Tautomeric Conflicts in Forty Small-Molecule Databases

Devendra K. Dhaked¹, Marc C. Nicklaus^{1*}

¹Computer-Aided Drug Design Group, Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, NIH, Frederick, MD 21702, USA.

ABSTRACT

We have analyzed forty different databases ranging in size from a few thousand to nearly 100 million molecules, comprising a total of over 210 million structures, for their tautomeric conflicts. A tautomeric conflict is defined as an occurrence of two or more structures within a data set identified by the tautomeric rules applied as being tautomers of each other. We tested a total of 119 detailed tautomeric transform rules expressed as SMIRKS, out of which 79 yielded at least one conflict. These transformations include three types of tautomerism: prototropic, ringchain, and valence tautomerism. The databases analyzed spanned a wide variety of types including large aggregating databases, drug collections, and structure collections based on experimental data. All databases analyzed showed intra-database tautomeric conflicts. The conflict rates as percentage of the database were typically in the few tenths of a percent range, which for the largest databases amounts to >100,000 cases per database.

INTRODUCTION

Tautomerism is a ubiquitous phenomenon in chemistry, and an important phenomenon for drugs and in drug design. Estimates of what percentage of structures in a small-molecule database are capable of some kind of tautomerism have typically been above $10\%^{2,3}$ and, if analyzed by comprehensive chemoinformatics rules, have been found to be as high as 66% of the cases. Our recent study using 80+ tautomeric rules showed that an average of 71% of the >400 million structures across 9 databases are capable of tautomerism in the sense that they match at least one of the transforms, i.e. that one or more additional tautomers could be generated by the rules. It is therefore no surprise that existing databases may show cases where molecules are listed as separate records (with, e.g., different catalog numbers and possibly even different prices), which rule-based approaches find to be tautomers of each other. We have termed such cases "tautomer conflicts."

We previously analyzed over 150 databases, totaling more than 103 million structures, for the tautomeric conflicts in each database as well as across all databases combined. We also analyzed a medium-size database (~6 million records) for its tautomeric conflicts by both chemoinformatics and experimental analysis, which computationally identified more than 31,000 conflicts, out of which more than 100 were experimentally tested. This study showed that in

most cases, the chemoinformatics rules had correctly predicted the analytical identity of the tautomeric multuplet members. For this study, we significantly broadened both the number of tautomeric transform rules applied, ⁵ as well as the total number of compounds studied, coming from a diverse collection of chemical structures. The importance of testing chemoinformatics approaches – in this case the handling of tautomerism – along experimental data has been recognized in a recent precision FDA Challenge, "Crowdsourced Evaluation of InChI-based Tautomer Identification."

We need to strongly emphasize that finding a tautomer conflict in a database is not identical with having identified a problem in the database. There may be many reasons why tautomers of each other may be present in different database records. A tautomer conflict as identified in this study should therefore rather be seen as an alert to perhaps take a closer look at tautomer multuplets to investigate if they truly create an issue in the database.

DATA AND METHODS

Databases

We downloaded 40 databases, ranging in size from nearly 100 million to a few thousand structures (Table 1). The total number of (non-unique) structures analyzed is more than 210 million.

Table 1. Databases used in this study.

Database	Type	Molecule count in database	Date accessed	URL used to access database
PubChem	A	96,502,282	Oct 2018	https://pubchem.ncbi.nlm.nih.gov/
eMolecules	B, S, A	23,217,671	Nov 2019	https://www.emolecules.com/info/plus/download-database
SureChEMBL (Patents)	P	19,334,472	Dec 2019	https://www.surechembl.org/search/
MCULE	В, О	18,445,974	Nov 2019	https://mcule.com/database/
Ambinter	S	9,837,722	Nov 2019	http://www.ambinter.com/
AMS Screening (2019 Q4)	S	8,122,497	Dec 2019	Obtained by subscription to ChemNavigator databases
MolPort	B, S	7,615,837	Nov 2019	https://www.molport.com/
Enamine	B, S, O	3,856,359	Nov 2019	https://enamine.net/
InterChim	S	2,881,727	June 2019	http://www.interchim.com/
AsisChem	S	2,107,628	Dec 2019	https://asischem.com/
ChEMBL	L	1,820,035	Dec 2019	https://www.ebi.ac.uk/chembl/
Princeton Biomolecular Research	B, S	1,780,907	Nov 2019	http://www.princetonbio.com/
Life Chemicals	B, F, O	1,445,268	Nov 2019	https://lifechemicals.com/
ChemDiv	В, О	1,444,422	Nov 2019	https://www.chemdiv.com/

Vitas-M				
Laboratory	B, S	1,441,235	Nov 2019	https://vitasmlab.biz/
Chemspace	B, S, F	1,381,383	Nov 2019	https://chem-space.com/
ChemBridge	S	1,243,316	June 2019	https://www.chembridge.com/
Innovapharm	B, S, F, O	1,123,797	Dec 2019	https://innovapharm.com.ua/
TimTec	B, S, O	1,086,513	Nov 2019	https://www.timtec.net/ and https://www.timtec.net/home/download-databases.html
Alinda	B, S	929,626	Dec 2019	http://www.alinda.ru/synthes_en.html
US EPA	R	848,945	Dec 2019	https://comptox.epa.gov/dashboard/downloads
UORSY	S, F, O	681,161	Dec 2019	https://uorsy.com/
Asinex	B, S, F	642,206	Nov 2019	http://www.asinex.com/
InterBioScreen	B, S, F, O	572,055	Nov 2019	https://www.ibscreen.com/
Otava	B, S, F, O	566,491	Dec 2019	https://www.otavachemicals.com/
CSD Organic	E	319,204	Dec 2018	https://www.ccdc.cam.ac.uk/
HTS Biochemie	B, S, O	290,883	Nov 2019	http://www.hts-biochemie.de/hts-en/index.php
ChemBank	E	1,530,003	Jan 2020	https://data.broadinstitute.org/chembank/assay (Full set of molecules privately shared with us ⁸)
Key Organic	B, S, F, O	202,241	Nov 2019	https://www.keyorganics.net/downloads-bionet-databases/
ChemBlock	B, S	131,662	June 2019	http://www.chemical-block.com/
Maybridge	B, S, F	126,414	Nov 2019	https://www.maybridge.com/portal/aliasRainbow/langen/tabI topDefault.aspx

HMDB	M	113,983	Nov 2019	http://www.hmdb.ca/downloads
ChEBI	A	103,104	Nov 2019	https://www.ebi.ac.uk/chebi/downloadsForward.do
FDA DailyMed	R	60,095	Feb 2020	ftp://public.nlm.nih.gov/nlmdata/.dailymed/substance_indexing_spl_files.zip
PDB ligand	E	29,877	Aug 2019	http://ligand-expo.rcsb.org/ld-download.html
Combiphos Catalyst	O	19,583	Dec 2019	https://www.combiphos.com/products
MolMall-MDPI	O	15,309	Dec 2019	http://www.molmall.net/download.html
Cayman	O	13,860	Nov 2019	https://www.caymanchem.com/
DrugBank (5.1.4)	D	10,632	Aug 2019	https://www.drugbank.ca/releases/5-1-4
DrugCentral	D	4,531	Dec 2019	http://drugcentral.org/download

Note: "A": Aggregating database; "S": Screening sample supplier; "L": Literature extractions; "R": Regulatory agency database; "E": Experimental results database; "D": Drug database; "M": Metabolite. "B": Building blocks; "F": Fragment or scaffold library; "P": Patent; "O": Other.

This set of collections spans a wide variety of types of databases: large aggregated databases (e.g., PubChem); screening sample (and other commercially available) catalogs (e.g., Ambinter); databases of regulatory agencies (e.g., US EPA); experimental results (e.g., CSD Organic); drug databases (e.g., DrugBank); human metabolite (e. g. HMDB); patent (e.g. SureChEMBL) and others.

Algorithmic Approaches and Software Used

The analyses of tautomeric conflicts were performed with the chemoinformatics toolkit CACTVS. Version 3.4.8.12 of CACTVS was used. CACTVS allows the user to calculate a number of identifiers (hashcodes) that are sensitive to different chemical features such as formal charges in the input structure, presence of isotopically labeled atoms, stereochemistry, etc. One of these features is tautomerism, i.e. if tautomerism invariance is turned on, the identifier returned by CACTVS is the same for all possible tautomers that can be enumerated based on the tautomeric rule set active at the time of execution, otherwise different tautomers receive different identifiers. One such tautomer-invariant identifier is called E_TAUTO_HASH128 (the "E_" standing for: Ensemble property, "ensemble" being the CACTVS term for a compound structure) with 128 bit length (the default hashcode length is 64 bit). Other related hashcodes we computed (named with the terminology "ISOTOPE": sensitive to isotopes; "STEREO": sentive to stereochemistry; "TAUTO": invariant to tautomers) were: tautomer-invariant hashcodes E_ISOTOPE_TAUTO_HASH128, E_STEREO_TAUTO_HASH128, E_ISOTOPE_STEREO_TAUTO_HASH128; and tautomer-sensitive hashcodes E_HASH128, E_ISOTOPE_HASH128, E_STEREO_HASH128, and E_ISOTOPE_STEREO_HASH128.

Tautomerism Rules Used

We started with 86 previously defined rules⁵ encompassing a wide variety of prototropic, ringchain, and valence tautomeric transforms. They incorporate the 20 standard tautomeric rules distributed by default in CACTVS. The 86 rules have been thoroughly analyzed as to their prevalence in a variety of databases (including some used in this paper), defined of how many structures in a database are amenable to each rule, i.e. can have more than one tautomer based on this rule; as to their comparison with current InChI (which has some but significantly incomplete handling of tautomerism in its current version, 1.06); and as to other properties. We refer the reader to that study⁵ for these detailed analyses. To these 86 SMIRKS, we added 33 SMIRKS from 11 types of ring⇒chain rules. ¹⁰ These 11 types are encoded in a total of 38 SMIRKS, most types having multiple SMIRKS to cover a wide range of transforms. Five of these 38 ring⇒chain SMIRKS were already part of the 86 SMIRKS of our previous study, ⁵ which led to a total of 119 SMIRKS used for the overlap analysis in this study. The entire list of transforms is included as Supplementary Information S1 (Transform File). We note that this set can be subdivided into "common" and "rare" rules, simply based on the prevalence observed, with common rules matching millions of structures ⁵ in a large database such as PubChem. Fewer than

20 rules are common in this sense. Since a tautomeric conflict requires at least two structures in a database that can interconvert according to our rules but have been labeled as different records by the database provider, i.e. is essentially a square function of the occurrence rate, it is obvious that common rules are much more likely to yield tautomeric conflicts than rare ones. We point out that the SMIRKS are interpreted in both directions by CACTVS, whereas in other chemoinformatics toolkits, this may not be the case, i.e. each rule would have to be decomposed into two (or more) separate SMIRKS there.

Definition and Determination of Tautomeric Conflicts

We define a tautomeric conflict as the occurrence, within a database, of two or more records labeled by the database provider as structurally different entries, whereas our tautomeric rules indicate that these structures are tautomers of each other. We determine such conflicts by searching for compounds in the database that have the same tautomer-invariant but different tautomer-sensitive hashcodes. Specifically, we used E ISOTOPE STEREO HASH128 and E ISOTOPE STEREO TAUTO HASH128 to search for tautomeric conflicts. All TAUTO hashcodes used in this study were modified from their standard versions as distributed with CACTVS to incorporate the 119 tautomeric rules mentioned above vs. the 20 rules in the CACTVS standard. It is important to use stereo-sensitive hashcodes. Non-stereo-sensitive hashcodes ignore stereochemistry – anywhere in the molecule. Tautomerism may make some stereogenic centers non-persistent (see below) but many other stereocenters are not affected by tautomerism. Non-stereo-sensitive hashcodes would therefore equate stereoisomers with each other that truly are not tautomers of each other. At the same time, and perhaps somewhat counterintuitively, non-stereo-sensitive hashcodes typically lead to lower conflict counts because they have already projected different stereoisomers onto each other that may be found to be nonpersistent based on our rules and thus may receive the same tautomer-invariant hashcodes, while they are often listed as different records in databases.

If such a tautomeric conflict analysis is conducted across a merged set of databases, which we have also done in this study, the term "conflict" is somewhat misleading since different (providers of) databases do not usually mutually synchronize their records. Such cases should therefore better be called "tautomeric overlaps."

Determining Tautomeric Rules for Conflicts

We determined the single transform or sequence of transforms connecting the multuplet members with each other, employing an approach based on tautomeric network as published before⁶, however here using all 119 rules, not just the 20 standard (prototropic) rules of CACTVS. Briefly, we first enumerate all possible tautomers from each tautomeric multuplet; then, we generate a tautomer network among those enumerated tautomers. In such a network, one typically finds several pathways that connect one tautomer to the other by different tautomeric transforms. Finally, we search for the shortest pathway, defined by the smallest

number of transformation steps within the tautomeric pair. In this context, transformation step means that we initially look for a single rule to generate a specific tautomer by that rule. However, it is possible that the target tautomer can be generated by alternatice transformation rules as these rules are not completely orthogonal to each other, meaning that a tautogenic substructure may match with more than one rule. If two different paths, or parts of a path, have the same number of steps, we enclose them in braces, separated by "/". Subsequent steps are indicated by ">". Thus {PT_03_00/PT_06_00} > PT_09_00 means that the pathway can either use PT_03_00 or PT_06_00 in the first step, followed by PT_09_00 in the second step. See Table 4 for counts of such multistep transformations.

RESULTS

Intra-Database Conflict Counts

Table 2 shows the conflict counts for the databases analyzed. We found intra-database conflicts for all databases analyzed. While the majority of conflicts stem from tautomer pairs, we also looked for, and found, numerous cases of higher-order multuplets. We checked for up to 25-tuplets. The larger the database, the higher the chance for higher-order multuplets. It is therefore no surprise that PubChem leads the pack with one case of a 25-tuplet. We also analyzed the number of conflicts for all 40 databases merged together (without any structural deduplication). The total number of intra-database conflicts for this merged database was 5,401,799.

Table 2 also shows the conflict rate, defined as the number of conflicts divided by the number of molecules in the database (as shown in Table 1). We note that the number of database records involved in the conflicts is at least twice as high since the lowest-order tautomer multuplet is a pair. The conflict rates typically fall in the range between 0.1% and 1%, with the extrema being 11.59% at the high end and 0.02% at the low end, with a median of 0.23%. The average conflict rate was about 0.77%. If we remove the outlier of 11.59% for ChemBank, the median and the average reduce to 0.21% and 0.48%, respectively. This means that typically between half and one percent of a database is involved in tautomer conflicts (keeping in mind that each conflict involves at least a pair of molecules). We note that this number is close to the result of our 2010 study, which had yielded an overall tautomeric conflict rate of 0.3%. For more than half of the databases, multuplets no higher than 5-tuplets were found. PubChem had the highest number of conflicts across all categories, while AsisChem had the lowest conflict rate. The total number of 2-tautomer conflicts across all databases is greater than 2.2 million. The conflicts for 3- and 4tuplets sum up to around 1 million and less than 100,000, respectively. For all the higher-order (5+) tuplets combined, the total number is about 45,000. It is intesting to note that the tautomeric conflict count for the AMS database has about doubled (71,000) compared to our previous study conducted in 2015, in which we identified around 31,000 conflicts. 6 This increase in the number of conflicts could be caused by both the increase in the number of tautomeric transformations, and the increase in the number of molecules in the database.

Table 2. Tautomeric conflict counts within each database (intra-database conflicts).

Tautomer conflict tuplet size Conflict Total 5 Database conflicts Rate (%) 2 3 4 7 10 11 12 13 14 15 PubChem 2,491,470 2.58 1,447,010 936,500 64,785 27,934 7,098 3,772 1,544 1,355 527 413 185 109 63 53 5 199,658 179,414 18,804 17 2 1 eMolecules 0.86 1,116 219 63 16 1 SureChEMBL (Patents) 304,621 1.58 259,825 39,408 3,450 1,140 388 182 108 40 22 16 17 6 2 3 MCULE 29,666 25,953 3,684 21 2 2 0.16 4 Ambinter 36,559 0.37 34,830 1,692 30 1 **AMS Screening** 71,274 66,852 19_Q4 0.88 4,264 142 10 3 2 MolPort 138,846 1.82 131,095 6,887 754 92 14 Enamine 4,252 0.11 2,313 1,935 4 InterChim 9,440 0.33 9,259 173 8 AsisChem 480 0.02 480 ChEMBL 10,525 94 21 6 0.58 9,346 1,057 Princeton Biomolecular Research 33,318 1.87 32,632 668 17 Life Chemicals 870 0.06 868 2 ChemDiv 614 0.04 602 12 Vitas-M

21,084

17

536

Laboratory

21,639

1.50

Chemspace	2,926	0.21	2,403	503	16	2	2	-	-	-	-	-	-	-	-	-
ChemBridge	e 388	0.03	386	2	-	-	-	-	-	-	-	-	-	-	-	-
Innovaphari	m 3,716	0.33	3,611	101	4	-	-	-	-	-	-	-	-	-	-	-
TimTec	1,092	0.10	1,074	18	-	-	-	-	-	-	-	-	-	-	-	-
Alinda	488	0.05	484	4	-	-	-	-	-	-	-	-	-	-	-	-
US EPA	2,777	0.33	2,478	251	38	6	-	2	-	2	-	-	-	-	-	-
UORSY	125	0.02	125	-	-	-	-	-	-	-	-	-	-	-	-	-
Asinex	194	0.03	174	20	-	-	-	-	-	-	-	-	-	-	-	-
InterBioScre	een 275	0.05	272	3	-	-	-	-	-	-	-	-	-	-	-	-
Otava	336	0.06	315	17	4	-	-	-	-	-	-	-	-	-	-	-
CSD Organio	452	0.14	443	8	-	1	-	-	-	-	-	-	-	-	-	-
HTS Biocher	mie 324	0.11	324	-	-	-	-	-	-	-	-	-	-	-	-	-
ChemBank	33,527	11.59	33,051	429	39	8	-	-	-	-	-	-	-	-	-	-
Key Organic	309	0.15	248	60	-	1	-	-	-	-	-	-	-	-	-	-
ChemBlock	139	0.11	139	-	-	-	-	-	-	-	-	-	-	-	-	-
Maybridge	54	0.04	53	1	-	-	-	-	-	-	-	-	-	-	-	-
HMDB	284	0.25	246	33	4	-	1	-	-	-	-	-	-	-	-	-

ChEBI	1,385	1.34	1,103	215	33	13	8	6	-	2	-	1	1	1	2	-
FDA DailyMed	556	0.93	513	24	9	4	3	1	-	1	1	-	-	-	-	-
PDB ligand	167	0.56	148	13	4	-	1	1	-	-	-	-	-	-	-	-
Combiphos Catalyst	4	0.02	4	-	-	-	-	-	-	-	-	-	-	-	-	-
MolMall-MDPI	62	0.40	59	2	1	-	-	-	-	-	-	-	-	-	-	-
Cayman	61	0.44	49	10	2	-	-	-	-	-	-	-	-	-	-	-
DrugBank (5.1.4)	43	0.40	38	3	1	1	-	-	-	-	-	-	-	-	-	-
DrugCentral	9	0.20	9	-	-	-	_	-	_	-	-	-	-	-	-	-

We tested multuplet sizes up to 25 but show multuplet sizes only up to 15 to limit the size of the table. The entire table with all multuplet sizes is provided as Supporting Information Table S2.

<u>Inter-Database Tautomeric Overlaps</u>

We determined inter-database tautomeric overlaps by checking, for each tautomeric molecule of a database, for the presence of alternative tautomer(s) in all other 39 databases. We note that these alternative tautomers may be fully or partially the same across these 39 databases but they had to be different from the query tautomer of the tested database. Table 3 shows the interdatabase overlaps, again broken down by multuplet sizes similar to Table 2. It is not surprising that the number of inter-databases overlapss is generally higher than that of the intra-databases conflicts (e.g. for PubChem >5 million for the former vs. about 2.5 million for the latter) given that structure normalization is most likely different between databases. The total number of inter-database overlaps across the 210 million structures of all 40 databases was about 21 million. This means that there is a ~10% chance of missing a compound due to tautomeric difference when searching with a tautomerism-capable structure in a different database.

Table 3. Tautomeric overlap counts for each database relative to all other databases (inter-database overlaps).

					Inte	er-database t	automer ove	erlpa multup	olet sizes						
Database	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
PubChem	5,135,589	257,072	18,108	4,573	1,749	1,141	543	283	398	91	106	61	116	13	21
eMolecules SureChEMBL	843,642	580,741	13,679	19,775	1,766	1,523	628	1,109	150	120	77	68	26	18	8
(Patents)	698,216	134,812	12,056	5,545	1,440	1,030	534	398	231	102	120	75	82	24	18
MCULE	2,566,895	151,734	85,015	5,680	2,463	739	314	126	90	34	18	4	13	3	-
Ambinter	1,057,664	546,596	16,194	17,823	2,511	1,964	680	1,290	218	240	101	59	33	42	18
AMS Screening (2019 Q4)	1,391,234	538,174	13,708	18,622	1,719	1,548	687	1,057	191	158	69	58	29	28	14
MolPort	851,328	469,692	10,831	17,277	1,566	1,382	532	1,039	106	93	60	54	19	12	4
Enamine	214,666	25,102	14,707	1,252	522	74	65	17	14	4	4	-	4	-	-
InterChim	214,882	156,473	4,189	12,018	619	891	443	1,328	60	64	61	57	12	9	1
AsisChem	255,351	37,918	9,908	2,205	350	90	18	9	6	2	2	1	-	-	-
ChEMBL Princeton Biomolecular	286,958	18,199	14,197	2,310	679	357	204	139	73	38	20	7	16	3	4
Research	548,344	30,672	43,184	3,457	1,317	441	262	104	48	25	10	3	4	-	-
Life Chemicals	44,273	2,493	2,880	311	82	26	48	19	4	3	1	-	1	-	-
ChemDiv	121,076	9,033	13,053	1,360	366	158	78	31	15	5	3	-	-	-	-
Vitas-M Laboratory	685,190	35,014	42,302	3,172	1,291	408	196	95	41	22	10	3	3	-	-
Chemspace	48,927	4,246	2,047	281	74	29	20	7	8	2	3	-	-	-	-
ChemBridge	103,393	83,338	1,200	2,873	128	156	55	320	24	21	14	7	4	2	-
Innovapharm	311,573	42,806	19,657	1,427	232	95	145	32	15	5	-	-	2	-	-
TimTec	379,678	20,845	25,251	2,341	691	221	134	63	30	10	4	1	3	-	-
Alinda	193,984	7,646	11,492	780	252	71	47	16	8	2	2	-	-	-	-
US EPA	135,800	9,458	3,017	619	194	146	44	29	21	14	17	11	9	5	1

UORSY	79,804	4,300	4,252	459	86	19	61	11	3	3	1	-	2	-	-
Asinex	140,134	7,192	14,932	844	208	54	47	22	9	7	2	-	-	-	-
InterBioScreen	298,326	17,003	17,766	1,460	386	149	122	65	20	11	2	1	-	1	-
Otava	109,420	9,777	10,017	934	74	77	72	19	6	4	-	1	1	-	-
CSD Organic HTS	5,671	1,105	123	56	13	5	5	2	-	-	-	1	1	1	1
Biochemie	2,999	1,604	7	6	2	-	-	-	-	1	-	-	-	-	-
ChemBank	233,927	20,239	14,644	1,896	517	241	127	74	39	17	9	1	7	4	3
Key Organic	32,194	8,184	387	297	42	43	18	16	6	2	1	2	1	-	1
ChemBlock	23,469	2,043	3,905	426	150	59	22	9	5	-	1	-	-	-	-
Maybridge	22,287	1,883	1,413	90	29	10	1	1	-	1	1	-	-	-	-
HMDB	8,353	822	272	74	54	25	14	5	9	8	3	1	1	4	1
ChEBI	31,223	3,104	781	291	165	80	28	25	23	17	14	9	2	2	1
FDA DailyMed	16,968	1,754	743	215	119	76	32	23	10	6	16	2	2	1	-
PDB ligand Combiphos	4,229	708	145	72	40	23	18	6	11	3	-	3	-	-	-
Catalyst	1,900	141	33	4	-	1	-	-	-	-	-	-	-	-	-
MolMall-MDPI	5,100	374	262	76	17	6	3	2	-	1	1	-	-	-	-
Cayman DrugBank	2,687	789	100	61	15	12	8	3	2	4	1	3	3	1	-
(5.1.4)	7,566	657	281	90	29	18	8	9	8	2	4	2	-	-	1
DrugCentral	2,325	253	50	21	7	5	-	2	1	1	2	1	-	1	-

Transforms Associated with Conflicts

Table 4 shows the counts of transforms we were able to associate with intra-database conflicts identified based on E_ISOTOPE_HASH128 and E_ISOTOPE_TAUTO_HASH128. We had to use non-stereo sensitive hashcodes for this analysis because the explicit handling of stereogenic elemenst in the STEREO hashcodes prevents the straightforward generation of tautomeric pathways (see above), i.e. one tautomer may not converge to another tautomer. A total of 72 out of the 119 tested rules yielded at least one case of tautomeric conflict, be it a single- or multiple-rule conflict. We note that the vast majority of conflicts are based on one of the common rules as mentioned above, possibly in combination with one or a few other rules, these being in the majority common rules themselves. We do however find some conflicts based on rare rules, including more than 1,000 cases involving new rules going beyond the 20 standard CACTVS rules: 435 single-rule conflicts, 1,277 multiple-rule conflicts.

Table 4. Counts of associated rules in single-rule conflicts as well as rule combinations associated with conflicts

Rule number	Single-rule conflicts ^(a)	Combined or/and alternative rule conflicts ^(b)
PT_02_00	1,337	31,868
PT_03_00	316	68,591
PT_04_00	-	15,889
PT_05_00	6	122,429
PT_06_00	190,015	271,174
PT_07_00	40,094	43,028
PT_08_00	4	25,528
PT_09_00	6,124	59,634
PT_10_00	98	4,807
PT_11_00	57	7,670
PT_11_01	6	346
PT_11_02	5	369
PT_11_03	-	81
PT_11_04	-	35
PT_12_00	-	13,199
PT_13_00	443	51
PT_15_00	1	387
PT_16_00	989	10,297
PT_17_00	-	87
PT_18_00	113	49
PT_19_00	64	20
PT_20_00	26	7
PT_21_00	1,389	61
PT_22_00	60	383
PT_23_00	254	42

PT_24_00	-	4
PT_27_00	58	40
PT_28_00	-	79
PT_29_00	-	58
PT_29_01	3	248
PT_32_00	-	42
PT_33_00	-	45
PT_35_00	-	2
PT_36_00	-	2
PT_37_00	6 2	7 3
PT_39_00 PT_41_00	2	4
PT 42 00	17	206
PT 44 00	-	6
PT 45 00	35	102
PT_47_00	-	4
RC_01_00	-	4
RC_02_00	-	1
RC_03_00	-	26
RC_03_01	-	19
RC_03_02	-	4
RC_04_00	-	9
RC_04_01	-	10
RC_04_02	-	13
RC_04_03	-	7
RC_05_00	-	3
RC_05_01	-	4
RC_05_02	-	3
RC_05_03	_	3
RC_06_00	_	10
RC_06_01	_	9
RC_06_02	_	3
RC_07_00	_	4
RC_07_01	_	4
RC_07_01 RC_07_02	_	6
RC_07_02 RC_07_03	_	55
RC_07_03 RC_09_00	_	44
_ _	-	
RC_09_01	-	23
RC_10_00	-	22
RC_10_01	-	22

RC_10_02	-	13
RC_11_00	-	2
RC_11_01	-	2
RC_11_02	-	2
RC_20_00	-	1
VT_02_00	-	3
VT_06_00	-	1

^aExamining only single-rule transformations without any alternative rule possibility. ^bExamining transformations involving alternative rules and/or multistep transformations.

Single-rule conflicts were observed for 26 rules, and were found only for prototropic transforms. We note that rule combinations also mostly involved prototropic transforms; however some rule combinations involving ring-chain transforms and valence transforms were also found. In the literature, there are examples where prototropic tautomerism interacts with ring-chain tautomerism. For instance, warfarin is known to have around 40 tautomers, some in chain form and others in ring form; some of them show both types of tautomerism for interconversion. We point out that such multistep transformations are not meant to be a recapitulation of the physics of the tautomeric interconversion. They are the combination of pattern-matching transforms that allow us to go from one tautomeric connectivity to another at the chemoinformatics level.

Percentage of conflicts involving non-persistent stereocenters

We have previously shown⁴ that tautomerism can change the stereochemistry of a compound: The changing location of a double bond may add or eliminate the presence of an E/Z stereo bond. Likewise, migration of a double bond to an sp³ hybridized atom that was chiral removes this chirality, which a further tautomeric isomerization step can re-establish with the opposite chirality, effectively creating racemization of this stereo center. This type of tautomerism led to the racemization of thalidomide, with devastating effects of ensuing drug toxicities, in particular embryotoxicity. Similarly, ring-chain equilibrium at an sp² center can lead to generation of enantiomers. This was recently observed in two investigational molecules, where two ring tautomers of opposite chirality were in equilibrium with the chain form for each compound. ¹⁵

The analysis of this effect in the context of this study was less straightforward than one may think. The issue is that tautomeric structures of the same molecule typically have different atom numbers, which makes atom-atom mapping challenging to determine whether a specific stereogenic center was affected by tautomerism or not. We instead compared the tautomeric overlaps based on stereo-sensitive hashcode identifiers with those based on stereo-invariant

identifiers (called a "stereo tauto conflict" below). This entails the risk that structures with stereocenters that had different R/S or E/Z geometry, but did not participate in the tautomeric interconversion, and had no tautomerism-affected stereo centers, are erroneously counted. In detail, we extracted the subset of stereo tauto conflicts out of the overall conflicts in the following way: If the E_ISOTOPE_STEREO_HASH128 values were different from each other, and different from E_ISOTOPE_HASH128, and that one was the same as the E_ISOTOPE_STEREO_TAUTO_HASH128 value, then we designated this a case of stereo tauto conflict (being aware that there is a small possibility of mis-designation as outlined above)

Table 5. Percentage of conflicts involving non-persistent stereocenters

Database	Stereo conflict percentage vs. all conflicts (%)
PubChem	67.47
eMolecules	27.01
SureChEMBL (Patents)	38.66
MCULE	22.04
Ambinter	8.54
AMS Screening (2019 Q4)	43.56
MolPort	26.22
Enamine	50.80
InterChim	59.26
AsisChem	44.17
ChEMBL	78.30
Princeton Biomolecular Research	12.01
Life Chemicals	0.92
ChemDiv	9.77
Vitas-M Laboratory	15.73
Chemspace	39.95
ChemBridge	92.01
Innovapharm	49.46
TimTec	22.34
Alinda	55.12
US EPA	21.89
UORSY	0.00
Asinex	85.57
InterBioScreen	21.09
Otava	12.50
CSD Organic	89.16

HTS Biochemie	0.31
n i s biocheinie	0.31
ChemBank	7.52
Key Organic	59.55
ChemBlock	16.55
Maybridge	12.96
HMDB	31.34
ChEBI	78.34
FDA DailyMed	97.12
PDB ligand	83.23
Combiphos Catalyst	0.00
MolMall-MDPI	69.35
Cayman	91.80
DrugBank (5.1.4)	62.79
DrugCentral	100.00
40 DBs merged	43.14

We found stereo tauto conflicts for all but two databases: UORSY and Combiphos Catalyst. Table 5 shows a large spread of the percentages of conflicts involving non-persistent stereocenters, ranging from 0 to 100 %. This suggests that different databases treat stereochemistry differently, as well as that they differ in the types of compounds they contain that are affected by this effect. The average of the percentages of conflicts involving non-persistent stereocenters was 42.6%, and 43.1% when all databases were merged into one. We therefore see that this "destruction" of stereo centers by tautomerism is a common effect. The table with the absolute numbers of conflicts for each database is provided as Supporting Information Table S3.

Number of compounds amenable to tautomeric rules

While tautomeric conflicts are the main topic of this paper, the potential amenability of each compound by itself to each of the tautomeric rules is also of interest, such as for expanding incorporated rule sets in other tools such as InChI. We therefore analyzed about 115 million compounds downloaded from PubChem in April 2023 as to their amenability to an updated set of 120 rules (a rule PT_01_04 was added). "Amenability" is defined as whether the rule generates at least one additional tautomer for the compound (using CACTVS v. 3.4.8.23). We also computed a "unique amenability" count, counting a PubChem molecule for a given rule only if no other rule among the 120 rules applied.

Table 6. Amenability counts for 114,886,346 PubChem compounds to 120 rules

		Uniquely
Rule_ID	Amenable	amenable
PT_01_04	1,521,636	215,517
PT 02 00	1,208,985	96,844
PT 03 00	14,789,849	117,861
PT 04 00	2,327,801	0
PT 05 00	9,529,342	88
PT 06 00	72,541,097	13,849,517
PT 07 00	8,993,424	931
PT 08 00	1,517,434	135
PT 09 00	38,121,268	1,788,509
PT 10 00	2,345,496	14
PT 11 00	871,289	0
PT 11 01	280,870	0
PT 11 02	125,387	1
PT 11 03	80,079	0
PT 11 04	24,467	0
PT_12_00	4,219,016	618,307
PT_13_00	9,936	5,661
PT_14_00	120,339	0
PT_15_00	120,375	24
PT_16_00	450,660	1,855
PT_17_00	4,052	83
PT_18_00	2,796	1,890
PT_19_00	2,461	255
PT_20_00	2,924	1,054
PT_21_00	52,477	24,622
PT_22_00	3,689,526	286,754
PT_23_00	1,312,246	34,407
PT_24_00	21,634	4,617
PT_25_00	3,429	0
PT_26_00	5,531	866
PT_27_00	27,371	15,194
PT_27_01	97	4
PT_28_00	360,886	123,302
PT_29_00	214,700	63,987
PT_29_01	38,810	13,260
PT_30_00	10,304	724
PT_31_00	310	130
PT_32_00	190,441	45,946
PT_33_00	135,613	51,132
PT_34_00	1,227	627
PT_35_00	8,295	3,407
PT_36_00	408,659	9
PT_37_00	229	0
PT_38_00	11	8

PT 39 00	10,953	4,384
PT_40_00	0	0
PT_41_00	31,958	6,521
PT_42_00	228,567	2,140
PT_43_00	3,784	1,226
PT_44_00	9,899	2,308
PT_45_00	41,919	15,891
PT_46_00	245	105
PT_47_00	30,691	3
PT_48_00	744	0
PT_49_00	733	0
RC_01_00	1,009,015	23,803
RC_02_00	3,120,544	319,858
RC 03 00	9,896,500	273,669
RC_03_01	9,642,222	89,670
RC 03 02	6,373,635	15,363
RC_03_03	615	6
		_
RC_03_04	60,784	26,058
RC_04_00	559,878	7,216
RC_04_01	4,973,714	44,176
RC_04_02	4,710,865	31,210
RC_04_03	2,909,717	3,814
RC_04_04	975	304
RC_05_00	2,731,606	33,295
RC_05_01	2,584,675	10,363
RC_05_02	2,636,124	21,978
RC_05_03	2,755,359	5,260
RC_05_04	1,498,071	1,854
RC_06_00	107,633	10,064
RC 06 01	89,252	6,248
RC_06_02	57,227	171
RC 07 00	138,031	13,374
RC_07_01	88,521	1,847
RC_07_01		
	115,627	3,203
RC_07_03	97,637	18,043
RC_08_00	133,405	8,241
RC_08_01	48,895	411
RC_08_02	53,652	2,880
RC_08_03	62,404	707
RC_08_04	31,477	374
RC_09_00	385,014	35,276
RC_09_01	294,836	24
RC 09 02	2,649	201
RC_10_00	280,707	2,331
RC 10 01	296,910	2,081
RC 10 02	207,687	312
RC 10 03	700	88
RC 11 00	35,508	334
RC 11 01	38,176	121
RC_11_02	64,498	130

DO 44 00	07.407	00
RC_11_03	27,187	22
RC_11_04	155	39
RC_12_00	39	24
RC_13_00	71,978	10
RC_14_00	117	0
RC_15_00	850	134
RC_16_00	3	3
RC_17_00	10	9
RC_18_00	122	34
RC_19_00	7,931	12
RC_20_00	1,348	30
RC_21_00	7,929	88
RC_22_00	1,023	74
RC_23_00	513	15
RC_24_00	483	271
VT_01_00	1,994	515
VT_01_01	2,397	649
VT_02_00	517,490	105,642
VT_03_00	786	23
VT_04_00	4	2
VT_05_00	1,285	968
VT_06_00	128,828	53,437
VT_07_00	2,138	265
VT 08 00	43	36
VT_09_00	1	1
VT_10_00	6	0

We see that only one single rule, PT_40_00, does not have any amenability match in PubChem. Each PubChem compound generates on average about one additional tautomer, since the ratio of generated tautomers per compound (including the original input structure) was 1.964. For unique amenability, this ratio is 0.168. The number of rules not uniquely matching any compound is 13. We note that several rules are very non-unique, i.e. the unique amenability count is much lower than the non-unique one or zero (e.g., PT_04_00, RC_09_01, all PT_11 rules), whereas others have unique counts of >50% of the non-unique counts (e.g., PT_13_00, RC_24_00, VT_05_00). The number of tautomers calculated for each compound for each one rule ranged from 0 to 26. About 69% of the compounds had at least one tautomer. Note that these tautomer counts per molecule are not the same as the number of tautomers generated by the exhaustive iterative application of all 120 rules together to a molecule, which yields more than 1000 tautomers for some PubChem compounds.

DISCUSSION

The fact that the overall intra-database tautomeric conflict rate has changed little of the course of more than a decade⁴ indicates that not much appears to have changed in the recent past with how tautomerism is treated by database managers and providers.

We need to re-emphasize that identifying a tautomer conflict in a database does not per se indicate a problem with that database. There may be numerous reasons why several tautomers of the same molecule may be present in the same database. This includes the possibility that different tautomers were truly present in different samples, i.e. that the applied chemoinformatics rule was too "aggressive"; or that – especially in experimental databases – different conditions of measurement¹⁷ (solid, gas phase and solvent phase), sample preparation (e.g. in X-ray crystallography), or sample storage (impurities, co-solvents etc.) yielded different tautomeric states.

Aggregating databases such as PubChem, combining data sets from hundreds of different sources ¹⁸ are particularly prone to tautomeric conflicts. Strong normalization of input structures can reduce this effect but is fraught with some risks, including original submitters complaining, "What did you do to our structures?" We have previously analyzed a large database of commercially available samples ⁶ and will therefore not further discuss this class of databases (labeled as "S" in Table 1).

As examples of our analyses, we present a handful of tautomeric conflicts we found for databases in the classes of regulatory agency databases ("R"), experimental results databases ("E"), and drug databases ("D").

US EPA

The Distributed Structure-Searchable Toxicity (DSSTox) database of the US Environmental Protection Agency's (EPA) is a chemical database for predictive toxicology. Each chemical is mapped with bioassay and physicochemical property and toxicity data. The database preparation was described by the authors as being based on uniquely mapped identifiers (i.e., CAS RN, name and structure) and with rejection of entries that have any two identical identifiers. ¹⁹ We found more than 2,777 tautomeric conflicts (see Supplementary Information Table S2) among the around 848,000 entries of this database. A few examples are shown in Figure 1.

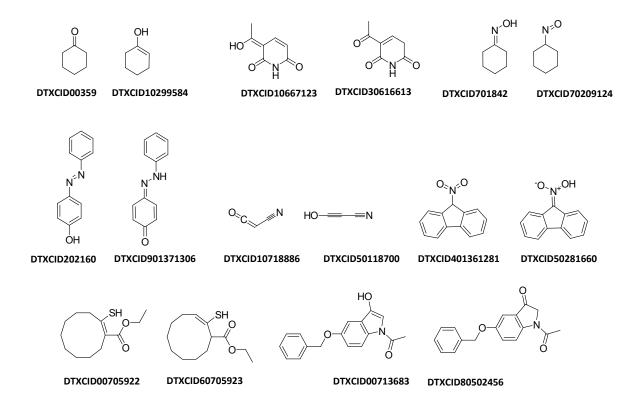


Figure 1. Tautomeric conflict examples from EPA DSSTox.

FDA DailyMed

FDA has been posting Substance Index SPL files for small-molecule based substances and biological substances (therapeutic proteins and biological organisms). From SPL files downloaded from the DailyMed website²⁰, around 61,000 small molecules were collected from those SPL files that contained only a single small molecule. In these files each molecule has its own Unique Ingredient Identifier (UNII).²¹ Note that these structures are not limited to approved drugs but contain a wide variety of substances of interest to the FDA. We found a total of 556 tautomeric conflicts in this data set. Figure 2 shows a few examples of tautomeric conflicts of structures having different UNIIs. We note, however, that we did not find any tautomeric conflicts among active ingredients in approved drugs (except for a possible interconversion between norethynodrel (UNII 88181ACA0M) and noresthisterone (UNII T18F433X4S) involving an interchange of stereocenters via a multistep transformation through PT_02_00 and PT_06_00; the latter molecule being known to be a metabolite of the former). The conflicts we found involved other substances, including sugars used as excipients, which can be amenable to both prototropic and ring-chain rules, the latter rules having been shown to be sometimes too "aggressive" in their interconversion.⁶

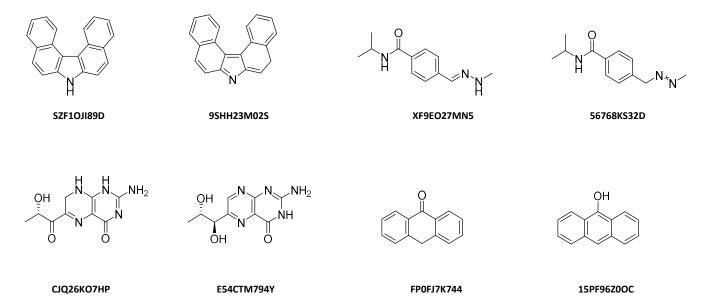


Figure 2. Tautomeric conflict examples from FDA Substance Indexing SPL files downloaded from DailyMed, with UNII identifiers shown.

CSD Organic

For the tautomeric analysis of the CSD, the collection of small molecule structures solved by X-ray crystallography and neutron diffraction methods, we limited ourselves to only its organic molecules. From around 319,000 organic molecules, we found 452 cases where molecules exist in one or more alternative forms with different CSD refcodes. In other databases, we term such pairs "tautomeric conflicts." However, in the case of the CSD they may be better called "alternative forms" in the same database because these are experimentally solved structures in which for the most part the hydrogens are resolved. Figure 3 shows some of the examples involving 1,3, 1,5, and 1,7 H-shifts, respectively. In general, these alternative tautomers had different CSD refcodes. However, we also found cases where two or more different tautomers of the same compound were present in a single crystal structure (in one unit cell), such as 2-thiobarbituric acid in CSD refcode PABNIR.

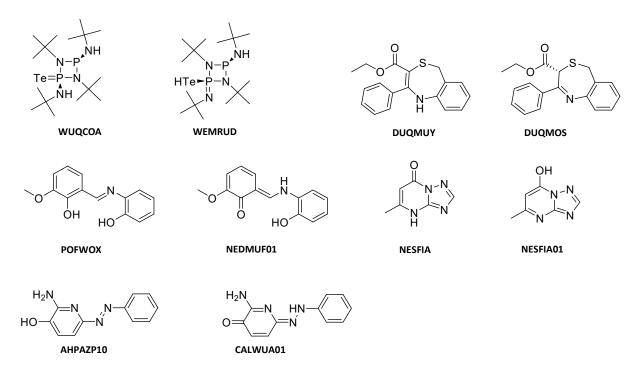


Figure 3. Alternative pair examples from CSD.

In the WUQCOA/WEMRUD pair, the H-shift occurs between an N atom and an otherwise uncommonly seen Te atom. Other pairs involve hydrogen migration through aromatic phenyl and pyridine ring system (POFWOX/NEDMUF01 and AHPAZP10/CALWUA01).

PDB Ligand Expo

The PDB Ligand Expo database showed 167 tautomeric conflicts out of about 29,000 small molecule components reported in PDB entries bound to various macromolecules (protein, DNA). These different molecules are called "Unique Ligands" by the PDB. We could not find mentioning of a the possibility of presence of tautomeric molecules within this ligand set.

For example, from a set of four tautomers, three tautomers (50M, 53M and 53L) are reported to be present in 5CDO (http://www.rcsb.org/structure/5CDO) and 1 tautomer (54Q) exists in 5CDM (http://www.rcsb.org/structure/5CDM) (Figure 4). One point to mention here is that all of these four tautomers have same standard InChI, thus InChI-based resolution of this case of tautomerism would not have been possible. It should however be mentioned that efforts are underway to broaden the coverage of tautomerism in InChI, ¹⁶ and to test such additional InChI tautomer rules based on experimental data sets. ⁷

It is usually difficult to determine the tautomeric state of a bound molecule. Pyridoxamine-5-phosphate-hydroxyisoxazole is an experimental molecule that is registered in the PDB in three different tautomeric forms: 7TS, LCS and PMH. We found 7TS in one (5U3F), LCS in four

(6QP1, 4OMA, 1D7U and 4D9E) and PMH in two PDB entries (1XQK and 1XQL), respectively.

For some molecules, one tautomer is reported to have high preference compared to another one. For example, the keto form of uric acid is reported in 22 PDB entries whereas its hydroxy form occurs in only two PDB entries.

Figure 4. Tautomeric conflict examples among PDB ligands.

DrugBank

This is a chemo-bioinformatics database containing information on drugs and their targets. The main entries are from approved small molecule drugs, approved biologics (proteins, peptides, vaccines, and allergenics), nutraceuticals and experimental (discovery-phase) drugs. The major portion of DrugBank's information is related to chemical data and rest to the drugs' targets.²²

DB00717 (Norethisterone) and DB09371 (Norethynodrel) are approved progesterone-based drugs. They are tautomers of each other based on our rules. (They also have different UNIIs: T18F433X4S and 88181ACA0M, respectively.) In other cases, one experimental drug shows conflict with other approved or/and experimental drug. DB00266 (Dicoumarol) and DB04392 (only the IUPAC name is given in DrugBank) are an approved and an experimental drug, respectively, which form a tautomeric conflict. Similarly, an approved drug (DB00348, Nitisinone) is in tautomeric conflict with an experimental drug (DB08307). We note that some of

the conflicts are based on stereocenters that are not tautomerism-persistent according to our rules.⁴

Figure 5. Tautomeric conflict examples among DrugBank molecules.

CONCLUSION

Tautomeric conflicts are still found in virtually any database we look at. Practically all of the rules analyzed here are found to be amenable to at least a few, if not millions, of compounds in large databases. More comprehensive treatment of tautomerism therefore remains a desirable advance in chemistry, especially in database management and compound registration systems, as well as in chemoinformatics tools.

ACKNOWLEDGEMENTS

We thank Wolf-Dietrich Ihlenfeldt for his help with all the CACTVS work related to this study We thank Yulia Borodina for useful discussions about tautomeric conflicts in FDA structures. We are greatly appreciative to Laura Guasch for help with improving some of the rules.

SUPPORTING INFORMATION

Text file S1 contains all 120 transforms used in this paper, shown in SMIRKS format, plus the associated flags for their execution in CACTVS. It is an extension of a rule set we published

previously.⁵ Note that this file can be submitted to CACTVS directly for loading of the 120 rules. For an explanation of the CACTVS SMIRKS extensions as well as the flags, see the CACTVS manual (https://www.xemistry.com/docs/cactvs_full.pdf). Table S2 shows the tautomeric conflict counts within each database for all multuplet sizes, up to 25. Table S3 shows the conflicts involving non-persistent stereocenters ("stereo conflicts") for all multuplet sizes, up to 25.

AUTHOR INFORMATION

Corresponding Author

* Computer-Aided Drug Design Group, Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, NIH, Frederick, MD 21702, USA. E-mail: mn1@mail.nih.gov.

Current Affiliation

Devendra K Dhaked: Department of Pharmacoinformatics, National Institute of Pharmaceutical Education and Research (NIPER), Kolkata – 700054 India

ORCID

Devendra K. Dhaked: 0000-0001-6349-7649

Marc C. Nicklaus: 0000-0002-4775-7030

Competing interests

The authors declare that they have no competing interests.

Funding Sources

The authors received funding from the NCI, NIH, Intramural Research Program.

REFERENCES

- (1) Bharatam, P. V.; Valanju, O. R.; Wani, A. A.; Dhaked, D. K. Importance of Tautomerism in Drugs. *Drug Discov. Today* **2023**, *28* (4), 103494. https://doi.org/10.1016/j.drudis.2023.103494.
- (2) Cruz-Cabeza, A. J.; Groom, C. R. Identification, Classification and Relative Stability of Tautomers in the Cambridge Structural Database. *CrystEngComm* **2011**, *13* (1), 93–98. https://doi.org/10.1039/C0CE00123F.
- (3) Milletti, F.; Storchi, L.; Sforna, G.; Cross, S.; Cruciani, G. Tautomer Enumeration and Stability Prediction for Virtual Screening on Large Chemical Databases. *J. Chem. Inf. Model.* **2009**, *49* (1), 68–75. https://doi.org/10.1021/ci800340j.
- (4) Sitzmann, M.; Ihlenfeldt, W.-D.; Nicklaus, M. C. Tautomerism in Large Databases. *J. Comput. Aided Mol. Des.* **2010**, *24* (6–7), 521–551. https://doi.org/10.1007/s10822-010-9346-4.
- (5) Dhaked, D. K.; Ihlenfeldt, W.-D.; Patel, H.; Delannée, V.; Nicklaus, M. C. Toward a Comprehensive Treatment of Tautomerism in Chemoinformatics Including in InChI V2. *J. Chem. Inf. Model.* **2020**, *60* (3), 1253–1275. https://doi.org/10.1021/acs.jcim.9b01080.
- (6) Guasch, L.; Yapamudiyansel, W.; Peach, M. L.; Kelley, J. A.; Barchi, J. J.; Nicklaus, M. C. Experimental and Chemoinformatics Study of Tautomerism in a Database of Commercially Available Screening Samples. *J. Chem. Inf. Model.* **2016**, *56* (11), 2149–2161. https://doi.org/10.1021/acs.jcim.6b00338.
- (7) Crowdsourced Evaluation of InChI-based Tautomer Identification precisionFDA Challenge. https://precision.fda.gov/challenges/29 (accessed 2024-04-07).
- (8) Clemon, P. Private Communication. 2020.
- (9) Ihlenfeldt, W. D.; Takahashi, Y.; Abe, H.; Sasaki, S. Computation and Management of Chemical Properties in CACTVS: An Extensible Networked Approach toward Modularity and Compatibility. *J. Chem. Inf. Model.* **1994**, *34* (1), 109–116. https://doi.org/10.1021/ci00017a013.
- (10) Guasch, L.; Sitzmann, M.; Nicklaus, M. C. Enumeration of Ring-Chain Tautomers Based on SMIRKS Rules. *J. Chem. Inf. Model.* **2014**, *54* (9), 2423–2432. https://doi.org/10.1021/ci500363p.
- (11) Lázár, L.; Fülöp, F. Recent Developments in the Ring-Chain Tautomerism of 1,3-Heterocycles. *Eur. J. Org. Chem.* **2003**, *2003* (16), 3025–3042. https://doi.org/10.1002/ejoc.200300142.
- (12) Porter, W. R. Warfarin: History, Tautomerism and Activity. *J. Comput. Aided Mol. Des.* **2010**, *24* (6–7), 553–573. https://doi.org/10.1007/s10822-010-9335-7.
- (13) Braga, R. C.; Alves, V. M.; Silva, A. C.; Nascimento, M. N.; Silva, F. C.; Liao, L. M.; Andrade, C. H. Virtual Screening Strategies in Medicinal Chemistry: The State of the Art and Current Challenges. *Curr. Top. Med. Chem.* **2014**, *14* (16), 1899–1912. https://doi.org/10.2174/1568026614666140929120749.
- (14) Smith, R. L.; Mitchell, S. C. Thalidomide-Type Teratogenicity: Structure–Activity Relationships for Congeners. *Toxicol. Res.* **2018**, *7* (6), 1036–1047. https://doi.org/10.1039/c8tx00187a.
- (15) Ottosson, J. E.; Gränfors, M.; van Pelt, S.; Langborg Weinmann, A.; Nilsson Lill, S. O.; Hulthe, G.; Grönberg, G. Characterization and Demonstration of Drug Compound Ring-Chain Tautomer Formation and Its Impacts on Quality Control. *J. Pharm. Biomed. Anal.* **2021**, *198*, 114020. https://doi.org/10.1016/j.jpba.2021.114020.

- (16) Redesign of Handling of Tautomerism for InChI V2. Project Details IUPAC | International Union of Pure and Applied Chemistry. https://iupac.org/projects/projectdetails/?project nr=2012-023-2-800 (accessed 2022-02-08).
- (17) Dhaked, D. K.; Guasch, L.; Nicklaus, M. C. Tautomer Database: A Comprehensive Resource for Tautomerism Analyses. *J. Chem. Inf. Model.* **2020**, *60* (3), 1090–1100. https://doi.org/10.1021/acs.jcim.9b01156.
- (18) *PubChem Data Sources*. Data Sources. https://pubchem.ncbi.nlm.nih.gov/sources/(accessed 2020-04-09).
- (19) Grulke, C. M.; Williams, A. J.; Thillanadarajah, I.; Richard, A. M. EPA's DSSTox Database: History of Development of a Curated Chemistry Resource Supporting Computational Toxicology Research. *Comput. Toxicol.* **2019**, *12*, 100096. https://doi.org/10.1016/j.comtox.2019.100096.
- (20) FDA DailyMed. Index of /nlmdata/.dailymed/. ftp://public.nlm.nih.gov/nlmdata/.dailymed/substance_indexing_spl_files.zip.
- (21) FDA's Global Substance Registration System. FDA. https://www.fda.gov/industry/fda-resources-data-standards/fdas-global-substance-registration-system (accessed 2020-05-18).
- (22) Wishart, D. S.; Feunang, Y. D.; Guo, A. C.; Lo, E. J.; Marcu, A.; Grant, J. R.; Sajed, T.; Johnson, D.; Li, C.; Sayeeda, Z.; Assempour, N.; Iynkkaran, I.; Liu, Y.; Maciejewski, A.; Gale, N.; Wilson, A.; Chin, L.; Cummings, R.; Le, D.; Pon, A.; Knox, C.; Wilson, M. DrugBank 5.0: A Major Update to the DrugBank Database for 2018. *Nucleic Acids Res.* **2018**, *46* (D1), D1074–D1082. https://doi.org/10.1093/nar/gkx1037.