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Abstract

Recent advancements in artificial intelligence (AI)-based molecular design method-

ologies have offered synthetic chemists new ways to design functional molecules with

their desired properties. While various AI-based molecule generators have signifi-

cantly advanced toward practical applications, their effective use still requires spe-

cialized knowledge and skills concerning AI techniques. Here, we develop a large

language model (LLM)-powered chatbot, ChatChemTS, that enables chemists to de-

sign new molecules using an AI-based molecule generator through only chat interac-
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tions, including automated construction of reward functions for the specified prop-

erties. Our study showcases the utility of ChatChemTS through de novo design

cases involving chromophores and anticancer drugs (epidermal growth factor recep-

tor inhibitors), exemplifying single- and multiobjective molecule optimization scenar-

ios, respectively. ChatChemTS is provided as an open-source package on GitHub at

https://github.com/molecule-generator-collection/ChatChemTS.

Introduction

Artificial intelligence (AI)-based techniques for molecular designs are becoming promising

methods for designing synthetically accessible and insightful molecules with desired func-

tionalities.1–8 Research articles on these techniques have been reported in a wide range of

fields, from material design to drug discovery. In terms of material design, fluorescent4

and photofunctional1,5 molecules have been designed using AI-based molecule generators,

and the designed molecules were successfully experimentally validated to exhibit the desired

properties. Similarly, in drug discovery, new proton pump inhibitors6 and inhibitors for

targeting antifibrotic effects7 were designed and demonstrated their good inhibitory effects.

The AI-based molecule generators used in the above studies represent just a fraction of the

techniques that have been developed thus far,9–25 and applying and testing various promising

molecule generators to solve real-world problems is vital for achieving further advancements.

While various AI-based molecule generators have made significant progress toward prac-

tical applications, their effective utilization still requires specialized knowledge and skills

concerning AI techniques.26 This high level of expertise presents a critical obstacle to the

widespread adoption of AI-based molecule generators. The effective use of these methods

necessitates a deep understanding of how to design reward functions that appropriately rep-

resent the desired functionalities and the ability to configure the set conditions according

to the specifications of each AI-based molecule generator. In chemical, pharmaceutical, and

other industries, the complexity of utilizing AI-based molecule generators and the need for
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skills such as machine learning (ML,) to design reward functions pose significant obstacles

that prevent users from easily adopting these technologies for their projects. These challenges

complicate the effective utilization of AI-based molecule generators to solve real-world prob-

lems, especially for researchers and developers who possess expert knowledge and skills in

chemistry but are not well versed in AI techniques.

To address these challenges, we developed ChatChemTS, a large language model (LLM)-

powered chatbot that enables users to utilize ChemTSv211—AI-based molecule generator

with experimental validations for various molecule designs1,3–5—through only interactive

chats. All users are merely required to express a request to ChatChemTS via chat, and

ChatChemTS then prepares the appropriate reward functions, configures the desired condi-

tions, and executes ChemTSv2 for the users. In addition, ChatChemTS provides a tool for

analyzing the output molecule generation results. ChatChemTS is based on a ReAct frame-

work so that it can address the whole workflow of general AI-based molecule generators,

and the framework employs the generative pretrained transformer (GPT) model of OpenAI,

which has shown the great potential as an LLM chemistry agent to perform chemistry-related

tasks.27–33 As exemple applications of ChatChemTS, we performed two de novo molecular de-

sign tasks, one involving a photofunctional organic molecule and another concerning a kinase

inhibitor, as single- and multiobjective molecule optimization problems, respectively. No-

tably, users only need to prepare data related to the physicochemical properties of molecules

or information about the target proteins of interest to perform AI-based molecule designs

with ChatChemTS. We show that this concept of utilizing an LLM as an assistant of AI-based

molecule generators can be easily introduced to various generators developed with organized

application structures, such as ChemTSv2. The ChatChemTS application is publicly avail-

able on GitHub at https://github.com/molecule-generator-collection/ChatChemTS.
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Results

Implementation of ChatChemTS

ChatChemTS was developed based on LLMs to help users employ ChemTSv2 through inter-

active chats, as shown in Fig. 1. The ChatChemTS application employs a ReAct framework34

Figure 1: Overview of ChatChemTS. The visual workflow of ChatChemTS is shown in the
upper panel. A user can utilize ChatChemTS via chat in a web browser on a local laptop,
and ChatChemTS assists users in designing molecules through AI. A snapshot of the user
interface (UI) of this application is shown in the lower panel. The UI was built with Chainlit
and provides the users with an intuitive chat experience.

that enables LLMs to generate reasonable responses and take appropriate actions, including

4

https://doi.org/10.26434/chemrxiv-2024-1p82f ORCID: https://orcid.org/0000-0002-5638-3579 Content not peer-reviewed by ChemRxiv. License: CC BY-NC-ND 4.0

https://doi.org/10.26434/chemrxiv-2024-1p82f
https://orcid.org/0000-0002-5638-3579
https://creativecommons.org/licenses/by-nc-nd/4.0/


the use of predefined tools, as shown in Fig. 2. The predefined tools in ChatChemTS include

a reward generator, a prediction model builder, a configuration generator, a ChemTSv2 ap-

plication programming interface (API), a molecule generation analyzer, and a file writing

tool. In this study, the configuration included molecule generation parameters in ChemTSv2.

To offer high-quality responses, multiple LLMs were utilized in ChatChemTS and specifically

tailored for distinct roles, such as facilitating user interactions and crafting reward function

designs; thus, the use of verbose and ambiguous prompts that may elicit irrelevant responses

was minimized in each LLM.

Figure 2: System architecture of ChatChemTS. LangChain was used to implement the ReAct
framework in ChatChemTS. LLMs were used in the agent, the reward generator tool, and
the configuration generator tool. Additionally, both tools utilized LLMs specialized in the
corresponding tasks using in-context learning (ICL). ChatChemTS was containerized using
Docker, allowing for easy deployment to user environments through Docker Compose. Users
can employ ChatChemTS via local web browsers, such as Google Chrome.

The platform was developed primarily by incorporating LangChain,35 GPT-4 from Ope-

nAI,36 and FastAPI37 for backend operations, as well as Streamlit38 and Chainlit39 for
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frontend implementations, as shown in Fig. 2. To enhance the scalability of the application,

the computing environments assigned to each role were containerized using Docker, ensuring

that no interference occurred among them. Docker Compose40 was utilized to implement

a streamlined deployment process leveraging multiple Docker images, facilitating the auto-

matic deployment of the application in a Docker-compatible environment. A demonstration

of the workflow for ChatChemTS can be found in Supporting Movie 1.

Exemple applications of ChatChemTS

To demonstrate the utility of ChatChemTS, we performed de novo designs of a chromophore

and an epidermal growth factor receptor (EGFR) inhibitor, the latter of which is a common

treatment for breast and lung cancers.41 These designs illustrated examples of single- and

multiobjective molecule optimization tasks, respectively. The aim of the chromophore design

process was to optimize molecules so that they possessed a specific absorption wavelength.

On the other hand, the EGFR inhibitor design process focused on obtaining molecules with

high inhibitory activity and high drug likeness scores. Detailed explanations of both demon-

strations are described below.

Chromophore design

Figure 3 shows a chat-based demonstration of the task of designing chromophores using

ChatChemTS. All processes described hereafter were successfully carried out through chat

interactions and operations in graphical user interface (GUI) applications: prediction model

builder and analysis tools. The prediction model builder of ChatChemTS provides a function

for constructing ML models that predict a molecule property when provided a dataset in

comma-separated values (CSV) format (see the Methods section for details). First, the

prediction model builder tool was used to create an ML model for predicting an absorption

wavelength from an input molecule. The training dataset was prepared in CSV format and

included 50000 molecules with absorption wavelengths calculated using density functional

6

https://doi.org/10.26434/chemrxiv-2024-1p82f ORCID: https://orcid.org/0000-0002-5638-3579 Content not peer-reviewed by ChemRxiv. License: CC BY-NC-ND 4.0

https://doi.org/10.26434/chemrxiv-2024-1p82f
https://orcid.org/0000-0002-5638-3579
https://creativecommons.org/licenses/by-nc-nd/4.0/


Figure 3: Application of ChatChemTS in designing chromophore. This demonstration aimed
to design molecules with absorption wavelengths of 600 nm. In step 1, based on the ob-
served user requests, ChatChemTS created a prediction model to predict the absorption
wavelength from an input molecule. The training dataset was prepared using 50000 com-
pounds with DFT-calculated absorption wavelengths at the B3LYP/6-31G* level42 via the
prediction model builder. The prediction model was used in the reward function. In step 2,
ChatChemTS set up the configuration of ChemTSv2 according to the specifications provided
by the user. In step 3, ChatChemTS executed the ChemTSv2 using the prepared config-
uration file. In step 4, a user analyzed the molecule generation results. The right panel
shows examples of molecules with absorption wavelengths of approximately 600 nm and the
optimization process of the molecule generation task.
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theory (DFT) at the B3LYP/6-31G* level.42 The AutoML parameters were set with a test

dataset ratio of 0.1 and a budget time of one hour; the estimators list and metrics were

automatically selected by the Fast Library for Automated Machine Learning and Tuning

(FLAML) during the AutoML search process. The best model was the light gradient boosting

machine (LightGBM), and its correlation coefficient for the test dataset was 0.93. The above

operations and their results are shown in Fig. S1. Next, a reward function and a configuration

were designed via chat based on the following conditions: the target absorption wavelength

was set to 600 nm, the exploration parameter c was set to 0.1, the number of generated

molecules was set to 30000, and an SAscore filter with a threshold of 4.5 was used. Then,

ChemTSv2 was executed via chat using the above reward function and configuration files.

Finally, the analysis tool was utilized to analyze the molecule generation results. As shown in

the optimization process of Fig. 3 (right panel), ChatChemTS successfully designed molecules

with predicted absorption wavelength of approximately 600 nm. These seemingly complex

processes for chemists can now be effortlessly automated through ChatChemTS, simply by

inputting the dataset and following the procedure outlined in the GUI.

EGFR inhibitor design

Figure 4 shows a chat-based demonstration of the task of designing EGFR inhibitors using

ChatChemTS. The subsequent processes were all accomplished through chat interactions and

operations in the GUI applications. The prediction model builder of ChatChemTS provides a

function for constructing ML models that predict inhibitory activity against a target protein

by simply specifying its Universal Protein Resource ID (UniProt ID; see the Methods section

for details). In this demonstration, UniProt ID P00533 was used as the input of the prediction

model builder tool to retrieve molecules with inhibitory activities against EGFR from the

ChEMBL database. ML models were designed to take a molecule as input and predict a

pChEMBL value, representing the negative base-10 logarithm of the half-maximal response

concentration, potency, and affinity. The retrieved dataset was preprocessed as follows: (1)
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Figure 4: Application of ChatChemTS in designing EGFR inhibitors. This demonstration
aimed to design molecules that exhibited inhibitory activities against EGFR and high QED
scores. In step 1, based on the observed user requests, ChatChemTS created a prediction
model to predict the inhibitory activity of an input molecule. To prepare the training
dataset, compounds that possessed activity data for the protein associated with UniProt
ID P00533 were retrieved from the ChEMBL database via the prediction model builder,
and this task was followed by preprocessing. The prediction model was used in the reward
function. In step 2, ChatChemTS set up the configuration of ChemTSv2 according to the
specifications provided by the user. In step 3, ChatChemTS executed the ChemTSv2 using
the prepared configuration file. In step 4, a user analyzed the molecule generation results.
The right panel shows the generated molecules ranked in descending order of their reward
scores, provided that the QED scores were 0.89 or higher and the optimization process of
the molecule generation.

9

https://doi.org/10.26434/chemrxiv-2024-1p82f ORCID: https://orcid.org/0000-0002-5638-3579 Content not peer-reviewed by ChemRxiv. License: CC BY-NC-ND 4.0

https://doi.org/10.26434/chemrxiv-2024-1p82f
https://orcid.org/0000-0002-5638-3579
https://creativecommons.org/licenses/by-nc-nd/4.0/


deduplicating molecules by leaving the maximum pChEMBL values; (2) retaining records

by assay type of Binding; (3) filtering out records with assay descriptions, which contained

the mutat, covalent, and irreversible substrings; and (4) removing the activity types of the

half-maximal effective concentration (EC50) and half-maximal active concentration (AC50).

Consequently, the dataset size was 7141 compounds, and the dataset was used in the training

step. The AutoML parameters were set with a test dataset ratio of 0.1 and a budget time of

one hour; the estimator list and metrics were automatically selected by the FLAML during

the AutoML search process. The option to standardize the objective variable was applied to

facilitate the use of the prediction values within a reward function. The best model was the

LightGBM, and its correlation coefficient for the test dataset was 0.85. The above operations

and their results are shown in Fig. S2. Next, a reward function and a configuration were

designed via chat interactions based on the following conditions: maximizing the predicted

inhibitory activity against EGFR and the QED score; setting the exploration parameter c to

0.1; setting the number of generated molecules to 50000; and using Lipinski’s rule-of-five filter

and the SAscore filter with a threshold of 4.5. Then, ChemTSv2 was executed via chat using

the above reward function and configuration files. Finally, the analysis tool was utilized to

analyze the molecule generation results. As shown in the optimization process of Fig. 3 (right

panel), ChatChemTS successfully designed molecules with predicted pChEMBL values above

seven and QED scores of approximately 0.7. To confirm whether the molecule generation

process considering the QED score worked properly, we compared the QED optimization

processes of methods generating molecules based on both inhibitory activity and QED scores

and methods based only on inhibitory activity under the same conditions. Figure S3 indicates

that the molecules designed solely based on inhibitory activity often had QED scores of

approximately 0.4, highlighting the effectiveness of incorporating QED scores with inhibitory

activity in the reward function.
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Discussion and Conclusion

In this study, we introduced ChatChemTS, an LLM-powered application, to facilitate user in-

teractions with ChemTSv2 through an interactive chat interface. ChatChemTS successfully

assisted with four main operations that users need to perform when using AI-based molecule

generators: designing reward functions, setting up configurations, executing a molecule gen-

erator, and analyzing the results. Two demonstrations, chromophore and EGFR inhibitor

design tasks, were showcased as common de novo molecular generation tasks: single- and mul-

tiobjective optimizations, respectively. Despite their success in terms of designing molecules

with targeted properties based on prediction models, there is potential for improving the

design of the reward functions. For example, the designed EGFR inhibitor lacked the major

hinge-binding scaffolds used in common kinase inhibitors.43 A potential solution to this is-

sue is to introduce a reward function designed to increase the structural similarity to these

scaffolds, which is an unsupported feature in ChatChemTS.

The following tasks remain to make the experience of AI-based molecule designs via

ChatChemTS more appropriate and convenient. ChatChemTS currently supports a single

AI-based molecule generator, ChemTSv2; however, ChatChemTS was designed to easily in-

corporate additional molecule generators, assuming that the reward design and configuration

settings are independently specified in separate files. With respect to the topic of processor

compatibility, ChatChemTS supports processors with x86 64 architectures but lacks support

for the arm64 architecture, which is attributed to the difficulty of configuring Python envi-

ronments. Regarding users’ experience during chat interactions, ChatChemTS retains only

the most recent chat interaction to ensure the relevance of its responses. This limitation

may lead to unexpected behaviors for users who are unaware of this specification. In terms

of reward designs, the current reward generator tool is limited to using Python packages

and ML-based prediction models within reward functions. Given the frequent use of various

simulation packages, such as the Gaussian 1644 and AutoDock Vina45 packages, in material

and drug design scenarios, we plan to make these packages available in the reward designs
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of ChatChemTS. Furthermore, introducing a feature that automatically optimizes reward

designs46 could significantly reduce the manual effort required for reward adjustment, as this

process typically involves extensive trial and error. In the configuration setup stage, switch-

ing the recurrent neural network (RNN) models provided in ChemTSv2 via ChatChemTS

is difficult unless users are familiar with ChemTSv2. Efforts are underway to simplify the

method for specifying the desired RNN model to address this issue. While ChatChemTS

currently supports the basic use cases of ChemTSv2 and still requires expert intervention

for comprehensive AI-based molecule designs, it is intended to lay the groundwork for LLM-

assisted molecule designs utilizing various AI-based molecule generators.

Methods

Large language model

An LLM is a type of AI model that can perform various general-purpose natural language

processing (NLP) tasks at the human level, including text generation, question answering,

and information extraction.47 The core architecture of an LLM is a deep learning technique

called a transformer,48 and LLMs are generally trained on immense amounts of data. LLMs

are frequently utilized in combination with prompting strategies, such as ICL, Chain of

Thought (CoT), and Planning, for solving various tasks to enhance their contextual under-

standing and improve their task-specific performance.47 In this study, GPT-4 developed by

OpenAI with a temperature of 0.1 and the ReAct framework were used as the LLM and the

Planning strategy, respectively.

ReAct framework

The ReAct framework allows LLMs to intertwine reasoning traces with task-specific actions

in external environments, facilitating general task-solving.34 The LLM that performs the

above role is called an agent. Within the ReAct framework, LLMs can interact with external
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tools, such as Wikipedia, web searches, the Python interactive computing environment, and

user-customized tools, and use their feedback for reasoning traces to produce more reliable

responses. LangChain was used to implement the ReAct framework in ChatChemTS. The

system message used in the agent is shown in Listing S1. The following section describes

the tools used in ChatChemTS.

Tools

In the ReAct framework, tools are pivotal for enhancing LLMs by enabling the retrieval

of additional information, which contributes to more reliable responses. Notably, the tools

included in the proposed application were the minimum tools required for using AI-based

molecule generators, but other tools can easily be added to the application to satisfy users’

specific needs.

Reward generator

This tool is dedicated to designing reward functions in ChemTSv2 format and is based on

an LLM. A few-shot prompting technique was used to steer the LLM to the reward design

tool. All the utilized prompts are described in Listing S2. Upon receiving a user request for

molecules optimized based on specific properties, this tool returns a reward function reflecting

that request. The currently available molecular properties are those that can be calculated

by RDKit software and predicted using prediction models obtained from the FLAML.49

Prediction model builder

This tool offers a GUI application that allows users to build their own prediction models

using an automated ML tool (the FLAML).49 The interface was designed to be accessible to

users with varying levels of ML expertise. The application accepts two input types: a CSV

file for building general prediction models and a UniProt50 ID for constructing quantitative

structure-activity relationship (QSAR) models from the ChEMBL database.
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When a user uploads a CSV file, it is rendered as a table on the interface to enable the

user to verify its content. To build prediction models, the user must select the names of two

columns: one containing molecule structures in the SMILES format and another containing

a target variable. The interface guides the user through a structured configuration process to

develop a prediction model with the FLAML. Initially, the user adjusts the data proportion

for the test dataset. Following this, the user has the option to select default ML estimators or

manually choose from a list option, including a random forest, LightGBM, eXtreme Gradient

Boosting (XGBoost), Categorical Boosting (CatBoost), Extremely Randomized Trees (Extra

Trees), Logistic Regression with L1 or L2 regularization, and k-nearest neighbors. Then, the

user specifies the type of ML task to perform, which is currently limited to regression, and

the metric used to evaluate the performance of the constructed model during training, with

the option to utilize automatic metric selection. A time budget can be set to manage the

amount of time that computational resources are dedicated to performing the AutoML search

process. If the values of the target variable are not normalized, the user should employ the

standardization function in this application to standardize the target values, ensuring that

reward functions can be appropriately designed. Once all the settings are finalized, this tool

runs the AutoML process to find quality models and saves the model that performs best on

the test dataset for use in a reward function.

When a user inputs a UniProt ID, the application fetches and processes data from the

ChEMBL database using the ChEMBL webresource client package.51 The application verifies

the existence of records for the specified UniProt ID and then allows users to refine the dataset

by deduplicating molecules based on pChEMBL values, retaining records according to their

specific assay types, and filtering out records with certain assay descriptions and activity

types. Subsequently, the workflow is the same as that of the process described above after

uploading a CSV file.
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Configuration generator

This tool is specialized in generating configuration files in YAML format for ChemTSv2

and is based on an LLM. The configuration includes, for example, the number of generated

molecules, the exploration parameter c, and molecular filters for skipping the reward calcu-

lation (refer to the paper that presented ChemTSv2 for details11). Similar to the reward

generator tool, this tool employs a few-shot prompting technique to generate configurations.

All the prompts used are described in Listing S3. By taking a user request for setting a

ChemTSv2 configuration, this tool returns a configuration reflecting that request.

ChemTSv2 API

This tool serves as an API for executing ChemTSv2. Upon receiving a path to a configuration

file, the tool runs a ChemTSv2 using the input configuration and returns a path to the

execution outcome. The API was built with the FastAPI package.37

Molecule generation analyzer

This tool provides users with a GUI application to easily analyze the results of molecule

generation processes. Once a user uploads a CSV result file, the application offers three

interactive functions, a table viewer, a molecule viewer, and a time series viewer, which are

the common features used to analyze molecule generation results. The GUI application was

developed based on Streamlit38 for creating the user interface, pandas52 for manipulating

molecule generation results, and mols2grid53 for interactively visualizing molecules.

Data and Software Availability

The ChatChemTS application is publicly available on GitHub at https://github.com/molecule-

generator-collection/ChatChemTS under the MIT License. The README file in the GitHub

repository provides information about how to set up and use the application.
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Supporting Information Available

Snapshot UI of prediction model builder tool when building the prediction models to predict

absorption wavelength (Fig. S1); Snapshot UI of prediction model builder tool when building

the prediction model to predict inhibitory activity against EGFR (Fig. S2); Comparizon of

QED optimization processes between generating molecules considering inhibitory activity

against EGFR and QED score and generating molecules solely considering the inhibitory
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activity (Fig. S3); System message used in the agent of ChatChemTS (Listing S1); Few-

shot prompting for the reward generator tool (Listing S2); Few-shot prompting for config

generator tool (Listing S3).
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