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Abstract: Crystalline organic semiconductors are known to
have improved charge carrier mobility and exciton diffusion
length in comparison to their amorphous counterparts. Cer-
tain organic molecular thin films can be transitioned from ini-
tially prepared amorphous layers to large-scale crystalline films
via abrupt thermal annealing. Ideally, these films crystallize
as platelets with long-range-ordered domains on the scale of
tens to hundreds of microns. However, other organic molecular
thin films may instead crystallize as spherulites or resist crys-
tallization entirely. Organic molecules that have the capability
of transforming into a platelet morphology feature both high
melting point (Tm) and crystallization driving force (∆Gc). In
this work, we employed machine learning (ML) to identify can-
didate organic materials with the potential to crystallize into
platelets by estimating the aforementioned thermal properties.
Six organic molecules identified by the ML algorithm were ex-
perimentally evaluated; three crystallized as platelets, one crys-
tallized as a spherulite, and two resisted thin film crystallization.
These results demonstrate a successful application of ML in the
scope of predicting thermal properties of organic molecules and
reinforce the principles of Tm and ∆Gc as metrics that govern
the crystallization of organic thin films.

Thin film devices composed of organic semiconductors
(OSCs) have gained significant attention due to their com-
patibility with large area deposition, optoelectronic tunabil-
ity, and mechanical flexibility.1 Organic photovoltaic cells
(OPVs) and organic light-emitting diodes (OLEDs) have
been the most prominent; OPVs have recently reached effi-
ciencies as high as 19.2%2 while OLEDs have gained public
acceptance in the display sector.3 Typically, organic thin
films are amorphous when incorporated into a device, de-
spite crystalline organic films featuring improved exciton dif-
fusion length4,5 and charge carrier mobility,6 often by sev-
eral orders of magnitude. There are several methods for
crystallizing organic thin films, including adding polymer or
small-molecule additives to OSC solutions,7 solvent vapor
annealing,8 organic epitaxial growth,9 and abrupt thermal
annealing.10–15 In this work, we employed an abrupt thermal
annealing technique to achieve organic thin-film crystalliza-
tion.

Amorphous organic thin films fabricated via vacuum ther-
mal deposition can transition into crystalline films upon an-
nealing. The morphology of the crystals that are grown with

this technique depend on the molecule itself and the exper-
imental conditions used during fabrication. These condi-
tions are found through experimental optimization and fo-
cus on factors such as the thickness of the organic layer,
the presence of an organic underlayer, and annealing condi-
tions, among other considerations.10,11 There are different
crystalline morphologies that result from this optimization,
such as platelets or spherulites. From the point of view of
electronic devices, it is more favorable to have a thin film
crystallize as a platelet as spherulites have worse charge car-
rier mobility compared to platelet crystals11 and contain
many voids and pinholes that can lead to shunting and com-
promise device yield. Spherulite crystals can exhibit multi-
ple morphologies, such as smooth gradients stemming from
a single nucleation point or as sharper, needle-like crystals.
Platelet crystals are large-area single crystals on the scale
of tens to hundreds of microns across. The long-range order
and few grain boundaries minimize deleterious effects such
as exciton recombination16 or carrier scattering.12,13,17

However, identifying OSCs that crystallize in this manner
is not straightforward, making the pursuit of crystalline or-
ganic electronics challenging. Recently, we reported that the
thermal properties of OSCs correlate with crystallization in
either a platelet or spherulite morphology; the thermal prop-
erties guiding these trends are the material’s crystallization
driving force (∆Gc) and melting point (Tm).10 Materials
with high ∆Gc and high Tm have a tendency to crystal-
lize as platelets, and as such we can use these values as a
guide for selecting organic molecules. Despite its usefulness
as a predictive factor, ∆Gc is not a readily available value
in databases containing information on OSC molecules and
crystal structures, meaning that determination of the value
of ∆Gc is still necessary.

To overcome these limitations, we employed machine
learning (ML) to predict the thermal properties of OSCs,
specifically Tm and ∆Gc. The application of ML in previous
literature as applied to OSCs has focused on analyzing and
predicting traits such as charge carrier mobility,18,19 thermal
conductivity,20 static and dynamic disorder as it applies to
charge transport,21,22 and vibrational thermal characteris-
tics such as entropy, specific heat, and dielectric function.23

In reference to devices, ML has been used to predict the
power conversion efficiency (PCE) of OPVs24 and to aid in
the design of more efficient OLEDs, such as identifying ther-
mally activated delayed fluorescent (TADF) emitters.25 The
application of virtual screening, originally popularized in the
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drug discovery field,26–28 has found its use in other branches
of chemical sciences.29–31 Here, we applied descriptor-based
ML models to screen commercially available virtual libraries
for putative platelet-forming OSCs suitable for experimental
validation. We experimentally assessed six organic molecules
identified by the virtual screening and were able to crystal-
lize three of these into films with large-area platelets, validat-
ing the ML predictions and reinforcing that thermal prop-
erties correlate to crystallization behavior.

A schematic of our virtual screening is shown in Fig-
ure 1, where several databases comprised of ≈462,000 com-
mercially available organic molecules served as the starting
point. In a number of subsequent steps, the database was
screened for a combination of favorable chemical properties.
Various factors were then taken into account to filter out
materials incompatible with experimental constraints. Or-
ganic materials with a molecular weight (MW) of less than
300 g/mol were not considered, as materials with low MW
have high vapor pressures that can linger in and contami-
nate vacuum chambers. Other experimental factors consid-
ered included the composition of the organic molecules, the
number of rotatable bonds, the number of conjugated rings,
and the aromatic proportions in each molecule that can give
insight into its behavior as a potential crystallizing mate-
rial and semiconductor. Having too many rotatable bonds
inhibits crystallization, and having too few rotatable bonds
is also not advantageous, as such molecules may crystallize
upon deposition rather than in a post-deposition annealing
step. Hence, we looked at materials that had at least three
rotatable bonds (Figure 1), which has been shown previ-
ously to be the start of the platelet-forming region for or-
ganic molecules,10 and limited the number of aromatic cy-
cles by excluding fullerene-like molecules. We filtered the
pool further by selecting molecules with three or more con-
jugated rings, which, due to the π-electron delocalization
from p-orbital overlap caused by alternating single and dou-
ble bonds, lends to semiconducting behavior.32,33

Application of these constraints reduced the number of
candidate organic molecules to 7,742, forming a focused li-
brary. From here, ML modeling is employed to predict the
Tm and ∆Gc of these molecules. We define ∆Gc as

∆Gc = −∆Hm

Tm
(Tm − Tc) (1)

where Tc is the material’s cold crystallization temperature
and ∆Hm is the enthalpy of melting.

The focused library (Figure 1) was further screened by
ML models trained on thermal properties (See SI-1.2 Model
development) for molecules with predicted Tm > 500 K and
∆Gc < −7.5 kJ/mol. This resulted in 44 candidates belong-
ing to the platelet-forming region. From these 44, the pool
was narrowed down to 13 through consideration of commer-
cial availability and price. Retrospectively, we also evalu-
ated the pipeline’s ability to recover those molecules that
were previously shown to crystallize as platelets. Out of 6
reported platelet materials,10 4 were present in the virtual
library. All 4 passed to the focused library stage.

Of these 13 identified molecules, 6 were chosen that fit
the experimental parameters, had a molecular structure that
aligned with device-building and crystal-forming qualities,
and had high predicted values of Tm and ∆Gc. These
six were rac-BINAP, TBT, spiro-TAD, TPB-Cz, 9DT, and
CZBDF. Full chemical names are included in SI-1.4 Materi-
als. See molecular structures in Figure 2.

Figure 1. General scheme of the screening campaign: filters and
ML-models applied on the corresponding stage of virtual screen-
ing shown are described in the text and SI.

Bulk differential scanning calorimetry (DSC) was per-
formed on each material (Figure S2) to determine thermal
properties for comparison to predicted values. The predicted
values of Tm and ∆Gc and the experimentally derived ther-
mal properties, Tm, Tc, and ∆Hm, are reported in Table
1. Taking the onset values of these properties, we calculated
an experimental value of ∆Gc as expressed by Equation 1,10

also reported in Table 1.
The DSC scan of TBT required further interpretation to

calculate ∆Gc. The initial DSC scans of the as-received
TBT showed multiple endothermic events. To gain a better
understanding of the thermal behavior of this material, TBT
was deposited onto a glass substrate in an effort to get rid of
potential impurities and form an amorphous thin film. This
film was scraped off to form a powder that was then used
for DSC. In iterative rounds of heating and cooling, we saw
two melting peaks during the first heating (Figure S1b), an
indication that the material was not fully amorphous upon
deposition and a possible sign of polymorphism,34 and in fol-
lowing heating scans only the second peak appeared. As the
first melting peak was only accessible from the as-deposited
TBT, and that is the material used to fabricate and crystal-
lize the thin film, we used the onset of the first melting peak
to calculate the ∆Gc of TBT.

The initial DSC scans of CZBDF were featureless, with
no thermal events up to 673.0 K (Figure S2f). To further
analyze this material, a separate DSC system was used to
rerun CZBDF at a higher temperature, recorded in Figure
S3. This scan showed an onset melting peak at 714.8 K,
which was quite far from the ML predicted Tm of 550.0 K.
Crystallization was observed upon cooling, but not upon
heating, so ∆Gc could not be calculated.

The process to probe thin film crystal motifs involves an-
nealing films of various thickness at temperatures at and
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Figure 2. Polarized optical microscopy (POM) images inset with molecular structures of the materials used in this work, grouped by
morphology. Here, (a) rac-BINAP, (b) TBT, (c) and spiro-TAD crystallized as platelets; (d) TPB-Cz crystallized as a spherulite; and
(e) 9DT and (f) CZBDF resisted crystallization. The letters labeling each material correspond with the letters used in Table 1.

Table 1. Predicted and experimentally derived thermal properties of materials in this work. The experimental values were determined via
DSC and based on the onset values of each thermal event. The DSC scan of CZBDF had no crystallization peak upon heating, explaining the
absence of an experimental Tc and calculation of ∆Gc.

Materials Tm (K) Tc (K) ∆Hm (J/g) ∆Gc (kJ/mol)

Predicted Measured Measured Measured Predicted Measured

a rac-BINAP 556.0 556.0 424.0 91.90 -9.09 -13.59

b TBT 556.0 506.5 376.1 40.65 -9.05 -5.63

c spiro-TAD 510.6 550.0 463.0 51.04 -8.20 -7.98

d TPB-Cz 569.3 584.4 507.8 68.65 -8.36 -7.22

e 9DT 551.6 540.0 507.8 79.11 -8.35 -8.42

f CZBDF 550.0 714.8 – 75.52 -9.60 –
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above their glass transition temperature (Tg) as determined
through DSC.10,11 In the cases of TBT and spiro-TAD, 5
nm thick organic underlayers were added to aid crystal-
lization.11 These conditions are reported in Table S1. Po-
larized optical microscopy (POM) was performed on these
films after annealing to determine morphology and coverage.
The POM images of the optimized thin-film crystal growth
for these six molecules are shown in Figure 2, grouped to-
gether by the type of crystallinity exhibited after optimiza-
tion. Three of the six molecules investigated crystallized as
platelets: rac-BINAP (Figure 2a), TBT (Figure 2b), and
spiro-TAD (Figure 2c). The optimized rac-BINAP film dis-
played full-coverage platelet domains. The next molecule,
TBT, crystallized in a unique manner with multiple sin-
gle crystal domains growing outward from a single nucle-
ation point reminiscent of spherulitic crystal growth. How-
ever, due to the limited number of crystal domains and the
clear distinction between each domain, this motif is still
considered a platelet. The last platelet-forming material,
spiro-TAD, had the largest platelet crystal domains studied
here, on the scale of millimeters. Only TPB-Cz crystal-
lized as a spherulite (Figure 2d), with visibly rough, sharp,
and needle-like crystals with many domains growing from
the same nucleation point. Two molecules resisted crystal-
lization: 9DT (Figure 2e) and CZBDF (Figure 2f). The
first, 9DT, showed no evidence of crystallization through
numerous optimizations, despite its DSC scan showing a
clear glass transition and crystallization peak upon heat-
ing (Figure S2e). This phenomenon has been observed in
a molecule we have previously investigated, di-[4-(N,N-di-
p-tolylamino)-phenyl]cyclohexane (TAPC), which also re-
sisted crystallization despite the presence of a crystallization
peak in DSC.10 The second material to resist crystalliza-
tion, CZBDF, had an inconclusive POM (Figure S1a), so to
confirm if the film was crystalline, X-ray diffraction (XRD)
was performed on the annealed films. The XRD pattern
showed one peak at 2θ = 30.2◦, corresponding to the ITO
substrate,35 and no other peaks to indicate crystal growth
(Figure S1b). Due to this, CZBDF was also defined as a
molecule that resists crystallization. It is notable that a
melting peak of CZBDF could not be observed until 714.8
K. This can give us further insight into the limits of the
range of platelet forming materials as the melting point of
CZBDF is significantly higher than the platelet-forming ma-
terials we have studied previously. As the Tm of CZBDF falls
significantly out of the range of the other platelet forming
molecules and the material was difficult to characterize, it
should be considered an outlier and excluded from further
analysis.

With these materials classified into their morphologies,
we then combined these results with our previously re-
ported thermal properties of 22 other organic molecules,10

as shown in Figure 3 and color coded according to whether
they form platelets, spherulites, or resist crystallization.
The shaded regions represent the average and one standard
deviation of the cumulative Tm and ∆Gc for each respective
crystallization category. Each prominent data point shows
the predicted and experimental Tm and ∆Gc for the six ma-
terials studied in this work and are shaped and color-coded
to indicate the morphology of that particular molecule. The
empty symbols indicate the ML predicted values, while the
filled symbols represent experimental values. Lines guide
the eye from the predicted to experimental results, with
the exception of CZBDF which only uses the predictions.

The 22 previously reported molecules10 are included but
greyed out, with the symbol corresponding to the crystal
morphology.
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Figure 3. Predicted and measured crystallization driving force at
Tc (∆Gc) as a function of Tm. The arrows on each line point from
the ML prediction (empty symbols) to the experimental findings
(filled symbols). All other data on this graph come from previ-
ous experimental findings10 and are included in the calculations
of the shaded regions, representing the experimental average and
one standard deviation of ∆Gc and Tm associated with each mor-
phological trend. Experimental data for CZBDF is not included
as its ∆Gc could not be determined.

The Tm and ∆Gc of platelet-forming organic molecules
have been seen to be higher on average than the Tm and ∆Gc

of spherulites, and markedly higher than organic molecules
that resist crystallization,10 though these regions did over-
lap and contain outliers. For example, TBT was predicted
to fall into the average range of a platelet crystal, yet its ex-
perimentally measured thermal properties sited it in a region
where we would expect it to resist crystallization. Even so,
TBT successfully crystallized as a platelet. Similarly with
9DT, its predicted and experimentally derived Tm and ∆Gc

fell within range of spherulitic or platelet growth, yet its
film resisted crystallization. These regions, while valuable
in producing trends of crystal morphology based on Tm and
∆Gc, are not strict boundaries, and further work is needed
to fully understand if there are other reasons for exceptions.

We note that the prediction of Tm for organic molecules
is a substantial challenge, and that there is a range of ac-
curacy in the predicted Tm and ∆Gc when compared to
the measured thermal properties. The overall RMS error
in fully characterized materials is 29.5 K, which is in line
with prior work, as the current state-of-the-art predictive
models36 have RMS errors 30-40 K. The model accuracy is
limited by the extreme heterogeneity of the Tm data, decom-
position upon melting, polymorphism in organic crystals,
and amorphous forms. Such information is missing from the
current databases, and represent areas where improvements
can be made.

We have demonstrated successful application of ML
in the scope of organic crystallization. Using ML, we
screened nearly half a million commercially available organic
molecules and selected several dozen that fit within the nec-
essary property-composition space. Of these, six molecules
were chosen based on qualities that aligned with what pre-
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vious experimentation has shown to lead to organic crys-
talline thin films. Three of the six molecules crystallized as
large-area platelets, one crystallized as a spherulite, and two
resisted crystallization. This displayed a significant success
rate of 50% in identifying organics that can crystallize as
long-range-ordered platelet domains, the ideal form for fu-
ture device applications, via the post-deposition annealing
method. Machine learning is still a nascent field in its appli-
cation to organic materials, hence, it is difficult to put cur-
rent success in full context. However, the success rate sub-
stantially surpassed that of drug discovery virtual screening
efforts, which rely on the guidance of experienced medici-
nal chemists for molecule selection to bind a specific pro-
tein.37,38 In our study, we demonstrated that well-trained
ML models are capable of accurately predicting thermal
properties and replicating the expertise of experimentalists
in choosing molecules for validation. This represents an op-
portunity for a significant shift in decision-making authority
from human experts to algorithms. These capabilities mark
a crucial advancement towards self-driving laboratories, il-
lustrating the collaborative potential of machine and human
intelligence.
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