
Reparameterization of GFN1-xTB for

Atmospheric Molecular Clusters: Applications to

Multi-Acid–Multi-Base Systems
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Abstract

Atmospheric molecular clusters, the onset of secondary aerosol formation, are a ma-

jor part of the current uncertainty in modern climate models. Quantum chemical (QC)

methods are usually employed in a funneling approach to identify the lowest free energy

cluster structures. However, the funneling approach highly depends on the accuracy of

low-cost methods to ensure that important low-lying minima are not missed. Here we

present a reparameterized GFN1-xTB model based on the Clusteromics I–V datasets

for studying atmospheric molecular (AMC) clusters, denoted AMC-xTB. The AMC-

xTB model reduces the mean of electronic binding energy errors from 7–11.8 kcal/mol

to roughly 0 kcal/mol and the root mean square deviation from 7.6–12.3 kcal/mol to

0.81–1.45 kcal/mol. In addition, the minimum structures obtained with AMC-xTB

are closer to the ωB97X-D/6-31++G(d,p) level of theory compared to GFN1-xTB. We

employ the new parameterization in two new configurational sampling workflows that

include an additional meta-dynamics sampling step using CREST with the AMC-xTB

model. The first workflow, denoted the “independent workflow”, is a commonly used

funneling approach with an additional CREST step, and the second, the “improvement

workflow”, where the best configuration currently known in the literature is improved

with a CREST+AMC-xTB step. Testing the new workflow we find configurations

lower in free energy for all the literature clusters with the largest improvement being

up to 21 kcal/mol.

Lastly, employing the improvement workflow we massively screened 288 multi-acid–

multi-base clusters containing up to 8 different species. For these new multi-acid–multi-

cluster systems we observe that the improvement workflow finds configurations lower

in free energy for 245 out of 288 (85.1%) cluster structures. Most of the improvements

are within 2 kcal/mol, but we see improvements up to 8.3 kcal/mol. Hence, we can

recommend this new workflow based on the AMC-xTB model for future studies on

atmospheric molecular clusters.
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1 Introduction

Molecular clusters, formed through the aggregation of various atmospheric species, play

a central role in aerosol particle formation, cloud nucleation, and chemical reactions, thus

influencing climate, air quality, and environmental chemistry.1 The key species in cluster for-

mation are believed to be inorganic molecules such as sulfuric acid, ammonia, and amines,

enhanced by other species such as water, methanesulfonic acid, nitric acid, formic acid, and

highly oxygenated organic molecules.2–4 Theoretical studies typically aim to elucidate the

thermodynamics, kinetics, and molecular interactions governing cluster formation and its

evolution. The main challenge for studying atmospheric molecular clusters is their com-

plex configurational spaces, which require advanced configurational sampling techniques and

computationally demanding quantum chemistry methods to evaluate the cluster properties

accurately.2 Furthermore, atmospheric clustering is believed to be a multi-species process,5

adding another dimension of chemical complexity.

Thoroughly exploring the configurational space of atmospheric molecular clusters using,

for instance, metadynamics simulations6,7 or genetic algorithms8–10 at a high level of theory is

extremely computationally demanding. Hence, usually, a funneling approach2,4,11 is applied,

where the configurational space is initially explored at a low level of theory such as force-field

or semiempirical methods, and only a subset of low energy structures is selected, reoptimized,

and reexamined at a higher level of theory. This process is repeated with an increasing

level of theory until only a few structures remain for evaluation at the desired high level.

Schematically, the process can be given as:

1. Generate initial cluster configurations

ABCluster/OGOLEM/Basin hopping or similar

2. Semi-empirical calculations

Optimization at the PM6/PM7/GFN1-xTB/GFN2-xTB or similar level

3. DFT calculations
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DFT optimization and vibrational frequency calculations

4. Single point energy refinement

Single-point energy calculation at coupled cluster level on the DFT optimized geometry

Between each step in the funneling approach, filtering can be applied to reduce the number

of structures that need to be handled. This can either be based on an energy threshold or a

set number of cluster structures. Eventually, we end up with a handful of structures at the

highest obtainable level.

The first step in the funneling procedure is the generation of a large number of configu-

ration candidates. The key idea is sampling a large part of the potential energy surfaces at

a low level of theory to get estimates for the global free energy minimum. This is usually

carried out using force-field methods in combination with genetic algorithms such as in AB-

Cluster9,10,12–15 and OGOLEM,8,16–19,19–21 by random/manual sampling or using dynamic

methods such as basin hopping.22–26 The major issue at this step is that most force-field

methods are unable to describe bond-breaking, such as proton transfer reactions, which are

important for atmospherically relevant molecular clusters, requiring the sampling to include

monomers where the hydrogens have been transferred to get adequate sampling. Further-

more, the accuracy of force-field methods is also insufficient to determine a subsample of the

conformer candidates and all the candidates have to be taken to the higher level of theory.

The next step is semi-empirical calculations as these are a better description of the

chemistry and filtering can be applied. Of the common semiempirical methods, GFN1-

xTB,27 GFN2-xTB,28 PM6,29 and PM730 are the most used in configurational sampling

procedures for atmospheric molecular clusters.2–4 Of these methods, GFN1-xTB has shown to

have the highest correlation with electronic binding energies at a higher level of theories31,32

and have been shown to have a higher correlation with DFT trajectories for molecular

dynamics than GFN2-xTB.33 The reason GFN2-xTB performs worse than GFN1-xTB for

atmospheric molecular clusters (often involving sulfuric acid) is that there is a decrease in

the number of d -functions for sulfur in the basis set for the newer GFN2-xTB model.
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The third step is the subsequent optimization and vibrational frequency calculation of

the structures with DFT. This is the main bottleneck in the sampling methodology as lim-

ited computational resources only allow a fixed number of DFT structures to be optimized.

Therefore some form of filtering is required, often based on structural properties or electronic

energies from the semiempirical calculations. To circumvent the inaccuracies of semiempiri-

cal methods an intermediate step can be included, involving single-point energy calculations

at the DFT level on as many structures as possible. Another option for an intermediate step

is the utilization of machine learning (ML) methods. One can calculate a subset of the struc-

tures at a desired DFT level and train an ML model to predict the energies of the remaining

structures.33,34 However, to mimic accurate DFT energies, kernel-based ML methods become

computationally demanding34–36 and neural-network will require an extensive set of training

data hyperparameter optimization.37 Moreover, ML methods often fail when predicting on

structures different from the training set.

Overall, the funneling approach is never more efficient than its weakest link given by the

semiempirical step in 2, in which accuracy determines the number of structures that have

to be optimized/have single points calculated at the DFT level. In this paper, we focus on

reparameterizing the GFN1-xTB method based on DFT energies of atmospherically rele-

vant molecular clusters yielding a GFN1-xTB model reparametrized based on ωB97X-D/6-

31++G(d,p) for ‘atmospheric molecular clusters’ denoted AMC-xTB. This new parameter-

ization is used to sample 288 large multi-acid–multi-base clusters containing AM equivalent

to the clusters studied by Knattrup et al.38

2 Methodology

2.1 Computational Details

Single-point energies, gradients, and geometries for the reparameterization, configurational

sampling, and comparisons were calculated using the xtb 6.4.0 program using the GFN1-
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xTB27 and AMC-xTB parameterizations. A modified version of ArbAlign39 available in

the JKCS program40 was used to calculate the root-mean-square differences (RMSD) be-

tween molecular structures. Gaussian 16, version B.0141 was used for the DFT calculations.

CREST 2.126,7 with an energy window of 15 kcal/mol and in noncovalent interaction mode

and ABCluster 2.09,10 with a population of SN = 3000, number of generations of gmax = 200,

and gen. survival of glimit = 4 were used for additional configurational sampling.

2.2 Cluster Data Sets

For reparameterization of GFN1-xTB, we used the Clusteromics I–V data sets42–46 con-

taining (acid)0−2(base)0−2 clusters of the following atmospherically relevant species: sulfuric

acid (SA), methanesulfonic acid (MSA), nitric acid (NA), formic acid (FA), ammonia (AM),

methylamine (MA), dimethylamine (DMA), trimethylamine (TMA) and ethylenediamine

(EDA). All structures are optimized at the ωB97X-D/6-31++G(d,p) level of theory and we

used the up to three lowest electronic energy configurations found per each cluster as the opti-

mization set for GFN1-xTB reparametrization. This leads to an optimization set comprising

a total of 1073 clusters. The GFN1-xTB reparameterization based on this optimization set

will be denoted as the AMC-xTB model.

All new data calculated are freely available in the Atmospheric Cluster DataBase47 along

with the new AMC-xTB parameter file (see Section 2).

2.3 Optimization Strategy

The GFN1-xTB model contains 15 global parameters, 2 element-pair-specific parameters,

and 32 element-specific parameters of relevance to the species present in the optimization

sets (H, C, N, O and S atoms). Initially, the Hessian was generated to probe the sensitivity of

the parameters, however, we found it computationally feasible to employ a similar optimiza-

tion strategy to the original GFN1-xTB paper,27 where we optimize all relevant parameters

simultaneously. We utilize a modified version of an in-house pseudo-Newton–Raphson op-
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timizer by Jensen et al.48 for the optimization of a target function (T ) containing a linear

combination of the difference in electronic binding energies (∆Eb in kcal/mol and gradient

norms (gnorm) in Hartree/Bohr radius at the current GFN1-xTB parameterization and the

target ωB97X-D/6-31++G(d,p) level of theory:

T =
1

Nconf

Nconf

∑
i

(
∆Eb

i

Natoms
i

+ gnormi ). (1)

Here, Nconf is the total number of structures in the optimization set, Natoms
i is the number

of atoms in the i’-th structure. We normalized by the number of atoms in each structure to

prevent “overfitting” to the larger clusters.

We chose the electronic binding energies as the target properties to get a better tool

for filtering based on energies in configurational sampling procedures. The gradients were

included directly in the target function. We use equilibrium structures at the given level of

theory, which are supposed to have near-zero gradients. However, the upper limit is set by

the accuracy threshold within the xtb program during the optimization, which makes the

gradients non-zero in the calculations.

Including only the electronic bindings energies in the target function yields a much better

fit for the energies but causes the gradients to “explode”, effectively rendering the optimiza-

tion functionality of AMC-xTB useless for our target species. Giving higher weight to the

gradient norms in the target function makes the optimized structures more similar to the

target ωB97X-D/6-31++G(d,p) level of theory, however, we found that it causes problems

in the configurational sampling procedure where the decreased accuracy in determining the

binding energies causes our configurational sampling to yield high-energy conformers at the

DFT level. Overall, we found that including the gradient norms and difference in electronic

bindings energies in a 1:1 ratio is the best compromise between the two properties.
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2.4 Updated Configurational Sampling Workflows

The strength of the new AMC-xTB model is that it can be used directly in configurational

sampling programs such as ABCluster and CREST. Here, we will test two different new

workflows for applying the reparameterized models in cluster configurational sampling.

2.4.1 Original Workflow

The workflow usually employed in studying atmospheric molecular clusters can be summa-

rized as:

ABCluster→ GFN1-xTBopt
all → DFTopt

N lowest

Here the number of configurations N that have to be optimized at the DFT level is a severe

bottleneck in the number of new cluster systems that can be studied. Usually, 50–100

configurations are optimized at the DFT level.

2.4.2 Independent Workflow

The independent workflow refers to configurational sampling from scratch using the well-

established funneling approach using AMC-xTB instead of GFN1-xTB.2,11 As the aim for

the approach is to be generally applicable, we also included an additional CREST step, as

it should be better at handling flexible organic compounds:

ABCluster→ AMC-xTBopt
all → CREST(AMC-xTB)lowest → DFTopt

50 lowest

Here, ABCluster, a genetic algorithm for sampling clusters, is used for the initial sampling of

all possible neutral/ionic combinations of monomers that yield overall neutral clusters. The

xtb 6.4.0 program was then used to optimize all the configurations at the AMC-xTB level.

The cluster lowest in electronic energy was then taken as the input structure for CREST in

non-covalent interaction mode, again using our new AMC-xTB model. The initial ABCluster

sampling is needed because we found CREST to be quite sensitive to the input structure and,
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therefore, needs a good guess for a starting structure. The 50 structures lowest in electronic

energy are then optimized at the DFT level.

2.4.3 Improvement Workflow

The improvement workflow refers to using the best structure currently known at the corre-

sponding level of theory as the input structure for CREST using the AMC-xTB model.

Best Structure→ CREST(AMC-xTB)→ DFTopt
50 lowest

From here on, the workflow is the same as the independent workflow, where the 50 structures

lowest in electronic energy are optimized at the corresponding DFT level.

3 Results and Discussion

3.1 Extension of the Multi-Acid–Multi-Base Dataset

To gain a more complete test set we extended the multi-acid–multi-base clusters systems by

Knattrup et al.38 using the same workflow for a total of 288 new AM-containing clusters.

With the acids being SA, MSA, FA and NA and the bases being AM, MA, DMA and TMA.

This is the first sampling of multi-component clusters containing up to 8 different species

yielding a data set where synergistic effects in cluster formation between different species

of bases35 and acids38 and mixes thereof can be studied. Such clusters could be relevant

for modeling polluted coastal environments. Figure 1 presents the molecular structure of a

newly sampled 8-component cluster. It is seen that all the acids have transferred a proton

to all the bases.
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(SA)1(MSA)1(NA)1(FA)1(AM)1(MA)1(DMA)1(TMA)1

Figure 1: The (SA)1(MSA)1(NA)1(FA)1(AM)1(MA)1(DMA)1(TMA)1 cluster structure low-
est in Gibbs free energy at the ωB97X-D/6-31G++(d,p) level of theory with the quasi-
harmonic approximation (cutoff of 100 cm−1) for the initial sampling. Yellow = sulfur, red
= oxygen, cyan = nitrogen, brown = carbon. and white = hydrogen.

The initial sampling yields binding free energies ranging from −28.43 kcal/mol

[(MSA)1(NA)1(FA)1(AM)2] to −104.0 kcal/mol [(SA)3(NA)1(AM)1(MA)1(DMA)2] for the

cluster configurations lowest in free energy at the ωB97X-D/6-31++G(d,p) level of theory.

3.2 Assessment of the AMC-xTB Binding Energies

We reparameterized GFN1-xTB to obtain a new tight-binding semiempirical reparameteri-

zation denoted as AMC-xTB. Figure 2 shows the error in electronic binding energies before

(GFN1-xTB) and after (AMC-xTB) reparameterization. The models have been tested on

the entire Clusteromics I–V42–46 data sets (56436 data points), the sulfuric acid–multi-base

(SA)1−4(AM/MA/DMA/TMA/EDA)1−4 cluster data set (684 data points) by Kubečka et

al.35 and the multi-acid–muti-base (SA/FA/MSA/NA)1−4(MA/DMA/TMA)1−4 by Knattrup

et al.38 including the new AM-containing clusters (1629 data points). All the tested struc-

tures are equilibrium structures at the ωB97X-D/6-31++G(d,p) level of theory. Although

the Gaussian version and integration grid used for optimization differ for some structures,

it was found to have a negligible effect on this comparison as we are studying the binding
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energies and not the absolute energies.

Clusteromics Kube ka et al. Knattrup et al.
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Figure 2: Error in the electronic binding energies for the GFN1-xTB and AMC-xTB methods
compared with the ωB97X-D/6-31++G(d,p) level of theory. The Clusteromics I–V42–46 sets
have (SA/FA/MSA/NA)0−2(AM/MA/DMA/TMA/EDA)0−2 clusters, the Kubečka et al.35

set has sulfuric acid–multi-base (SA)1−4(AM/MA/DMA/TMA/EDA)1−4 clusters, Knattrup
et al.38 set has the multi-acid–muti-base (SA/FA/MSA/NA)1−4(MA/DMA/TMA)1−4 clus-
ters including the new AM-containing clusters sampled in this work.

For all the data sets shown in Figure 2 the reparameterization results in near-zero means of

the energy errors. This is a reduction from error means of 3.7–11.8 kcal/mol for GFN1-xTB.

In addition, the AMC-xTB model achieves a more narrow error distribution with the root

mean square deviations decreasing from 7.6–12.3 kcal/mol to 0.81–1.45 kcal/mol, implying

that there will be fewer outliers. The error span on the larger clusters for the Knattrup

et al.38 and Kubečka et al.35 sets are similar to the error span for the smaller clusters

in the optimization set. This shows that reparameterizing on smaller clusters is adequate

for calculations on larger-sized clusters as the model gets some of the underlying chemistry

correct and scales effectively with system size. The new AMC-xTB model reduces the number

of structures needed to pass from the semiempirical step to the DFT step in configurational

sampling. For atmospheric molecular clusters, this implies that the AMC-xTB model is
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unequivocally better to apply in the configurational sampling funneling workflow compared

to GFN1-xTB.

Clusteromics Kube ka et al. Knattrup et al.
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Figure 3: The gradient norms for the GFN1-xTB and AMC-xTB
methods. α is the Bohr radius. The Clusteromics42–46 set is
(SA/FA/MSA/NA)0−2(AM/MA/DMA/TMA/EDA)0−2 clusters, the Kubečka et al.35

set is sulfuric acid–multi-base (SA)1−4(AM/MA/DMA/TMA/EDA)1−4 clusters, Knattrup
et al.38 is the multi-acid–muti-base (SA/FA/MSA/NA)1−4(MA/DMA/TMA)1−4 clusters
including the new AM-containing clusters sampled in this work.. The structures are
equilibrium structures at the ωB97X-D/6-31++G(d,p) level of theory.

3.3 Assessment of the AMC-xTB Geometries and Gradients

The gradient norms were also a part of the optimization scheme (Equation 1). Figure 3

shows the gradient norms given by the xtb program for the two parameterizations. The

structures are equilibrium structures at the ωB97X-D/6-31++G(d,p) level of theory, so

the ideal gradient norms should be below the default gradient convergence thresholds of

10−3 Eh/α. None of the methods manages to be below this threshold, but the AMC-xTB

model is close. This does not directly mean the model is closer to the correct structure, as the

new parameters might just have flattened the potential energy surface at this point without

moving closer to the minimum. However, including the gradients in the target function avoids
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numerical instability, and yields reasonable optimized structures. To test if the structures

are closer to a minimum at the DFT level, the initial DFT structures of all three datasets

were optimized using the different parameterizations, and the RMSD was computed between

the initial DFT structure and the GFN1-xTB/AMC-xTB optimized structures (see Table 1).

Table 1: Comparison of the mean, median, and standard deviation (std) of
the root-mean-squared differences (RMSD) between the initial DFT structure
and the optimized structure at the given parameterization. The Clusteromics
I–V42–46 sets includes the (SA/FA/MSA/NA)0−2(AM/MA/DMA/TMA/EDA)0−2
clusters, the Kubečka et al.35 set comprise the sulfuric acid–multi-base
(SA)1−4(AM/MA/DMA/TMA/EDA)1−4 clusters and Knattrup et al.38 set has the
multi-acid–muti-base (SA/FA/MSA/NA)1−4(MA/DMA/TMA)1−4 clusters including the
new AM-containing clusters sampled in this work. The lowest errors are shown in bold.

method / data set mean median std

GFN1-xTB / Clusteromics 0.484 0.387 0.330

AMC-xTB / Clusteromics 0.355 0.242 0.282

GFN1-xTB / Knattrup et al. 0.378 0.367 0.138

AMC-xTB / Knattrup et al. 0.235 0.193 0.125

GFN1-xTB / Kubečka et al. 0.376 0.361 0.140

AMC-xTB / Kubečka et al. 0.189 0.164 0.094

We find that the AMC-xTB model reduces the mean RMSD of the full Clusteromics set

from 0.484 Å to 0.355 Å and a similar reduction is seen for the Knattrup et al.38 and Kubečka

et al.35 sets with RMSDs being reduced from 0.378 Å to 0.235 Å and from 0.376 Å to 0.189 Å,

respectively. This, coupled with the smaller gradients, suggests that the reparameterized

model is closer to a minimum at the DFT level. This implies that the preoptimization step

in a funneling approach with the AMC-xTB model compared to GFN1-xTB yields structures

closer to the DFT structure and will likely reduce the subsequent optimization time at the

DFT level.

13

https://doi.org/10.26434/chemrxiv-2024-vnh4k ORCID: https://orcid.org/0000-0003-3736-4329 Content not peer-reviewed by ChemRxiv. License: CC BY 4.0

https://doi.org/10.26434/chemrxiv-2024-vnh4k
https://orcid.org/0000-0003-3736-4329
https://creativecommons.org/licenses/by/4.0/


3.4 Test of New Configurational Sampling Workflows

To further test how the new AMC-xTB model fares in cluster configurational sampling, we

tested the independent and improvement workflow for several previously studied (acid)4(base)4

cluster systems. Hence, the workflow is tested on clusters up to twice the size of those used

in the reparameterization.
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Figure 4: Comparison of the lowest free energy conformer found by the independent and
improvement configurational workflows compared to the configurations found by Kubečka
et al.35 (a, b, and c) and two new multi-component AM clusters sampled in the same
way as Knattrup et al.38 (d and e). Gibbs free energies are calculated at the ωB97X-D/6-
31++G(d,p) level of theory with the quasi-harmonic approximation (cutoff of 100 cm−1) and
vib. frequencies scaled by 0.996 in accordance with Kubečka et al.35

Figure 4 shows the difference in binding free energy for the lowest free-energy configura-

tion found by employing the independent and improvement workflows for the (SA)4(EDA)4,

(SA)4(AM)4, and (SA)4(AM)1(MA)1(DMA)1(TMA)1 clusters compared to Kubečka et al.35

and the (SA)1(MSA)1(NA)1(FA)1(AM)4 and the new

(SA)1(MSA)1(NA)1(FA)1(AM)1(MA)1(DMA)1(TMA)1 clusters sampled in this work. The

SA–AM clusters have been extensively studied previously3,49–54 and are therefore believed
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to be well-sampled using the original configurational sampling procedure and thereby dif-

ficult to improve. Still, the new CREST+AMC-xTB methodology manages to find cluster

structures lower in free energy by 0.21 kcal/mol compared to the previous works.

In the case of the (SA)4(AM)4 and (SA)1(MSA)1(NA)1(FA)1(AM)1(MA)1(DMA)1(TMA)1

clusters, the independent/improvement workflows perform similar and yield similar free en-

ergy improvements. However, for the (SA)4(AM)1(MA)1(DMA)1(TMA)1 clusters, the inde-

pendent workflow works slightly better, finding a cluster 0.85 kcal/mol lower in free energy

compared to the improvement workflow. This illustrates that the sampling is very sensitive

to the configuration used as input for CREST, although it might also be due to the random-

ness of the dynamic processes in CREST. The reason for the difference might be that the

original work’s configurational sampling was worse than the independent workflow, yielding

a worse starting structure for the CREST sampling within the improvement workflow. We

see a massive improvement in the configurational sampling of the (SA)4(EDA)4 clusters by

−18/−21 kcal/mol. This is caused by the flexibility of the EDA molecule, which makes it

difficult to sample the full configurational space using only ABCluster with rigid molecules.

This improvement should primarily be attributed to the inclusion of metadynamics sampling

in CREST and not purely the parameterization of AMC-xTB as it allows the EDA to rotate

around its bond and find a structure with more/better paired intermolecular interactions

as seen in Figure 5. It should also be noted that the main improvements are the electronic

binding energy and the thermal contribution varies very little between the clusters.

(SA)4(EDA)4 before improvement (SA)4(EDA)4 after improvement
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Figure 5: The (SA)4(EDA)4 cluster structure lowest in Gibbs free energy at the ωB97X-
D/6-31G++(d,p) level of theory with the quasi-harmonic approximation (cutoff of 100 cm−1)
before and after the improvement workflow. Yellow = sulfur, red = oxygen, cyan = nitrogen,
brown = carbon, and white = hydrogen.

However, this shows the strength of the presented workflows as they can be used for

clusters containing more flexible organic molecules.

3.5 Massive Improvement Test

Based on the previous sections, it is clear that the improvement workflow could locate more

stable clusters. As the potential energy surface of multi-acid–multi-base clusters becomes

very complicated, here we test this new approach for such systems. These 288 new AM-

containing clusters were used as a massive test set for the improvement workflow using

the newly parameterized AMC-xTB model. The improvement workflow manages to find

configurations lower in free energy at the ωB97X-D/6-31++G(d,p) for 245 out of the 288

clusters (85.1 %) as can be seen in Figure 6.
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Figure 6: Comparison of the lowest free energy conformer found by the improvement config-
urational workflow compared to the original workflow. Gibbs free energies are calculated at
the ωB97X-D/6-31++G(d,p) level of theory with the quasi-harmonic approximation (cutoff
of 100 cm−1).

In most cases, the improvement is between 0–2 kcal/mol. However, for the

(SA)1(MSA)1(NA)1(FA)1(AM)1(DMA)2(TMA)1, (SA)3(NA)1(AM)1(MA)3, and

(SA)3(FA)1(AM)1(MA)1(DMA)2 clusters a massive improvement of 8.3, 5.2 and 3.9 kcal/mol

is observed, respectively.

Comparing the conformer index at the AMC-xTB level of theory with the final ωB97X-

D/6-31++G(d,p) level of theory with the quasi-harmonic approximation (cutoff of 100 cm−1)

the Gibbs free energy minimum at the DFT level is also the electronic energy minimum at

the AMC-xTB level of theory for 66 of the clusters (See Figure 1). If 10 conformers are

included from the AMC-xTB level of theory, the free energy minimum energy is captured

for 155 out of the 288 clusters with improvements found for 209 (Se Figure 1). Furthermore,

the maximum error is 2 kcal/mol with a mean of 0.12 kcal/mol when reducing from 50 to

10 conformers.

This highlights the need for including dynamics-based sampling procedures for atmo-

spheric clusters even though the system might seem fairly rigid. It can also be envi-

sioned that the improvement workflow will be quite important when studying much larger

(SA)1−20(base)1−20 clusters as recently done by Engsvang et al.36,55 and Wu et al.32 For large

clusters, the global minimum is tricky to locate, and adding dynamics-based configurational

sampling might aid in the process.

4 Conclusions

We have reparameterized the GFN1-xTB model to yield better binding electronic energies

and gradient norms for atmospherically relevant clusters composed of the following species:

sulfuric acid (SA), methanesulfonic acid (MSA), nitric acid (NA), formic acid (FA), ammo-
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nia (AM), methylamine (MA), dimethylamine (DMA), triethylamine (TMA), and ethylene-

diamine (EDA). The reparameterization, denoted AMC-xTB, for use in the xtb/CREST

program, is based on the ωB97X-D/6-31++G(d,p) level of theory. The model shows a sub-

stantial decrease in the error of the binding electronic energies compared to the original

GFN1-xTB parameterization and the gradient norms of the equilibrium structures are closer

ωB97X-D/6-31++G(d,p) level of theory compared to GFN1-xTB. The reparameterization

strategy is general and can be used to reparameterize other methods such as GFN2-xTB.

We tested two new configurational sampling procedures with the new parameterizations

being employed in the xtb and CREST programs. The first workflow, denoted as “improve-

ment workflow,” is based on improving the best structure currently known in the literature

with CREST and then doing the DFT calculations. The second workflow, denoted the

“independent workflow,” starts by configurational sampling using ABCluster, followed by

xtb, CREST, and then DFT. Using the two workflows, we find cluster structures lower in

free energy for the following (SA)4(EDA)4, (SA)4(AM)4,(SA)4(AM)1(MA)1(DMA)1(TMA)1,

(SA)1(MSA)1(NA)1(FA)1(AM)4 and (SA)1(MSA)1(NA)1(FA)1(AM)1(MA)1(DMA)1(TMA)1

systems in all cases compared to the best-known value in the literature.

Testing the improvement workflow on 288 large multi-acid–multi-base cluster systems,

the workflow finds improvements for 85.1 % of the clusters, showing the need for dynamics-

based sampling.
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