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Abstract

The open-source package scikit-learn provides various machine learning algorithms

and data processing tools, including the Pipeline class, which allows users to prepend

custom data transformation steps to the machine learning model. We introduce the

MolPipeline package, which extends this concept to chemoinformatics by wrapping

default functionalities of RDKit, such as reading and writing SMILES strings or calcu-

lating molecular descriptors from a molecule object. We aimed to build an easy-to-use

Python package to create completely automated end-to-end pipelines that scale to large

data sets. Particular emphasis was put on handling erroneous instances, where resolu-

tion would require manual intervention in default pipelines. In addition, we included

common cheminformatics tasks, like scaffold splits and molecular standardization, na-

tively in the pipeline framework and adaptable for the needs of various projects.
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Introduction

Molecular property prediction is a fundamental challenge for the chemical sciences, drug

discovery and one of the oldest tasks in cheminformatics.1,2 Recent developments push the

field from traditional QSAR models3 to more expressive deep learning methodologies.4 Si-

multaneously, standard approaches, like tree-based methods with molecular fingerprints, are

competitive and represent strong baselines,4,5 especially in low-data domains common in

real-world scenarios.4,6 Therefore, the most effective method for a new task often depends

on the specific circumstances, requiring the evaluation of different approaches. For practi-

tioners, this means building models regularly and manually for different datasets, tasks, and

target properties.

The typical steps for building a new machine learning model for property prediction con-

sist of first processing the molecules in a suitable representation, like a feature vector, and

then applying machine learning-specific processing and algorithms to these features. Two

widely employed packages are RDKit7 and scikit-learn.8 RDKit can process molecules, in-

cluding reading different input formats, filtering out unwanted compounds, standardizing

molecules, and computing various molecular features. scikit-learn can use the molecular

feature matrix generated with RDKit to perform feature selection or reduction, set up cross-

validation experiments, and train and select prediction models. While these are standard

tasks, they can require manual work that can become repetitive, time-consuming, and error-

prone. Manually handling these steps does not scale for large-scale evaluations, requiring

robust automation of the process. Simultaneously, different projects might require different

molecular standardization, custom data splits and featurization, and heterogeneous molecu-

lar data from various sources demands simple and flexible adaptation to the project’s needs.

Therefore, an easy-to-use, robust, flexible, and scalable end-to-end software framework is

necessary.

Several packages addressing these problems have been introduced over the years.9–14 For

example, PREFER11 automates the model and feature selection process for classical machine
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learning and deep learning. Datamol15 and MolFeat12 provide a light wrapper for RDKit

and a wide range of classical and modern molecular representations. Scikit-chem14 and

Scikit-Mol13 connect RDKit-functionality with scikit-learn. However, most frameworks for

integrating molecular feature representations into machine learning models do not include

or allow custom handling of regular cheminformatics tasks, like molecular standardization,

data splits or combining individual features. Those that allow for both still need to address

invalid inputs or molecules failing in the preprocessing steps in an automated way. Therefore,

it is challenging to achieve end-to-end automation while allowing processing steps to change

flexibly depending on the project’s requirements.

We propose MolPipeline, a Python package unifying cheminformatics tasks for molec-

ular machine learning in a single scalable pipeline implementation. Like preceding tools,

MolPipeline incorporates the standard open-source libraries RDKit7 for cheminformatics

and scikit-learn8 for machine learning. With MolPipeline , we aim to enable flexible auto-

matic end-to-end learning from a molecular data set to a trained machine learning model

ready for productive deployment. The key features of MolPipeline are

• Automated end-to-end processing from molecule data sets to deployable machine learn-

ing models.

• Scalable parallel processing and low memory usage through instance-based processing.

• Standard pipeline building blocks for flexibly building custom pipelines for various

cheminformatics tasks.

• Consistent error handling for tracking, logging, and replacing failed instances. For

example, a SMILES string that could not be parsed correctly.

• Integrated serialization for reusing pipelines and tracking them in version control.

With the release of MolPipeline, we provide a tool covering a broad spectrum of use

cases, such as, custom molecular standardization (e.g., salts removal), molecule-based and
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data-driven clustering (e.g. Murcko scaffolds), and molecular encoding. In addition, different

encodings can be combined to a single feature vector, e.g. feature vectors of fingerprints and

physicochemical properties. The final pipeline is compatible with scikit-learn’s API and for

hyperparameter optimization, model selection, and can be serialized for deployment or as a

template for future projects. Compared to previous tools, a key feature in our work is the

consistent handling of processing errors. As in real-world data sets, it is not uncommon to

come across SMILES strings that cannot be successfully parsed. Automatic logging, filtering,

or replacing these samples is mandatory to avoid manual intervention, which can become

cumbersome for large data regimes and is infeasible for end-to-end productive deployment

in automatic workflows.

Implementation

Pipeline concept

MolPipeline extends the pipeline concept from scikit-learn8,16 to processing and transforming

molecular input data using RDKit. These pipelines allow to perform a sequence of user de-

fined transformations on the input data and finalize the procedure with an optional machine

learning model for predictions. As the individual transformations remain accessible, corre-

sponding parameters can be optimized with typical tools for hyperparameter optimization,

like scikit-learn’s GridSearchCV.8

In MolPipeline, we provide new pipeline elements implementing standard cheminfor-

matics tasks using RDKit while complying with scikit-learn’s pipeline API. These pipeline

elements are building blocks with well-defined input and output. Therefore, they can be

flexibly arranged to create new pipelines for specific needs, like custom molecular stan-

dardization. The pipeline elements in MolPipeline are grouped into the modules any2mol,

mol2mol, mol2any and custom estimators.
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Any2Mol Pipeline elements in the any2mol module transform a given molecular repre-

sentation or input format to the corresponding RDKit molecule object. For example, the

SmilesToMol element creates RDKit molecule objects from SMILES. We also implemented

an AutoToMol element that automatically determines the input format for reading molecules

from multiple input formats, like SMILES, SDF, or binary, without manually specifying the

input format.

Mol2mol The mol2mol module provides pipeline elements having a molecule as input and

output, for example, pipeline elements for molecular standardization, like TautomerCanonicalizer,

MetalDisconnector, SaltRemover, FragmentDeduplicator and more. Another pipeline el-

ement in the module is, for example, the MurckoScaffold element to extract a molecule’s

Murcko scaffold.

Mol2any The pipeline elements in the mol2any module transform RDKit molecule objects

into various representations, ranging from molecular file formats to feature vectors. On the

one hand, elements like MolToSmiles, MolToInchi, MolToBinary convert the molecule in

SMILES, Inchi, and RDKit’s binary format, respectively. On the other hand, molecules can

be featurized with MolToMorganFP and MolToRDKitPhysChem. Further, the feature vectors

generated with individual pipeline elements can be scaled separately and concatenated with

MolToConcatenatedVector.

Custom estimators In the estimator module, we created custom estimators complying

with the Scitkit-learn API. These estimators implement common cheminformatics tasks,

like clustering molecules. For example, the MurckoScaffoldClustering estimator per-

forms a clustering based on Murcko scaffolds. Like scikit-learn’s clustering estimators, the

MurckoScaffoldClustering is usable in pipelines and can be parallelized and parameter-

ized, for example, to compute the generic scaffold or employ different strategies to handle

linear molecules during the clustering.
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Error handling In MolPipeline, we use a dedicated object called InvalidInstance to

mask failed instances. When an instance, like a molecule, fails a pipeline step, we substitute

it with an InvalidInstance, which can be detected, skipped, and replaced automatically.

We provide the two pipeline elements ErrorFilter and FilterReinserter to remove such

InvalidInstances from the processing and replace them with fill-values, respectively. These

features enable the automatic processing of large data sets without manually fixing non-

processable instances.

Instance-based processing Whenever possible, MolPipeline processes instances indepen-

dently, achieving an effective parallelization and reduction memory usage. Before execution,

we preprocess the computation graph of the MolPipeline and split it into parts where in-

stances can be processed concurrently and parts that need synchronization. For example,

the standardization procedure of molecules might comprise multiple subsequent steps, like

salt removal, neutralizing charges, and selecting a canonical tautomer. This subsequent

standardization process can be handled independently for each molecule, which allows for

effective parallelization. In contrast, synchronization is required when applying column-wise

standardization, like z-scaling, to a feature matrix, which can only be applied when the en-

tire feature column is constructed. MolPipeline automatically detects when instances can be

processed independently and when synchronization is required. In addition, instance-based

processing reduces memory usage because memory-intensive intermediate results are only

kept in memory as long as needed.

Serialization A configured pipeline can be stored in common configuration files (e.g.,

JSON) and pickle (e.g., through joblib as scikit-learn uses). Serialization based on configu-

ration files allows configured pipelines to be saved and reused, for example, the same pipeline

for a different data set. With pickle-based serialization, fitted models can be stored, e.g., for

deployment on a server.
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Documentation and code quality We provide a series of Jupyter notebooks to ex-

emplify the usage of MolPipeline at https://github.com/basf/MolPipeline/tree/main/

notebooks. The MolPipeline project has also been developed using continuous integra-

tion/development (CI/CD) best practices to ensure the library’s high quality and documen-

tation. The quality of the code is also continuously tested with unit tests and statically

monitored with linters.

Examples and results

Basic usage

Figure 1 shows the basic usage to construct a pipeline for building a prediction model from

a SMILES data set. The pipeline converts the SMILES into molecules using the Auto2Mol

pipeline element. Then, the molecules are standardized with the ElementFilter remov-

ing molecules with uncommon chemical elements that are often hard to process in sub-

sequent steps. In addition, the SaltRemover strips commonly used counterions, such as

Na+ or Cl− from molecules. Next, Morgan fingerprints are computed from the standard-

ized molecules with MolToMorgan, which are then used as the input feature vectors to the

RandomForestRegressor from scikit-learn. The number of cores for parallel execution can

be specified with the n jobs argument. Finally, the created pipeline can be fitted with a

data set and used for predictions as scikit-learn’s estimator interface defines.
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Figure 1: Code example for using MolPipeline for molecular machine learning.

The example in Figure 2 shows how to use MolPipeline’s MurckoScaffoldClustering es-

timator, a custom estimator for scaffold clustering of molecules implementing scikit-learn’s in-

terface. On construction, MurckoScaffoldClustering can be parameterized to use Murcko

scaffolds or generic scaffolds (all atoms are considered carbons and all bonds are considered

single bonds) using the make generic option. In addition, the handling of linear molecules,

which would not yield a scaffold, can be specified with the parameter linear molecules strategy.

The here shown option "own cluster" assignes all linear molecules to a separate cluster.

Finally, the clustering estimator can cluster molecules using their scaffolds through the scikit-

learn API using functions like fit predict.
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Figure 2: Code example of MolPipeline’s custom estimators. Shows the estimator for clus-
tering by Murcko scaffolds.

Hyperparamter optimization example

The more advanced example illustrated in Figure 3 shows how MolPipeline can be used for

hyperparameter optimization in conjunction with scikit-learn’s classes to identify the best-

performing machine learning model and feature vector on the BBBP data set.17 We combine

MolPipeline with scikit-learn’s GroupShuffleSplit and GridSearchCV and evaluate Ran-

dom Forest (RF), K-NearestNeighbors (KNN) and Logistic Regression (LR) with variations

of the Morgan fingerprint.
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Machine learning pipeline

Scikit-learn's
GridSearchCVHyperparams:
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Hyperparams:
- n_estimators
- max_depth
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Molecular standarization subpipeline

Molecular
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Molecular
standarization
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Best model:

Figure 3: Schematic overview of two MolPipelines to perform hyperparameter optimization
with scikit-learn’s RandomForestClassifier, Morgan fingerprints, and scaffold splits with
scikit-learn’s GridSearchCV class. Note that besides the RandomForestClassifier hyper-
parameters, the parameters of the Morgan fingerprints are included during optimization,
e.g., the number of bits and the fingerprint radius.

Molecular standardization For molecular standardisation, we compiled the commonly

used procedure into a subpipeline, as illustrated in Figure 3. The ElementFilter removes

molecules containing chemical elements not in a predefined list. The pipeline elements

MetalDisconnector and SaltRemover remove metals and metal ions from a given molecule.

The Uncharger standardized the molecule’s charge and the TautomerCanonicalizer com-

putes a canonical tautomer. Finally, the StereoRemover removes stereo information from

the molecule.

Clustering pipeline and splitting The clustering pipeline (see Figure 3) performs scaf-

fold clustering. It starts by reading the molecules with the Auto2Mol pipeline element, then

standardizes them using the subpipeline. Molecules that failed the reading or standardiza-

tion procedure are removed before clustering using the ErrorFilter element. The clustering

of the valid molecules is computed with the MurckoScafflodClustering estimator, which
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groups molecules into clusters using their Murcko scaffold. Lastly, the resulting list of cluster

labels is processed by the ErrorReinserter element that places fill values (e.g. Numpy’s

NaN) at the positions of failed molecules. The resulting label list can be mapped element-

wise to the input molecule list through this reinsertion step. The clustering generated 1033

clusters on the BBBP data set. Their size distribution is illustrated in Figure 4.
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Figure 4: Distribution of scaffold cluster sizes on the 2050 molecules of the BBBP data set.

The computed cluster labels are then used to group the molecules of the BBBP data set

with scikit-learn’s GroupShuffleSplit into 80% training, 10% validation, and 10% test sets,

keeping molecules with the same scaffold in the same fold. The training and validation sets

are used for hyperparameter tuning, and the test set is used to evaluate the performance of

the selected pipeline with the best fingerprint and model hyperparameters.
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Machine learning pipeline The machine learning pipeline defines a prediction model,

including its processing from the raw molecular input (see Figure 3). This pipeline starts

with the same reading and molecular standardization subpipeline as the clustering pipeline.

Morgan fingerprints are computed using the MolToMorganFP pipeline element from the stan-

dardized molecules. The feature vectors are input to scikit-learns machine learning estima-

tors, like RandomForestRegressor. For the sake of simplicity, invalid molecules detected

during the assingment of the cluster labels are removed from the data set used for the ML

experiments. To account for erroneous molecules occurring during the training and predic-

tion phase, the ErrorFilter and ErrorReinsert elements can be added to the ML pipeline

as well.

Grid search results We tried out different hyperparameter sets for Random Forest, K-

NearestNeighbors, Logistic Regression and Morgan fingerprints. The results of these experi-

ments are illustrated in Figure 5, which shows the distributions of the different hyperparam-

eter sets for each model on the validation set. The best ROC-AUC on the hold-out test set

is 0.95 using RF Morgan fingerprints with radius 1 and 2048 bits. The second best model is

KNN with a 0.91 ROC-AUC and the third LR with a 0.89 ROC-AUC. The hyperparameter

tuning took about 4.5 minutes on a laptop using 16 cores.

12

https://doi.org/10.26434/chemrxiv-2024-kd11b ORCID: https://orcid.org/0000-0002-3803-851X Content not peer-reviewed by ChemRxiv. License: CC BY 4.0

https://doi.org/10.26434/chemrxiv-2024-kd11b
https://orcid.org/0000-0002-3803-851X
https://creativecommons.org/licenses/by/4.0/


RandomForest K-NearestNeigbor LogisticRegression
Estimators

0.775

0.800

0.825

0.850

0.875

0.900

0.925

0.950
RO

C 
AU

C

Performance on the validation and test set

Figure 5: Distribution of ROC-AUC performance on the validation set by different hyper-
parameter combinations. The red x indicates the ROC-AUC on the hold-out test set of the
best models selected on the validation set.

Analyzing failed molecules While processing the BBBP data set, MolPipeline logged

eleven SMILES that failed the reading stage in the Auto2Mol element. The failed SMILES

contain uncharged tetravalent nitrogen atoms, and RDKit correctly fails to process them

since tetravalent nitrogen atoms should be charged. The molecules correspond to the eleven

molecules described by Patrick Walters.18 Through MolPipeline’s automatic error handling,

the pipelines could execute without manual interventions. However, further manual inves-
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tigation of the failed cases can help understand the data better and decide whether failed

cases can be fixed either manually or by adding additional pipeline elements.

Conclusion

We propose MolPipeline, a package that aims to automate the model-building process while

allowing it to flexibly adjust to the needs of different projects. By combining RDKit and

scikit-learn, their functionality is unified. With the MolPipeline package, we aim to make this

combination accessible to practitioners for their daily cheminformatic tasks, model building,

and handling the ever-increasing data size while avoiding unnecessary re-implementation. By

leveraging the pipeline concept from scikit-learn and adding instance-based processing and

consistent error handling, we hope to provide a robust implementation suited for various

molecular machine learning tasks. We plan to maintain and add further functionality to

the MolPipeline in the future, including clustering algorithms and modern deep learning

estimators. MolPipeline is available at https://github.com/basf/MolPipeline.

Software & Data Availability Statement

MolPipeline is openly available at https://github.com/basf/MolPipeline under MIT li-

cense.
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