaces the
idea of a solid with a single atom exchanging electrons with a self-consistent medium, cap-
turing local many-body correlations on each site. It describes a strongly correlated system
by coupling a ’local moment’ on each lattice site to a ’bath’ of non-interacting electrons,
effectively considering electron-electron interactions and correlations in the system. When
DMFT is applied to modelling molecule-surface reactions, the strongly correlated region of
interest, such as a localized molecular orbital or an adsorbate on a surface, effectively inter-
acts with an effective bath formed by the rest of the system. The left figure shows the active
region on a surface (grey circles) with an adsorbed molecule (red circles with a bond). On
the right, the strongly correlated region marked with a blue dotted circle interacting with
an effective bath formed by the rest of the system (blue patch) is shown.
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mation) and accounts for one-electron delocalization effects between them. This, coupled

with DMFT’s self-consistent nature, sets it apart from simpler quantum chemical embed-

ding formalisms that incorporate quantum mechanical clusters into a medium described by

molecular mechanics.

In DMFT, the self-consistency condition is a crucial concept that ensures the consistency

between local and non-local properties of the system. The local subset of degrees of freedom,

often referred to as the active space, usually consists of localized orbitals or lattice sites

where strong electronic correlations are present. The Green’s function (a mathematical

representation of the correlation between particles in a quantum system) for this active space

is denoted as Gloc(ω). On the other hand, the total system’s Green’s function, denoted as

G(k, ω) includes contributions from all momentum (k) points in the Brillouin zone. The self-

consistency condition in DMFT demands that the local Green’s function Gloc(ω) should be

equivalent to the average of the total system’s Green’s function G(k, ω) over all momentum

points (k). In mathematical terms:

Gloc(ω) =
1

Nk

∑
k

G(k, ω) (8)

where Nk is the total number of momentum points. Physically, this condition implies

that the local properties of the system (captured by Gloc(ω)) should be representative of the

average behavior of the system across all momentum points. This is justified because the

higher order correlation effects are dominantly local.263 Achieving this equivalence typically

involves an iterative procedure. One starts with an initial guess for Gloc(ω) and computes the

total system’s Green’s function G(k, ω) using this guess. Then, one updates the local Green’s

function based on the average of G(k, ω) over all momentum points. This process is repeated

until convergence is achieved, i.e., until Gloc(ω) and G(k, ω) are consistent with each other.

In summary, the self-consistency condition ensures that the local properties captured by are

consistent with the behavior of the system across all momentum (k) points, thus providing

a reliable description of strongly correlated electron systems within the DMFT framework.
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In the quantum computing context, a hybrid approach was proposed to be used on

a quantum computer that integrates classical and quantum algorithms into the DFT +

DMFT embedding framework.264 Within this scheme, a cost-effective DFT calculation is

employed to establish a set of orbitals and ascertain the electronic structure for the major-

ity of these orbitals. Simultaneously, a more computationally intensive many-body method,

specifically DMFT, is applied to address a reduced model comprising a significantly smaller

set of correlated orbitals. In a recent study, researchers proposed an alternative approach

that leverages the VQE method for ground and excited states in the context of an exact

diagonalization.265 The algorithm is specifically designed for a two-site DMFT system, ad-

dressing the single-band Hubbard model on the Bethe lattice with infinite connectivity using

exact diagonalization of a two-site impurity problem comprising one interacting and one

bath site. Through comprehensive benchmarks conducted on superconducting and trapped

ion qubits for the 2-site DMFT model, it was demonstrated that practical calculations with

minimal error are feasible. Overall, this proof-of-concept demonstration showcases the vi-

ability of running DMFT calculations on contemporary quantum hardware. Furthermore,

utilizing the quantum circuit simulator Qulacs,266 the algorithm was validated by computing

Green’s functions for various impurity models, including the dimer and four-site impurity

models derived from DMFT.267 The results, including the imaginary-time Green’s function

and Matsubara Green’s function, exhibited very good agreement with exact solutions. Ad-

ditionally, an efficient computation of the imaginary-time Green’s function was achieved by

employing a nonuniform mesh, while addressing numerical instabilities through adaptive

mesh generation and energy convergence conditions. It is essential to note that while these

applications have demonstrated success with model systems, their adaptation to realistic

heterogeneous catalytic systems remains unexplored.

In summary, DMFT offers a versatile framework for tackling strong electron-electron

correlations in materials, enabling the extension of quantum chemical methods from finite

systems to infinite crystals while circumventing the computational burden associated with
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large Brillouin zones. It achieves this through a local correlation approximation and self-

consistent embedding, making it a valuable tool in the study of correlated electron systems

in heterogeneous catalysis.

5.3 Quantum defect embedding theory (QDET)

A quantum defect embedding theory (QDET) for calculating strongly-correlated electronic

states of active regions using a highly accurate method, while using random phase approx-

imation (RPA) to describe the rest of the system was proposed by Galli and coworkers.268

QDET draws heavy inspiration from the constrained random phase approximation (cRPA)

method.269 In cRPA, the active space typically consists of a subset of electrons or degrees

of freedom that are strongly correlated and of interest for the particular system being stud-

ied. RPA approximates the polarization by a summation of all particle-hole excitations in

the system. In cRPA, all the particle-hole excitations except those within the active space

are considered. This polarizibility is then used to effective parameterize the interactions

within the active space. By imposing these constraints, cRPA provides a systematic way

to incorporate non-local correlations from the environment into the description of the ac-

tive space, leading to improved accuracy in the treatment of strongly correlated systems.

Modified and improved implementations of cRPA have been used for calculating electronic

excitations on large-scale simulations of nitrogen-vacancy states in a periodic hBN monolayer

and hBN-graphene heterostructure,270 electronic states of twisted bilayer graphene (tBLG)

characterized by giant unit cells and correlated electronic states,271 and optical excitations

in the negatively charged nitrogen vacancy (NV) center defect in diamond.272

In cRPA calculations, two common approximations are typically made to evaluate di-

electric screening: first, the adoption of the random phase approximation (RPA) to the

screened Coulomb interaction, which only approximately captures exchange-correlation ef-

fects between electrons and may lead to inaccuracies; and second, the Adler-Wiser formalism,

which involves explicit summations over empty states, potentially hampering computational
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efficiency. In contrast, QDET addresses both of these approximations. It goes beyond the

RPA by computing dielectric screening with inclusion of exchange-correlation effects, which

are evaluated using a finite-field algorithm.273–275 Moreover, QDET circumvents the need

for explicit summations over empty states by employing a compact basis derived from the

spectral decomposition of density response functions.276–279 This approach enhances both

the accuracy and efficiency of calculations. The methodology behind QDET, detailed else-

where280,281 offers scalability advantages, particularly for materials containing thousands of

electrons, as it does not necessitate the explicit evaluation of virtual electronic states.276,279

The step-wise strategy used for QDET is shown below.

1. Perform spin-restricted DFT calculation on the entire system using hybrid functionals

2. Selection of active space: choose single-particle defect wavefunction; include relevant

resonant and band-edge states; verify the choice of active space size - converged exci-

tation energies

3. Construct effective Hamiltonians including exchange correlation effects

4. Obtain many-body ground and excited state using quantum algorithms (QPE and

VQE) and compare with classical FCI calculations, when available

Using QDET, the ground and excited state properties of spin-defects, encompassing the

nitrogen vacancy (NV) center in diamond, silicon vacancy (SiV) in diamond, and Cr impu-

rity 4+ in 4H-SiC were calculated. Full Configuration Interaction (FCI) simulations for NV

center diamond reveal the correct symmetry and ordering of low-lying electronic states. SiV

diamond exhibits similar values in active space bands with or without exchange-correlation

effects. For the hexagonal configuration of Cr-4H-SiC, QDET’s effective Hamiltonians en-

able the investigation of electron-electron spin flip transitions for the half-filled level. While

FCI calculations were performed for all three systems, quantum simulations were conducted

only on the NV center diamond using QPE and VQE algorithms on 6 qubits, represent-

ing 4 electrons in 3 orbitals, with UCCSD ansätze. Using a simulator, convergence was
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demonstrated for the exact ground state energy. QPE simulations on a simulator show good

agreement with FCI, with increasing auxiliary qubits converging to FCI. QPE calculations

were not performed on a quantum hardware. In VQE calculations, the active space size was

further reduced, and correlated and uncorrelated states with 4 qubits were computed on a

simulator and an actual quantum computer (IBMQ Yorktown). While VQE on simulators

converged to FCI energies for both uncorrelated and correlated states, only the uncorrelated

calculations on the hardware converged (Fig. 16.I). The quantum hardware results display a

0.2 eV error for the uncorrelated state.

In an another study, electronic structure calculations were performed on strongly corre-

lated ground and excited states of the N-V− center in diamond and the VV in 4H SiC, both

of which are point defects in semiconductors.183 The calculations utilized a combination of

DFT and QDET. The ground states were computed using VQE, while the excited states

employed QSE. Notably, these calculations were executed on quantum hardware. As some

results fell below FCI energies, which is deemed unphysical, a post-selection method based

on partial constraints on the number of electrons was successfully applied. Within their

post-selection method, all measurements that do not conserve the number of electrons are

discarded. This post-selection method ensured physically meaningful and converged results

during the VQE calculation (Fig. 16.II). Further, to address noise issues, an error mitigation

technique within the Zero Noise Extrapolation (ZNE) scheme,282 utilizing an exponential

block to enhance the control over quantum errors in Unitary Coupled Cluster (UCC) type

ansätze was introduced. The authors assert the method’s applicability without prior knowl-

edge of the hardware noise source, all without increasing the number of qubits.

In the original formulation of QDET presented in reference,268 the authors adopted an

approximate double counting correction based on Hartree-Fock theory. In a recent work, a

more rigorous derivation of QDET is presented based on Green’s functions, and an exact

double counting correction is derived283 which is similar to what was was already known in
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(a)

(b)

I II

Figure 16: I. (a) VQE estimation of the ground state energy of NV center diamond starting
from MS = 1 state. (b) The VQE estimation of the ground state energy NV center diamond
starting from a MS = 0 state results in a strongly-correlated state with an error of 0.2 eV. II.
VQE optimization of the ground-state energy for (a) the NV− center in diamond and (b) VV
in 4H-SiC. The optimization is conducted using the VQE algorithm with four and six qubits,
respectively, on ibmq casablanca. The orange dots represent the results with post-selection
of states, while the blue dots depict results without post-selection. FCI energy is provided
for reference. Figure reused from268 and.183 Creative commons CC BY-NC-ND 4.0 DEED.

65

https://doi.org/10.26434/chemrxiv-2024-d2l1k ORCID: https://orcid.org/0000-0003-4509-8454 Content not peer-reviewed by ChemRxiv. License: CC BY-NC 4.0

https://doi.org/10.26434/chemrxiv-2024-d2l1k
https://orcid.org/0000-0003-4509-8454
https://creativecommons.org/licenses/by-nc/4.0/


the community.269 This correction is exact within the G0W0 approximation5 and when re-

tardation effects are neglected.284 The authors refer to this correction as EDC@G0W0 (exact

double counting at the G0W0 level of theory). Furthermore, quantum embedding theories

were compiled in a recent review on embedding theories designed for electronic structure

calculations of solids on noisy intermediate-scale quantum computers.285 Specifically, the

focus is on a class of materials, solid materials housing spin defects, with examples highlight-

ing their application. However, it is important to note that embedding schemes, including

QDET, demonstrate potential versatility by being applicable to diverse localized, highly

correlated states. This includes states found in solvated ions, nanostructures, surface ad-

sorbates, as well as catalytic sites at surfaces and interfaces that are extremely relevant to

heterogeneous catalysis.

5.4 Density matrix embedding theory (DMET)

Density Matrix Embedding Theory (DMET) is another embedding theory that is used to

simulate strongly correlated electronic systems.286,287 Like DMFT, DMET employs a strategy

where a localized fragment, treated with high precision, is embedded within a surrounding

environment treated with lower precision. This approach allows for a focused treatment of

the important region while simplifying the representation of the entire system. The primary

distinction between DMET and DMFT lies in their embedding strategies. DMET embeds

the ground-state density matrix exclusively, eliminating the need for a frequency-dependent

formulation. In contrast, DMFT embeds the Green’s function, resulting in a different ap-

proach to describing the system-environment interaction. The density matrix of the active

region is then used to embed the active region into the environment region, thus correlating

the two regions. This method allows for the treatment of strongly correlated systems, such

5The G0W0 approximation is a commonly employed technique, where the self-energy is formulated as
the convolution of a non-interacting Green’s function (G0) and a screened Coulomb interaction (W0) in the
frequency domain. This also holds true for the GW self-energy beyond G0W0. The main feature of G0W0

is that the off-diagonal elements of the self-energy are neglected and the KS orbital energies are therefore
corrected perturbatively.
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as transition metal complexes, with high accuracy at a relatively low computational cost.

Additionally, by treating the active region with an exact method and the environment region

with a mean-field method, DMET can capture both short-range and long-range correlation

effects in the system. It can also be used to simulate large and complex systems that are

difficult to treat using traditional methods, such as systems pertaining to heterogeneous

catalysis. For more in-depth exploration of this topic, readers are directed to a tutorial-level

review on DMET.288

In the quantum computing context, DMET has been used to model carbon capture on

metal-organic frameworks.289 DMET combined with the VQE and active space approach

was used to study CO2 adsorption in Al-fumarate metal-organic frameworks (MOF), an

important reaction in carbon capture.289 We note that the starting second quantized Hamil-

tonian was formed in a minimal STO-3G basis so results should not be compared directly

to experimental observations. The quantum simulations were performed on noise-free and

noisy emulator backends and error mitigation schemes were applied on the results. Four

different fragmentation strategies were used to calculate CO2-MOF bond stretching energy,

which for larger bond distances, r ≫ 2 Å corresponds to the bond dissociation energy. All

four fragmentation strategies gave different results while one of the four schemes provided

reasonable results for the bond dissociation energy. In an other case, simplified models of

hydrogen chain and iron crystals were studied using DMET and VQE.220 This study is al-

ready discussed in Section 4.2. Given its usefulness, it has been integrated to be a part of the

workflow of Inquanto,290 a software developed by Quantinuum that is capable of performing

chemistry calculations using quantum algorithms. In addition to these algorithms, two new

approaches have been proposed to leverage embedding techniques in near-term quantum

computers. One approach is based on DMET,291 while the other is based on the projection-

based embedding method.292 However, the details of these algorithms will not be discussed

here.

67

https://doi.org/10.26434/chemrxiv-2024-d2l1k ORCID: https://orcid.org/0000-0003-4509-8454 Content not peer-reviewed by ChemRxiv. License: CC BY-NC 4.0

https://doi.org/10.26434/chemrxiv-2024-d2l1k
https://orcid.org/0000-0003-4509-8454
https://creativecommons.org/licenses/by-nc/4.0/


5.5 Embedding approaches: Summary and Outlook

Considering the size of the active space essential for accurately capturing strong correla-

tion effects in catalytically relevant materials and the number of atoms required to define

realistic models of heterogeneous catalysts, embedding approaches emerge as the most prac-

tical and promising strategy to make calculations feasible. The continuous advancement of

quantum computing, marked by improvements in qubit quality and classical-quantum com-

munication connectivity, opens up opportunities for embedding approaches that utilize both

classical and quantum computing techniques. It is essential to recognize that increase in the

number of qubits in a quantum processor must be accompanied by improvements in qubit

fidelity to achieve meaningful progress. This realization has prompted discussions about

quantum-centric supercomputing,293,294 a paradigm that emphasizes the unique strengths

of quantum computers, particularly their suitability for specific problem types. The ongo-

ing collaboration between the high-performance computing (HPC) and quantum computing

communities holds great promise, showcasing a collective effort to harness the strengths of

both paradigms.295–297 The development of tools for circuit cutting and knitting298 is par-

ticularly noteworthy, as it enables more seamless integration of embedding approaches into

the broader computational landscape. Looking forward, as embedding approaches become

more practical and viable in the near future, in line with previous observations,294 we can see

a quantum-centric computing approach to materials modelling emerge. Such an approach

can leverage the strengths of both classical and quantum computing, offering a synergistic

solution to the challenges faced in heterogeneous catalysis modelling.

6 Kinetics and uncertainty quantification

A final topic in which quantum computing may have an impact is in the modelling the entire

set of reactions that can occur in a certain heterogeneous catalytic process. Understanding

these kinetics and quantifying uncertainties that result from incomplete knowledge of the
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reaction constants or even mechanisms are vital for optimizing catalytic processes. Fur-

thermore, this step serves as a connection between the atomistic scale to the reactor scale

processes. Kinetic models, particularly microkinetic models, serve thereby as valuable tools

for elucidating reaction mechanisms and predicting reaction rates. One notable advantage

of microkinetic models is their ability to describe reactions because they can be cast as

linear systems of equations in a straight forward manner. Recent advancements in quan-

tum computing have shown promise for the application of the Harrow, Hassidim, and Lloyd

(HHL) algorithm159 in the realm of kinetics and uncertainty quantification in heterogeneous

catalysis. The HHL algorithm is a quantum algorithm specialized in numerically solving

linear systems of equations (Section 3.3.2). Writing the kinetic equations as a system of

linear equations, Walker and his coworkers have explored these areas.193–195 One of their

works emphasizes the setup of a CO oxidation microkinetic model using a quantum circuit,

emphasizing the advantage of microkinetic models that eliminate the need for an encoding

step.193 In the HHL algorithm, the vector |b⟩ is encoded using additional qubits in a quan-

tum register. Each element of the vector |b⟩ is represented by the state of these qubits. This

encoding typically involves mapping the amplitudes of the vector onto the quantum states

of the qubits. In their algorithm, Walker et al. utilize the steady state approximation and

mass balance to represent the input vector |b⟩ with binary encoding, effectively eliminating

the need for a separate encoding step. It demonstrates that the linearized set of equations

can be solved with reasonable accuracy in a single iteration. In another paper, they present

a method for uncertainty quantification using reduced microkinetic models and the loga-

rithmic scaling of qubits, again, leveraging the HHL algorithm to solve linear systems.194

Comparisons with classical methods are made, and the potential for quantum advantage is

highlighted, along with the challenges encountered when dealing with larger systems. Fur-

thermore, in a more recent paper, they introduce a quantum circuit approach for modelling

steady-state behavior in homogeneous hydrogen-air combustion.195 Empirical testing reveals

critical factors influencing the accuracy of the HHL algorithm, providing valuable insights
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for the preconditioning of reduced models. These papers showcase the potential of quantum

computing and the HHL algorithm in kinetics and uncertainty quantification, paving the

way for further advances in heterogeneous catalysis research. That being said, the HHL

algorithm, meant for solving linear systems of equations, isn’t ideal for NISQ computers

because it needs high qubit connectivity, long coherence times, and low errors in gates and

measurements. The challenges of implementing the HHL algorithm on NISQ computers and

the conditions necessary for achieving speedup are discussed in Section 3.3.2.

7 Summary and Outlook

In summary, this review has explored the emerging research field of modelling heterogeneous

catalysis through quantum computing algorithms, encompassing academic advancements, in-

dustry demands and collaborative efforts of academia and industry. The quest for active and

selective catalysts, including emerging materials such as multi-component alloys, single-atom

catalysts, and magnetic catalysts, has underscored the limitations of conventional methods

like DFT, particularly in capturing strong correlation effects and spin-related phenomena.

Quantum computing has the potential to emerge as a transformative tool, as it is intrinsi-

cally better suited to overcome these challenges than conventional computational chemistry

methods.

Within quantum computing algorithms, our primary focus has been on the variational

quantum eigensolver (VQE), as this is the most extensively researched algorithm in the cur-

rent noisy intermediate-scale quantum (NISQ) era. Considering the current landscape with

only a few thousand qubits within reach, it is likely that VQE will remain a dominant tool

for computational tasks in the near future. However, to look further ahead we also briefly

discussed other algorithms such as quantum phase estimation (QPE), the Harrow-Hassidim-

Lloyd (HHL) algorithm, and quantum singular value transformation (QSVT). These algo-

rithms are poised to play an important role in the transition to the early fault tolerant
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quantum computing (EFTQC) era and the subsequent fault-tolerant quantum computing

(FTQC) era, where the availability of a few hundred thousand error-corrected qubits could

change the landscape of computational approaches for heterogeneous catalysis research.

In our exploration of quantum computing applications in heterogeneous catalysis, we

underscored the preliminary but promising utility in industrial use cases. While current

applications concern proof-of-principle studies with basis sets that are far too small to reach

chemical accuracy or even rival classical computing approaches, they serve to explore what

will be possible with more potent quantum computers. The many collaborative efforts be-

tween academia and industrial partners in researching these applications are illustrative for

the rapidly increasing interest in this field.

As an example, we highlighted studies where VQE, initially designed for modelling molec-

ular systems, was extended to address periodic systems. We furthermore looked at efforts

to use VQE in calculating electronic band structures, a crucial component for studying pho-

tocatalysis applications. Additionally, we discussed use cases involving the computation of

bulk lattice constants and molecule-surface reactions, where embedding approaches were em-

ployed to tackle challenges posed by the system’s size. We dedicated a section and delved into

the details of embedding methods, drawing attention to a hybrid strategy where quantum

computing algorithms handle the strongly-correlated region, while reasonably accurate and

cost-effective traditional quantum chemistry algorithms, like DFT, address the remainder

of the system. Finally, we briefly touched upon uncertainty quantification in heterogeneous

catalysis, which find a potential application in modelling catalysis at the reactor scale.

Looking ahead, the utilization of quantum computing in heterogeneous catalysis research

with its complex and large to solve models has considerable potential to lead to break-through

developments. This observation is corroborated by the investments by both academic and

industrial players which signal a growing interest in exploring quantum computing in this

context. This review emphasizes the importance of adapting computational methodologies

for strongly correlated systems where quantum computing can provide an advantage over
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classical algorithms. If theory, algorithms, and hardware developments continue to progress,

quantum computing may reach its potential and start to play an important role in modelling

heterogeneous catalysis. Envisioning such a future where quantum algorithms seamlessly in-

tegrate into catalysis research workflows, we expect that the journey into quantum computing

can help to push the boundaries of our understanding in heterogeneous catalysis.
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9 Glossary

1. Heterogeneous catalysis: Heterogeneous catalysis is a type of catalysis where the

catalyst is present in a different phase (solid, liquid, or gas) from the reactants. The

reactants adsorb onto the surface of the catalyst, undergo chemical reactions, and then

desorb as products. Heterogeneous catalysis plays a crucial role in various industrial

processes, such as petroleum refining, chemical synthesis, and pollution control.

2. Single-atom catalysts (SACs): SACs represent a novel class of catalysts consist-

ing of isolated metal atoms dispersed on a support material. Their unique electronic

and geometric structures enable exceptional catalytic activity and selectivity, offering
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promising avenues for sustainable chemical processes. SACs provide precise control

over catalytic reactions due to their high surface area and tunable active sites, making

them highly desirable for various industrial applications.

3. Multicomponent alloys: Multicomponent alloys serve as versatile catalysts in het-

erogeneous catalysis, offering tunable properties that can enhance catalytic perfor-

mance. By combining multiple elements, these alloys can exhibit synergistic effects,

promoting desirable catalytic reactions while minimizing undesired byproducts. Their

tailored composition enables precise control over surface reactivity and electronic struc-

ture, crucial for catalyzing complex chemical transformations.

4. Density functional theory (DFT): DFT is a computational method widely used in

quantum chemistry and condensed matter physics to calculate the electronic structure

and properties of molecules, solids, and surfaces. It is based on the concept that

the total energy of a system can be determined by the electron density rather than

the wavefunction. DFT employs the exchange-correlation functional to describe the

electron-electron interactions, making it a computationally efficient method for large

systems.

5. First quantization: First quantization is a formalism used to describe quantum

systems by directly considering the wavefunction of individual particles or the system

as a whole. It involves solving the Schrödinger equation for the wavefunction in terms of

the coordinates and momenta of the particles. First quantization is commonly used in

introductory quantum mechanics courses and provides a foundation for understanding

the principles of quantum theory.

6. Second quantization: Second quantization is a mathematical framework used to

describe quantum systems with multiple identical particles. It treats the particles as

indistinguishable entities and represents the quantum state of the system in terms of

creation and annihilation operators acting on a vacuum state. Second quantization is
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widely used in quantum field theory, many-body physics, and quantum chemistry to

describe systems with variable numbers of particles.

7. Atom-centered basis-set: An atom-centered basis set is a set of mathematical func-

tions used to represent the electronic wavefunctions in molecules or molecular systems.

These basis functions are centered on individual atoms and describe the spatial distri-

bution of electrons around each atom. Basis sets can be composed of Gaussian func-

tions or numerical grid representations and are crucial for accurate quantum chemical

calculations of molecular properties.

8. Plane waves: Plane waves, in the context of computational materials science and

electronic structure calculations, are a mathematical basis set used to represent the

electronic wavefunctions in periodic systems. They are characterized by having a con-

stant amplitude and a wavefront that is a plane perpendicular to the direction of

propagation. Plane wave methods are commonly employed in solid-state physics and

materials simulations.

9. Wavefunction: In quantum mechanics, a wavefunction represents the quantum state

of a system. It is a mathematical function that describes the probability amplitudes

of different possible outcomes when measuring observables of the system. The square

of the wavefunction gives the probability density of finding the system in a particular

state.

10. Hamiltonian: The Hamiltonian is an operator in quantum mechanics that represents

the total energy of a system. It includes the kinetic energy and potential energy

terms and is used to describe the time evolution of the wavefunction according to

the Schrödinger equation. The Hamiltonian operator provides information about the

observable properties and behavior of a quantum system.

11. Full configuration interaction (Full CI): FCI is a quantum chemical method that
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provides an exact solution to the electronic Schrödinger equation within a given ba-

sis set. It involves considering all possible configurations of electron occupation in

the molecular orbitals, leading to an exact description of the electronic wavefunction.

However, the computational cost of Full CI scales exponentially with the system size,

limiting its application to small systems.

12. Active space: In quantum chemistry, the active space refers to the subset of molecu-

lar orbitals and electrons considered as the most relevant for describing the electronic

structure of a system. It is typically chosen based on the specific chemical and phys-

ical properties under investigation. The active space is defined by selecting a specific

number of occupied and virtual orbitals and the corresponding electrons.

13. Strong correlation: Strong correlation refers to situations in quantum systems where

the standard mean-field methods, such as Hartree-Fock theory or density functional

theory, fail to accurately describe the electronic structure due to strong electron-

electron interactions. Strong correlation effects are prevalent in systems with open-shell

configurations, transition metals, and molecules with significant electronic delocaliza-

tion.

14. Static correlation: Static correlation refers to the correlation effects in a molecular

system that arise due to the degeneracy or near-degeneracy of two or more electronic

states. It is characterized by the mixing of electronic configurations with significantly

different occupancies, leading to difficulties in describing the electronic structure with

single-reference methods.

15. Dynamic correlation: Dynamic correlation refers to the correlation effects in a

molecular system that arise from the electron-electron interactions associated with

the movement of electrons. It is related to the electron correlation beyond the static

correlation effects and involves the redistribution of electrons during chemical reactions
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or in excited states. Dynamic correlation effects are crucial for accurately describing

the potential energy surfaces and reaction mechanisms.

16. Embedding: In the context of quantum chemistry calculations, embedding refers to a

computational approach that combines different levels of theory to describe a system.

It involves partitioning the system into a primary region of interest and an embedding

environment. The primary region is treated at a higher level of theory, while the

environment is described using a lower level of theory. Embedding methods allow for

the accurate treatment of a small region of interest embedded in a larger system.

17. Canonical molecular orbitals: Canonical molecular orbitals, also known as natural

orbitals or Hartree-Fock orbitals, are solutions to the electronic Schrödinger equation

obtained within the Hartree-Fock approximation in quantum chemistry. They repre-

sent the molecular orbitals of a system and are obtained by diagonalizing the molecular

orbital matrix. Canonical molecular orbitals provide a basis for describing the elec-

tronic structure of a molecule and are often used in electronic structure calculations to

analyze bonding, molecular properties, and chemical reactivity.

18. Localized molecular orbitals (LMOs): LMOs are alternative representations of

molecular orbitals that provide a localized description of electron density. LMOs are

derived from canonical molecular orbitals through a transformation that maximizes the

localization of electron density on specific atoms or groups within a molecule. LMOs are

particularly useful for analyzing chemical bonding, molecular reactivity, and electron

delocalization. They offer an intuitive and chemically interpretable representation of

electron distribution in a molecule.

19. State-averaged: State-averaged refers to a computational approach in quantum

chemistry and molecular electronic structure calculations. It involves averaging the

electronic energies and properties over multiple electronic states, such as different spin
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states or excited states. State-averaged methods are used to obtain accurate descrip-

tions of molecular systems that exhibit strong electronic correlation effects.

20. Orbital optimization: Orbital optimization is a procedure used in quantum chemical

calculations to optimize the molecular orbitals that describe the electronic structure

of a molecule. It involves iteratively adjusting the molecular orbitals to minimize

the electronic energy of the system, typically using methods based on the variational

principle. Orbital optimization helps improve the accuracy of electronic structure

calculations and provides a more reliable description of molecular properties.

21. Variational quantum eigensovler (VQE): VQE is a quantum algorithm designed

to solve for the ground state energy of a quantum system using a variational approach.

It combines classical optimization techniques with a quantum circuit ansatz to find

the lowest energy eigenstate of a given Hamiltonian. VQE is a promising approach for

near-term quantum computers to tackle problems in quantum chemistry and materials

science.

22. Qubit: A qubit is the fundamental unit of quantum information in quantum comput-

ing. It is the quantum analogue of a classical bit, representing a two-level quantum

system with states usually referred to as |0⟩ and |1⟩. Qubits can exist in a super-

position of states, allowing for parallel processing and the potential for exponential

computational speedup in certain algorithms.

23. Quantum gates: Quantum gates are fundamental building blocks of quantum circuits

and are analogous to classical logic gates in classical computing. They are represented

by unitary operators that act on the quantum states of qubits. Quantum gates ma-

nipulate the quantum state of qubits to perform specific operations such as rotations,

entanglement generation, and information processing in quantum algorithms.

24. Quantum circuit: A quantum circuit is a sequence of quantum gates applied to
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qubits to perform quantum computations. Similar to classical circuits composed of logic

gates, quantum circuits manipulate the quantum state of qubits to implement quantum

algorithms and computations. The gates in a quantum circuit typically perform unitary

operations on qubits, such as rotations, entanglement operations, and measurements.

25. Unitary operations: In the context of quantum computing, unitary operations refer

to transformations that preserve the norm of the quantum state and are reversible. A

unitary operator is represented by a square matrix that is both Hermitian (equal to its

own conjugate transpose) and unitary (its inverse is equal to its conjugate transpose).

Unitary operations are fundamental in quantum mechanics and play a crucial role in

quantum circuits, where they enable the manipulation and evolution of quantum states

while preserving their probabilistic interpretation.

26. Ansatz: In the context of quantum algorithms and quantum computing, an ansatz

refers to a trial wavefunction or a specific form of a quantum circuit used to prepare a

state of interest. The ansatz is chosen based on heuristics, intuition, or prior knowledge

and is designed to capture the relevant features of the desired quantum state. The

optimization of the ansatz parameters allows for the exploration of the solution space

in variational quantum algorithms.

27. State preparation: State preparation, also known as initial state preparation, is the

process of preparing a quantum system in a desired quantum state. In the context of

quantum computing, it involves initializing the qubits or quantum registers in a specific

configuration or superposition state required for a particular quantum algorithm or

computation. State preparation is a crucial step in performing quantum computations

and experiments.

28. Measurement: Measurement in quantum mechanics refers to the process of extracting

information or obtaining outcomes from a quantum system. It involves interacting with

the system in a way that projects it onto a particular eigenstate or superposition state.
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The measurement process in quantum computing is typically carried out by applying

appropriate quantum gates followed by a measurement operation, providing classical

data based on the quantum state of the qubits.

29. Noisy-intermediate scale quantum (NISQ): Near-term quantum computing, of-

ten referred to as Noisy Intermediate-Scale Quantum (NISQ) computing, represents the

current state of quantum technology where devices possess a limited number of qubits

and short coherence times. Research in NISQ focuses on harnessing these devices to

explore quantum algorithms, error mitigation techniques, and applications in various

fields, paving the way for future advancements in quantum computing technologies.

30. Error mitigation: Error mitigation techniques play a crucial role in improving the

reliability and accuracy of quantum computations, especially on noisy intermediate-

scale quantum (NISQ) devices. By identifying and correcting errors that arise during

quantum operations, these techniques help mitigate the impact of noise and imperfec-

tions inherent in current quantum hardware. Various approaches, such as randomized

benchmarking, Pauli twirling, zero-noise extrapolation, machine learning-based meth-

ods, etc., are being explored to mitigate errors in NISQ quantum computations.

31. Error correction: Error correction is a vital aspect of quantum computing, aimed

at mitigating errors introduced during quantum operations. Quantum error correction

codes, such as the surface code and the repetition code, are designed to detect and cor-

rect errors that occur due to noise and decoherence in quantum systems. These codes

use redundancy and logical qubits to protect quantum information from errors, thereby

enhancing the reliability of quantum computations. Error correction techniques play a

crucial role in building fault-tolerant quantum computers capable of performing com-

plex calculations with high accuracy and reliability.

32. Quantum advantage/Quantum supremacy: Quantum advantage, also known as

quantum supremacy, refers to the state where a quantum computer can perform a
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specific computational task that is beyond the capabilities of the best classical com-

puters. It signifies the ability of a quantum computer to solve certain problems more

efficiently or to tackle computations that would take an impractically long time for clas-

sical computers. Achieving quantum advantage is a major goal in the field of quantum

computing.

33. Time-reversal symmetric Hamiltonian: A time-reversal symmetric Hamiltonian,

denoted as H, is a quantum mechanical operator representing the total energy of a

system. This operator preserves its form under time reversal operations, ensuring that

the system’s physical laws remain unchanged when the direction of time is reversed.

Mathematically, the time reversal operator T satisfies the condition: THT−1 = H,

indicating that applying time reversal to the Hamiltonian restores its original form.
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Engineering the Electronic Structure of Single-Atom Catalysts. ACS Catalysis 2023,

13, 2981–2997.

(133) Zhang, L.; Ren, X.; Zhao, X.; Zhu, Y.; Pang, R.; Cui, P.; Jia, Y.; Li, S.; Zhang, Z.

Synergetic charge transfer and spin selection in CO oxidation at neighboring magnetic

single-atom catalyst sites. Nano Letters 2022, 22, 3744–3750.

(134) Zhong, W.; Qiu, Y.; Shen, H.; Wang, X.; Yuan, J.; Jia, C.; Bi, S.; Jiang, J. Electronic

95

https://doi.org/10.26434/chemrxiv-2024-d2l1k ORCID: https://orcid.org/0000-0003-4509-8454 Content not peer-reviewed by ChemRxiv. License: CC BY-NC 4.0

https://doi.org/10.26434/chemrxiv-2024-d2l1k
https://orcid.org/0000-0003-4509-8454
https://creativecommons.org/licenses/by-nc/4.0/


spin moment as a catalytic descriptor for Fe single-atom catalysts supported on C2N.

Journal of the American Chemical Society 2021, 143, 4405–4413.

(135) Zhang, C.; Dai, Y.; Sun, Q.; Ye, C.; Lu, R.; Zhou, Y.; Zhao, Y. Strategy to weaken

the oxygen adsorption on single-atom catalysts towards oxygen-involved reactions.

Materials Today Advances 2022, 16, 100280.

(136) Rosli, R.; Sulong, A.; Daud, W.; Zulkifley, M.; Husaini, T.; Rosli, M.; Majlan, E.;

Haque, M. A review of high-temperature proton exchange membrane fuel cell (HT-

PEMFC) system. International Journal of Hydrogen Energy 2017, 42, 9293–9314,

Special Issue on Sustainable Fuel Cell and Hydrogen Technologies: The 5th Interna-

tional Conference on Fuel Cell and Hydrogen Technology (ICFCHT 2015), 1-3 Septem-

ber 2015, Kuala Lumpur, Malaysia.

(137) Jiao, K.; Xuan, J.; Du, Q.; Bao, Z.; Xie, B.; Wang, B.; Zhao, Y.; Fan, L.; Wang, H.;

Hou, Z.; Huo, S.; Brandon, N. P.; Yin, Y.; Guiver, M. D. Designing the next generation

of proton-exchange membrane fuel cells. Nature 2021, 595, 361–369.

(138) Bing, Y.; Liu, H.; Zhang, L.; Ghosh, D.; Zhang, J. Nanostructured Pt-alloy electro-

catalysts for PEM fuel cell oxygen reduction reaction. Chem. Soc. Rev. 2010, 39,

2184–2202.
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quantum states. npj Computational Materials 2023, 9, 126.

(273) Ma, H.; Govoni, M.; Gygi, F.; Galli, G. A finite-field approach for GW calculations

beyond the random phase approximation. Journal of chemical theory and computation

2018, 15, 154–164.

111

https://doi.org/10.26434/chemrxiv-2024-d2l1k ORCID: https://orcid.org/0000-0003-4509-8454 Content not peer-reviewed by ChemRxiv. License: CC BY-NC 4.0

https://doi.org/10.26434/chemrxiv-2024-d2l1k
https://orcid.org/0000-0003-4509-8454
https://creativecommons.org/licenses/by-nc/4.0/


(274) He, M.; Govoni, M.; Francois, G.; Giulia, G., et al. Correction: A finite-field approach

for GW calculations beyond the random phase approximation (Journal of Chemical

Theory and Computation (2019) 15: 1 (154-164. JOURNAL OF CHEMICAL THE-

ORY AND COMPUTATION 2020, 16, 2877–2879.

(275) Nguyen, N. L.; Ma, H.; Govoni, M.; Gygi, F.; Galli, G. Finite-Field Approach to

Solving the Bethe-Salpeter Equation. Phys. Rev. Lett. 2019, 122, 237402.

(276) Wilson, H. F.; Gygi, F. m. c.; Galli, G. Efficient iterative method for calculations of

dielectric matrices. Phys. Rev. B 2008, 78, 113303.

(277) Nguyen, H.-V.; Pham, T. A.; Rocca, D.; Galli, G. Improving accuracy and efficiency

of calculations of photoemission spectra within the many-body perturbation theory.

Phys. Rev. B 2012, 85, 081101.

(278) Pham, T. A.; Nguyen, H.-V.; Rocca, D.; Galli, G. GW calculations using the spectral

decomposition of the dielectric matrix: Verification, validation, and comparison of

methods. Phys. Rev. B 2013, 87, 155148.

(279) Govoni, M.; Galli, G. Large scale GW calculations. Journal of chemical theory and

computation 2015, 11, 2680–2696.

(280) Ma, H.; Govoni, M.; Galli, G. Quantum simulations of materials on near-term quantum

computers. npj Computational Materials 2020, 6, 85.

(281) Ma, H.; Sheng, N.; Govoni, M.; Galli, G. Quantum embedding theory for strongly

correlated states in materials. Journal of Chemical Theory and Computation 2021,

17, 2116–2125.

(282) Temme, K.; Bravyi, S.; Gambetta, J. M. Error Mitigation for Short-Depth Quantum

Circuits. Phys. Rev. Lett. 2017, 119, 180509.

112

https://doi.org/10.26434/chemrxiv-2024-d2l1k ORCID: https://orcid.org/0000-0003-4509-8454 Content not peer-reviewed by ChemRxiv. License: CC BY-NC 4.0

https://doi.org/10.26434/chemrxiv-2024-d2l1k
https://orcid.org/0000-0003-4509-8454
https://creativecommons.org/licenses/by-nc/4.0/


(283) Sheng, N.; Vorwerk, C.; Govoni, M.; Galli, G. Green’s function formulation of quantum

defect embedding theory. Journal of Chemical Theory and Computation 2022, 18,

3512–3522.

(284) Stan, A.; Dahlen, N. E.; Van Leeuwen, R. Levels of self-consistency in the GW ap-

proximation. The Journal of chemical physics 2009, 130 .

(285) Vorwerk, C.; Sheng, N.; Govoni, M.; Huang, B.; Galli, G. Quantum embedding theories

to simulate condensed systems on quantum computers. Nature Computational Science

2022, 2, 424–432.

(286) Knizia, G.; Chan, G. K.-L. Density Matrix Embedding: A Simple Alternative to

Dynamical Mean-Field Theory. Phys. Rev. Lett. 2012, 109, 186404.

(287) Knizia, G.; Chan, G. K.-L. Density matrix embedding: A strong-coupling quantum

embedding theory. Journal of chemical theory and computation 2013, 9, 1428–1432.
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