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Abstract

Bayesian optimization (BO) is an increasingly popular method for optimization and devel-
opment of chemical reactions. Although effective in guiding experimental design, BO does not
account for experimentation costs: testing readily available reagents under different conditions
might be more cost and time-effective than synthesizing or buying additional ones. To address
this issue, we present cost-informed BO (CIBO), an approach tailored for the rational planning
of chemical experimentation that prioritizes the most cost-effective experiments. Reagents are
used only when their anticipated improvement in reaction performance sufficiently outweighs
their costs. Our algorithm tracks the available reagents, including recently acquired ones, and
dynamically updates their cost during the optimization. Using literature data of Pd-catalyzed
reactions, we show that CIBO reduces the cost of reaction optimization by up to 90% com-
pared to standard BO. Our approach is compatible with any type of cost, e.g., the cost of
buying equipment or compounds, waiting time, and environmental or security concerns. We
believe CIBO supersedes BO in chemistry and envision applications in both traditional and
self-driving laboratories for experiment planning.

1 Introduction

Reaction optimization is a challenging task
that is often tackled “one factor at a time”
by sequentially optimizing individual param-
eters such as catalyst, temperature, or addi-
tives. While this strategy simplifies the prob-
lem significantly, it remains time and resource-
intensive and might disregard promising com-
binations of parameters (e.g., an additive and
ligand that were discarded for their lacking in-
dividual performance may yield optimal results
when combined).

As an alternative, data-driven computational
tools, such as machine learning (ML), have re-
cently been used to guide experimental efforts
towards the best possible performance by pre-
dicting reaction yield or selectivity from sub-
strates, catalysts, and reaction conditions.1–6

Among the different ML frameworks,
Bayesian optimization (BO) is ideally suited
for this task.7,8 Given some initial data, BO
leverages predictions and their corresponding
uncertainties to suggest the next most promis-
ing experiments to conduct. BO-driven reac-
tion optimization has seen significant success in
the last few years, especially in the automated
laboratory and high-throughput experimenta-
tion (HTE) setting.3,9–16 Therein, all necessary
materials (i.e., substrates, catalysts, additives,

solvents) to be considered are typically pro-
cured prior to experimentation, and BO is used
to find the best reagents and reaction condi-
tions.1,3,17,18

Yet, the implementation of BO and other ML
frameworks in traditional laboratories is still
limited.19–22 In this setting, defining and acquir-
ing all necessary materials for the optimization
beforehand is not ideal, especially when dealing
with unexplored chemistry. Furthermore, clas-
sical BO methods usually attribute the same
cost to all suggested experiments. In reaction
optimization, where e.g., catalyst ligands and
reaction conditions have to be adjusted simul-
taneously, this assumption is unsuitable. De-
pending on whether a ligand is already avail-
able in the laboratory, commercially available,
reported in the literature, or has never been
synthesized before, the cost of an experiment
(in terms of money, time investment, or risk)
is significantly different. Thus, the experiments
suggested by BO may not be practical or even
feasible. Testing a known, available ligand with
different reaction conditions may yield a com-
parable improvement at a much lower cost.

To overcome this limitation, here we in-
troduce cost-informed Bayesian optimization
(CIBO), a BO framework that incorporates cost
into the decision-making process for practical
and rational batch experimentation planning.
Note that we do not aim to optimize the over-
all cost of individual reactions nor to include
constraints, as pursued in other works,16,18,23,24
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Figure 1: Overview of standard BO (blue) vs. cost-informed Bayesian optimization (CIBO, orange)
for yield optimization. (a): BO recommends purchasing more materials. Meanwhile, CIBO balances
purchases with their expected improvement of the experiment, at the cost of performing more
experiments (here five vs. four). (b): A closer look at the two acquisition functions of BO and
CIBO for the selection of experiment two. In CIBO, the BO acquisition function is modified to
account for the cost by subtracting the latter. Following the blue BO curve, the next experiment
to perform uses green and red reactants (corresponding to the costly maximum on the right).
Subtracting the price of the experiments results in the orange CIBO curve, which instead suggests
the more cost-effective experiment on the left (blue and red reactants).

but rather expedite reaction optimization by
proposing experiments that are as informative
and promising, yet as cost-effective, as possi-
ble. CIBO’s acquisition function prioritizes ex-
periments with a high benefit-to-cost ratio, en-
abling minimization of both the number of ex-
periments to carry out and their total cost (Fig-
ure 1). Moreover, CIBO keeps a digital inven-
tory that tracks what is available in the lab-
oratory at all times, which is used to update
the cost of experiments at each iteration (e.g.,
once a ligand is bought, it might be available
for several experiments).

Previous methods that account for costs in
BO include contextual BO,25 addressing en-
vironmental effects, as well as direct modifi-
cations of the acquisition function.26–28 Alter-
natively, one can rely on human-in-the-loop
strategies.29 Different cost-aware methods have
been developed that favor low-cost experiments
following a given budget.30–34 In all these exam-
ples, costs are kept fixed during the optimiza-
tion. A different but related problem that has
been investigated in the literature is resource
management optimization, albeit not applied
to BO.35–37 Finally, recent works have focused
on the cost of changing between different ex-

perimental setups to account for the associated
expenses.38–45

To our knowledge, a framework accounting
both for the cost of experiments and the fact
that these costs change over time has not been
discussed before for reaction optimization. We
demonstrate the performance of CIBO using
two HTE datasets of Pd-catalyzed reactions
and find that, despite occasionally requiring ad-
ditional experiments to match standard BO,
the overall cost of the optimization campaign is
significantly reduced. Our benchmarks evaluate
cost using the price of commercially available
reagents. However, CIBO is compatible with
any cost definition, such as the number of steps
or estimated time required for synthesizing re-
ported ligands, as well as sustainability metrics
for solvents or compounds. In the latter case,
the platform will prioritize options with lower
environmental impact.46–48

Overall, CIBO promises an efficient and
sustainable alternative to existing design-of-
experiment methods in the traditional lab set-
ting, as well as in future self-driving laborato-
ries.49,50
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2 Methods

2.1 Cost-informed Bayesian opti-
mization

BO is an effective method for optimizing noisy
functions that are expensive or time-consuming
to evaluate.51 At its core lies a surrogate model
that predicts the value of the function (mean µ)
and the uncertainty of the prediction (standard
deviation σ). Acquisition functions are then
used to identify promising experiments in the
design space.52 This is done by considering all
possible experiments and weighting their poten-
tial to maximize µ. In addition to perform-
ing one experiment at a time, batch BO pro-
poses a joined set (i.e., a batch of experiments)
which provides the largest expected improve-
ment when performed in parallel.

Given the previous definition, BO does not
account for the varying costs of the resources
involved in the optimization. Instead of buying
or synthesizing additional substances, chemists
may first choose to vary easily controllable con-
ditions (e.g., temperature, reaction time), re-
sulting in lower costs and a better-informed de-
cision before acquiring additional compounds.

Finding the best experimental conditions for
the smallest budget is different from identify-
ing the best value–cost trade-off in the opti-
mized reaction. The latter is relevant when
large amounts of the compounds involved need
to be acquired repeatedly: e.g., large-scale syn-
thesis. The former, and current case, is rele-
vant when the budget (in terms of cost, time,
or other) for the experimentation campaign it-
self is important.

Our method, cost-informed Bayesian opti-
mization (CIBO), balances minimizing exper-
imentation cost with maximizing measured im-
provement (see Figure 1). It results in exper-
iments that mimic more closely the optimiza-
tion process in a chemistry lab, only acquiring a
compound if the expected improvement justifies
the costs. CIBO stands out from standard BO
by promoting the search for more cost-effective
experiments while not constraining its search
space (i.e., an expensive ligand may still be se-
lected if its expected improvement justifies it).

We account for experimentation costs by in-
cluding them in the acquisition function,53,54

scaling the cost adjustment with the expected
improvement values. Given the set of all pos-
sible experiments {e}, we use the batch noisy
expected improvement (qNEI) acquisition func-
tion {αe}, computed from the predicted µ and σ
from the surrogate model to determine the next
batch B := {e1, . . . , e5} ⊂ {e} for each itera-
tion.55,56 Here ej is the j-th experiment in batch
B with acquisition function value αj ≡ αej .
Note there is exactly one αj per experiment
ej. For a batch of experiments, here Ne = 5
per batch, we consider the current cost of each
compound involved. As user input, only the
compound prices per gram, per mol, per bot-
tle, or other user-defined costs pj are required.

For simplicity, here we cover the case of one
compound j per experiment ej. Batches are
ordered with respect to the norm of B, defined
by the sum of the acquisition function values αi

in each batch,

|B| :=
Ne=5∑
j=1

αj. (1)

In standard batch BO, the batch with the high-
est rank (i.e., the highest expected improve-
ment, represented by the blue line in Figure 1b)
is chosen for the next set of experiments, as
it offers the best combination of expected im-
provement and cost. In CIBO, we modify
qNEI of each experiment ej by subtracting a
term44,53,54 proportional to the cost C(ej) as fol-
lows:

α̃j = αj − C(ej) · S({α}), (2)

where C probes if the compound j was bought
at price pj in a previous iteration or added to
the same batch before, i.e.,

C(ej) =

{
0 if j bought or already in B,
pj otherwise.

(3)

This means that the cost is zero when j was ob-
tained in some previous iteration or appeared
before in the same batch B but under differ-
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ent experimental conditions. For simplicity,
throughout this work we will assume that com-
pounds in the inventory are never exhausted.
However, our framework could be set to deduct
exact quantities from the inventory until noth-
ing remains.

Finally in Equation 2, we have introduced a
scaling function S that depends on all acquisi-
tion function values {α} evaluated on all exper-
iments not yet included in the surrogate model
and the current prices {p} for each ligand,

S := max{α}/max{p}, (4)

to update the magnitude of the prices that en-
ter Equation 2 such that the maximum value
of the subtracted term has the same value as
the largest acquisition function value. The
purpose of this rescaling is to balance cost
with the exploration–exploitation trade-off de-
fined by the original qNEI acquisition function
term α. Note that the scaling function is up-
dated after each iteration to ensure adapting to
the current costs and acquisition function val-
ues. Additionally, the scaling function removes
the cost units.

After computing the modified acquisition val-
ues for each potential experiment in a batch
α̃1, . . . , α̃5, we evaluate the updated norm value,

|B̃| :=
Ne=5∑
j=1

α̃j. (5)

This corresponds to the orange line in Fig-
ure 1b, which differs from the blue line depend-
ing on the scaled cost term of Equation 2. The
batch with maximal value B̃, offering the best
cost–benefit ratio, is then selected for the next
iteration.

Note that our approach does not penalize ex-
ploration per se, but rather favors the most in-
expensive ways to explore before committing
to higher-cost experiments. Further details of
our implementation are available in the SI Sec-
tion S1.
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Figure 2: Reaction schemes of the two datasets
used in this work. (a): Direct arylation (DA)
with yields ranging from 0–100%.3 (b): Cross-
coupling (CC) with yields ranging from 0–
100%.17 The four nucleophiles explored in the
latter dataset are depicted below, each leading
to a subset (CC-An, CC-Mo, CC-Ph, CC-
Be).

2.2 Datasets and models

To demonstrate the potential of CIBO, we
attempt to maximize reaction yield as cost-
efficiently as possible in two literature datasets:
Pd-catalyzed direct C–H arylation (DA, Fig-
ure 2a)3 and Pd-catalyzed Buchwald–Hartwig
cross-couplings of amine nucleophiles using a
droplet platform (CC, Figure 2b).17 Since lig-
ands are the most expensive elements of the op-
timization, CIBO should avoid using unneces-
sary ones to reach a high yield.

In both cases, we use Gaussian process re-
gression (see SI Section S2 for more details) as
the surrogate model in the optimization. The
batch size is always fixed to five,3,18 but we note
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any other value could be used according to the
preferred experimental setup. As cost, we use
the price per gram of material (dollars per gram
$/g, see SI Section S3 for details), since chemi-
cal suppliers provide most chemicals gram-wise.

For consistency and to make the task chal-
lenging, we start the optimization using models
trained only on a small subset of experiments
performed with chemicals with low overall cost
or performance (iteration zero, vide infra). The
cost of the initial experiments is included in
the total cost. For simplicity, we assume that
we never run out of chemicals in the inventory,
which applies both to the reagents used in the
initial experiments and to newly acquired ones.
The results are averaged over 5 separate runs
using the same initialization.57

The DA dataset consists of 1728 measure-
ments where the monophosphine ligand, base
and solvent, concentration, and temperature
are varied to optimize the formation of one
product. The cost of chemicals was already re-
ported previously18 and was converted to dol-
lars per gram for this work. We considered that
concentration and temperature can be varied
without additional cost. In general, the costs
of the base and solvent are negligible compared
to the ligand. The optimization begins with
the surrogate model trained exclusively on the
144 experiments in the dataset that use the
dimethylphenylphosphine ligand, which is inex-
pensive and the worst-performing ligand over-
all.

For the CC dataset, four different amine nu-
cleophiles, aniline (CC-An), morpholine (CC-
Mo), phenethylamine (CC-Ph), and benza-
mide (CC-Be), are each coupled with p-tolyl
triflate yielding different products over 363 re-
actions (around 90 per nucleophile). Each is
considered an individual reaction in which the
ligand (precatalyst), base (concentration and
equivalents), solvent, temperature, and time all
change.23 The prices for all chemicals involved
were obtained from supplier websites and con-
verted to dollars per gram if necessary. Con-
centrations, equivalents, temperature, and time
are varied without additional cost. On aver-
age, nine experiments are used at the start of
each optimization. For the CC-Ph and CC-

Be subsets of CC we initialize using tBuXPhos
as a ligand (for the precatalyst) and DBU as a
base, the cheapest combination. For CC-An,
we chose to initialize with EPhos and TEA as
the cheapest initialization would have resulted
in perfect yield. For CC-Mo no measurements
with tBuXPhos were performed. Thus, we ini-
tialize with tBuBrettPhos and DBU. For the
CC experiments, the cost of the solvents and
bases were also taken into account, since the
dataset contains few different ligands per nu-
cleophile. A full list of chemical abbreviations
is presented in Table S1.

3 Results
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Figure 3: Comparison of cost-informed
Bayesian optimization (CIBO, orange) and
standard BO (blue) for the DA dataset. Aver-
age curves over five runs are shown. The best-
obtained yield in each batch iteration is shown
in the top panel, and the sum spent to acquire
the ligands is shown below.

3.1 Direct Arylation

Following the original publication, the opti-
mization was run for 20 total iterations (100 ex-
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periments).3 The best-observed yield for several
batched iterations, as well as the total amount
spent, are shown in Figure 3. CIBO achieves
a yield of over 99% after eight iterations, com-
pared to five iterations in standard BO. How-
ever, the total cost of running the five iterations
(25 experiments) suggested by BO is on average
$1592, whereas the cost of running the eight it-
erations proposed by CIBO (40 experiments) is
on average of $1156, 38% less.

After 20 iterations, standard BO bought all
possible ligands (12), amounting to a cost of
$2082, while CIBO avoided buying two less

(10), summing up to $1221, saving more than
40% in comparison.

Considering the error of the surrogate model
(see SI Section S1) it is a prudent strategy not
to buy additional ligands after reaching a yield
above 99%. Following this logic, past that point
in the tenth iteration, CIBO suggests optimiz-
ing reaction conditions instead of buying expen-
sive ligands.

To study the difference in experimentation
planning between BO and CIBO, we visualize
the ligand batch composition of the first four
iterations (see Figure 4) for one of the five rep-
etitions. CIBO batches are less diverse than
BO in terms of ligands: CIBO suggests at most
two different ligands per batch. In the first iter-
ation, BO suggests acquiring five more distinct
ligands besides dimethylphenylphosphine, com-
pared to two for CIBO.

3.2 Cross-coupling

The dataset is split into subsets of the four dif-
ferent amine nucleophiles (see Figure 2b) result-
ing in four distinct optimization problems. As
before, we consider the best yet achieved yield
and total cost per iteration. The total amount
spent, listed in the first row of Table 1, depends
on the nucleophile subset, since not all combi-
nations of ligands (precatalysts) and bases were
tested experimentally for each nucleophile. Due
to the limited amount of data available, the op-
timization is continued until the experimental
data is exhausted, and the results are averaged
over five different runs.

As shown in the bottom row of Figure 5
standard BO suggests buying all available lig-
ands and bases combinations immediately after
the first iteration – irrespective of their costs.
CIBO acquires less expensive reagents first and
recommends experiments under varying condi-
tions before finally buying all reagents – if no
other experiments are left in the dataset. By
inspecting the amount spent versus the num-
ber of iterations, Figure 5, it is apparent that
CIBO suggests more expensive molecules only
as a last option. If possible, CIBO optimizes
the yield based on combinations of reagents and
conditions that can be performed at small or
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Table 1: Comparison of the amounts spent with CIBO and classical BO for each nucleophile subset
of CC experiments. The first row lists the total cost of all compounds that could be acquired,
which equals the amount spent by classical BO. The subsequent rows show the amount spent with
CIBO and the amount and percentage saved compared to classical BO to achieve a yield above
70%. The last row indicates how many compounds did not have to be obtained out of the available
ones.

CC-An CC-Mo CC-Ph CC-Be

Cost all reagents $2474 $2105 $2170 $2144
CIBO spent $1124 $2105 $142 $690
Saved wrt. BO $1350 (54%) 0 $2028 (93%) $1454 (68%)
Saved reagents 5/9 0/7 4/8 3/8
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Figure 5: Yield optimization for the CC dataset with four different nucleophiles (CC-An, CC-Mo,
CC-Ph, CC-Be). We compare cost-informed Bayesian optimization (CIBO, orange) to Bayesian
optimization (BO, blue). Average curves over five runs are shown. The top row shows the best
yield found as a function of the batch iteration, and the bottom row displays the cumulative costs.
The black dotted line in the top row indicates the target yield at 70%. The resulting terminal
iteration (vertical black line) in the bottom row indicates the total budget spent with CIBO.

zero additional costs. For instance, in the case
of CC-Be, after iteration four, over 30 experi-
ments are performed without acquiring any ad-
ditional reagents, resulting in a cost plateau.
Similar observations are made for CC-An and
CC-Ph (Figure 5a,c) where the optimization
achieved a yield of 100% after a few iterations,
followed by iterations where CIBO does not ac-
quire additional reagents.

The goal of every experimentation series al-
ways depends on the context. We define a stop-
ping criterion for the experimentation such that
at least 70% yield should be achieved, as this
was quoted as a high yield in the original CC
publication.17 In Table 1 we show the cost and
reagent savings compared to standard BO when
using this criterion. In all cases, except for CC-
Mo, the cost is reduced by over 50%, and fewer
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compounds were acquired.
For CC-Mo, CIBO performs as well as BO in

terms of yield optimization for the same cost,
but only because the most performant ligand
is the most expensive one and has to be ac-
quired to achieve a high yield. For CC-Ph,
CIBO acquires not a single additional ligand
but manages to find a perfect yield by buying
a much cheaper base (BTTP) thus saving 93%
compared to the standard BO experiments that
demand acquiring all ligands in a single step.

4 Conclusion

We introduced cost-informed Bayesian opti-
mization (CIBO), a variant of Bayesian opti-
mization that balances cost and ease of ex-
perimentation with a global optimization ob-
jective. The algorithm retains the flexibility
to identify the most promising experiments of
BO but takes a more cost-efficient optimiza-
tion path. Updating the acquisition function
according to the current inventory status is nec-
essary to guide the optimization, with substan-
tial savings in terms of acquisition costs as well
as the number of purchases.

While in this work we focused on the eco-
nomic cost of buying the compounds needed
for an experiment, our framework is general
and amenable to any user-defined kind of cost,
including logistical availability, synthesizabil-
ity, safety, time, environmental impact, and
sustainability. Similarly, the number of steps
for a synthesis, if the compounds were already
reported or commercially available, structural
complexity, time required to run an experiment,
or the running cost of a laboratory could also
directly be taken into account. Our proposed
approach only plans one experiment ahead (my-
opic). CIBO may be extended and improved by
planning multiple steps and accounting for re-
source management.33,45,58

CIBO is far more applicable than standard
BO in contexts where the cost of each experi-
ment are very dissimilar, such as state-of-the-
art fine chemistry where the difference in price
between two ligands may be considerable. Ul-
timately, we envision our method to be useful

both for traditional and future self-driving lab-
oratories in the context of reaction optimiza-
tion and development, as well as in other similar
tasks in chemistry and beyond where the cost
of performing the actual optimization matters.

5 Code availability

CIBO is available at https://github.com/

lcmd-epfl/cibo.
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