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Abstract 

We evaluate the effectiveness of pre-trained and fine-tuned large language models (LLMs) for 

predicting the synthesizability of inorganic compounds and the selection of precursors needed to 

perform inorganic synthesis. The predictions of fine-tuned LLMs are comparable to—and 

sometimes better than—recent bespoke machine learning models for these tasks, but require only 

minimal user expertise, cost, and time to develop. Therefore, this strategy can serve both as an 

effective and strong baseline for future machine learning studies of various chemical applications 

and as a practical tool for experimental chemists. 
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Synthesizing novel compositions of matter is a pre-requisite for scientific and practical 

breakthroughs.1 Discovery would be accelerated if one could predict whether a hypothetical 

compound could be made and what precursors should be used to make it. Human experts have 

developed physical theories and heuristic rules for these tasks,2–6 but increasingly machine 

learning (ML) is used to predict synthesizability7–11 and select precursors.12–15 However, 

developing and training ML models requires substantial expertise, slowing adoption by 

experimental chemists.16,17 

General purpose large language models (LLMs) are a form of generative artificial 

intelligence (AI),18 pre-trained on a broad dataset so they can be applied to many different tasks 

using natural language. Pre-trained LLMs have been investigated for a wide variety of chemical 

tasks,19,20 such as extracting structured data from the literature,21–24 writing numerical simulation 

software,25 and education.26 LLM-based workflows have been used to plan syntheses of organic 

molecules27,28 and metal-organic frameworks (MOFs).21,29–31 Recent work has benchmarked 

materials science32,33 and general chemical knowledge34–37 of existing LLMs, and there are 

efforts to develop chemistry/materials-specific LLMs.38,39 Fine-tuning LLMs on modest amounts 

of data improves performance for specific tasks, while still taking advantage of the general pre-

training to provide basic symbol interpretation and output formatting guidance. Chemical 

applications of LLM fine-tuning have addressed property regression and classification of organic 

molecules,40–43 and been used to improve the water-harvesting behavior of MOFs.29  

Here, we demonstrate that fine-tuned LLMs can predict inorganic synthesizability and 

precursor selection with performance comparable to bespoke ML models. We used the GPT-3.5 

(gpt-3.5-turbo-0125) and GPT-4 (gpt-4-0125-preview) pre-trained LLMs from 

OpenAI, but expect similar results for other LLMs. For each task, we compared the results to 
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recently published ML models, closely following the datasets and data processing used in those 

earlier studies; detailed descriptions are in the Supporting Information. The available data was 

divided into 80% training and 20% test. Data is prepared for the fine-tuning process by 

organizing it into pairs of user input and desired response; examples are shown in the 

Supporting Information. Fine-tuning was performed starting from the gpt-3.5-turbo-0125 

base model, with OpenAI’s default hyperparameters, using 20% of the test data for validation. 

All LLM evaluations were performed with the model temperature set to zero to return the most 

probable response. Data, prompts, and code are available online. 

Synthesizability prediction: Given a chemical formula, predict if the compound could 

be made. This is a positive-unlabeled (PU) learning problem,44–46 as the available data consists of 

formulas of known (previously made) compounds and unknown (hypothetical) compounds 

which may not be synthesizable. Following Jang and Noh et al.,47 we used the 393,053 unique 

inorganic compositions contained in the Materials Project (MP)48 and Open Quantum Materials 

Database (OQMD)49 (retrieved 02/2020) to define the set of possibilities; the 40,817 compounds 

with Inorganic Crystal Structure Database (ICSD) references are positive (synthesized) and the 

remaining 352,236 are unlabeled (hypothesized). The only chemical input to each model is the 

formula, in the format Li1Fe1P1O4. LLMs were provided with the prompt: You are an 

expert inorganic chemist.  Determine if the following compound is 

likely to be synthesizable based on its composition, answering only 

"P" (for positive or possible) and "U" (for unknown or unlikely). LLM 

fine-tuning on all 32,653 positive compounds and an equal number of randomly selected 

unknown compounds in the training set requires <2.5 hours and <25 USD (as of 04/2024). We 

compared to the stoichiometric convolutional graph neural fingerprint (stoi-CGNF), a 
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composition-based synthesizability classification model trained by semi-supervised PU learning, 

and a stoichiometric similarity baseline model which classifies materials synthesizability based 

on similarity cutoff;47 detailed explanations of these models are in the Supporting Information.  

Unlike traditional binary classifiers with positive and negative data, only the true positive rate 

(TPR) or recall can be measured unambiguously for PU problems, as one lacks true negative 

data. However, precision (PREC) and false positive rate (FPR) can be estimated by using the 

prior knowledge, α, which is the estimated proportion of the positive among the unlabeled 

dataset.50,51 The detailed α-estimation process is described in the Supporting Information; we 

computed α = 0.088, in agreement with the previous result (8.1%).47 

As depicted in Figure 1a, GPT-3.5 (FT) and stoi-CGNF metrics are comparable, and both 

outperform the GPT-3.5, GPT-4, and baseline methods in recall. However, their precision is 

lower than the baseline. These results correspond to choosing the highest probability outcome 

(i.e., in the binary classification task, labeling P if the model predicts p(P) > 0.5.) The exact 

metric values of the 0.5-threshold results were tabulated in Table S1 and￼he probability 

distributions of each model are show￼ Using the 0.5-threshold for stoi-CGNF and GPT-3.5 (FT) 

results in 15-19% the unlabeled data predicted as positive (p(P|U)), which is inconsistent with 

our estimated α (8.8%). 
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Figure 1.  (a) Comparison of synthesizability predictions upon 0.5-threshold. The precision 

(PREC) was calculated from the α-estimation. (b) Comparison of synthesizability predictions 

after the recalibration by using the prior knowledge, α=0.088. Thresholds are 0.723, 0.848, 

0.963, and 0.977 for stoi-CGNF, GPT-3.5(FT), GPT-4, and GPT-3.5. (c) The positively predicted 

ratio among the unlabeled materials, before and after recalibration.   
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To match the assumed structure of our PU dataset, we adopted higher threshold values, 

which corresponds to the ratio of positively predicted unlabeled entries are well-matched in α 

value, and recalibrated model performance. (See Figure 1b, 1c, and Table S2.) Probabilities for 

the GPT models are obtained by querying the log-probabilities assigned to each possible 

response; Ramos et al. used a similar strategy for in-context Bayesian optimization of catalysts 

from text descriptions.52 Although threshold recalibration decreases recall, the models obtained 

more balanced performance. (Figure 1b) After recalibration, GPT-3.5 (FT) still outperformed 

baseline and obtained comparable performance to the recent stoi-CGNF model, despite using 

fewer unlabeled data in training. In contrast, recalibrating the pre-trained GPT-3.5 and GPT-4 

models reduces their performance below the similarity baseline. This demonstrates the necessity 

of fine-tuning, independent of the recalibration strategy.  

Precursor Selection: Given the formula for a target compound, predict the complete set 

of precursors that must be provided. The output must exactly match the entire sets of precursors 

in a known example synthesis; because the output is restricted to a predefined list of precursors 

this is a multi-label prediction problem.53 Following Kim et al.,15 we began with the text-minded 

synthesis dataset of Kononova et al.,54 removing entries with inconsistent or incomplete data, and 

retaining only reactions that contained precursors used in ≥5 example reactions, which results in 

11,923 unique reactions and 311 precursors. (See Figure S1.)  Again, the only chemical input to 

each model was a chemical formula (e.g., LiFePO4) and the desired output is of the form 

LiFePO4 <- Li2CO3 + FeC2O4 + (NH4)2HPO4. Between 2 - 8 precursors must be 

specified for a target (Figure S2); most targets have only one unique reaction, but some have as 

many as 12 unique reactions (Figure S3). Like the synthesizability task, the test data contains 

only positive examples; “incorrect” predictions may actually work in the laboratory, so our 
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evaluation underestimates true performance. LLMs were given the following system prompt: 

You are an expert solid-state chemist planning a material synthesis. 

You are provided with a target compound and must select the precursor 

reagents needed to synthesize the target.  Typically two or more 

precursors are needed. The precursor reagents must provide all of the 

elements in the target. However, because the reactions are performed 

in an open system where gases can escape, it is acceptable for some 

non-metal elements (e.g., H, C, N, O, F, Cl, Br) present in the 

precursors to be absent in the final target product. Your synthesis 

task is only to identify the correct precursor to use.  Do not provide 

stoichiometry. Only use precursors from the following candidates: … If 

asked to generate more than one reaction recommendation for a target, 

each recommendation should be different, and be separated with a 

newline. Return only output of the following format for each 

recommendation: [Target] <- [Precursor] + [Precursor] + [Precursor] 

They were then asked in the user prompt synthesize [Target] or provide 5 

synthesis plans for [Target]to generate the prediction. Because of the smaller 

dataset, we performed a 5-fold cross-validation.  We compared the LLMs to the recent 

Elementwise template model (Elemwise)15 and a random statistical baseline in which precursors 

are selected based on their frequency in the dataset for each element. Fine-tuning each GPT-3.5 

model required <90 minutes and <11 USD (as of 04/2024).  
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Figure 2:  Precursor selection accuracy, evaluated over 5-fold cross validation for each model. 

Dark and light boxes indicate Top-1 and Top-5 performance, respectively, with the white 

horizonal lines indicating the median.  Dashed lines indicate the minimum and maximum 

accuracy of a hypothetical “perfect” Elemwise method over the cross validation.    

 

As shown in Figure 2, the top-1 predictions of the fine-tuned GPT-3.5 and Elemwise 

models are comparable; all other methods are inferior. Although the pre-trained models have 

better top-1 predictions than the random baseline, they make worse top-5 predictions, suggesting 

that they do not sample adequately diverse possibilities when generating multiple outputs.  This 

might be counteracted by increasing the model temperature when generating multiple outputs. 

LLMs can generate precursor sets that are outside the domain of the Elemwise model, which 

assumes that each metal type present in the target corresponds to one precursor.  For example, 

diammonium phosphate does not contain a metal, and thus cannot be predicted as a precursor by 

the Elemwise model. The performance of a hypothetical “perfect” Elemwise model is shown as 

the dashed lines in Figure 2; the top-5 predictions of the fine-tuned GPT-3.5 model slightly 

exceed this limit. 
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Although the overall prediction qualities are comparable, the models make different 

predictions. As depicted in Figure 3, the Top-1 and Top-5 predictions of the two models can vary, 

where one is correct and the other is incorrect.  Combining the Top-5 predictions of both models 

would predict the correct precursors for 93% of target compounds. This suggests the value of 

including fine-tuned LLM predictions in ensemble methods. We investigated whether combining 

the top-5 predictions of the Elemwise (84.5% accuracy) and GPT-3.5 FT (86.0%) and then 

asking the pre-trained GPT-4 model to discuss the feasibility of each plan before selecting the 

best five syntheses would improve the results.  This provides both human-readable explanations 

and a small, but statistically significant, improvement of the resulting top-5 prediction accuracy 

to 87.6%. (See Supporting Information.)  

 

 

Figure 3:  Comparison of a) Top-1 and b) Top-5 prediction precursor prediction accuracy by the 

Elemwise and GPT-3.5 (FT) models summed over all cross-validation splits.   

 

In conclusion, fine-tuned LLMs are comparable to—and in some cases, better than—the 

latest ML models developed specifically for the synthesizability and precursor selection 

problems, using only the target chemical formula as input. In the case of the precursor selection 
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problem, the general output allows for answers that are outside the domain of bespoke ML 

models. Because of their simplicity and low cost, we recommend that fine-tuned LLMs be used 

as a strong baseline method against which to compare future bespoke ML models. Previous 

results on organic molecules have come to similar conclusions for regression and 

classification;40–43 our results extend that recommendation to inorganic chemistry and PU-

learning and multilabel tasks. We also recommend that developers of chemistry- and materials-

specific LLMs39,55–57 prioritize the ease with which users can fine-tune the models to unlock this 

capability. 

A limitation is that this approach relies upon statistical patterns in the training data; biases 

present in reported syntheses58,59 may hinder extrapolation to novel or rare chemistry.60 Also, 

commercial LLMs do not disclose their training sets, which may raise the concern of inadvertent 

leakage of test data into the training set. However, the relatively poor performance of the pre-

trained models for these tasks suggests this is unlikely. 

As our goal was to illustrate this approach in the simplest possible way, there are many 

ways the performance might be improved. We made no attempt at prompt engineering61 or 

hyperparameter optimization of the fine-tuning process. External function calling of “tools” (e.g., 

performing numerical or thermodynamic calculations) can be combined with iterative chain-of-

thought methods (“think step by step”) to further improve problem solving.26,27,62  Finally, we 

expect continued advances in the underlying pretrained LLMs to improve performance.  
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commercially available to the public at https://openai.com.  The stoi-CGNF source code is 

available at https://github.com/kaist-amsg/Synthesizability-stoi-CGNF and the Elemwise source 

code is available at https://github.com/kaist-amsg/ElemwiseRetro/ . 
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