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Abstract

This study, focusing on predicting Absorption, Distribution, Metabolism, Excretion, and Toxicology (ADMET)
properties, addresses the key challenges of ML models trained using ligand-based representations. We propose a
structured approach to data feature selection, taking a step beyond the conventional practice of combining
different representations without systematic reasoning. Additionally, we enhance model evaluation methods
by integrating cross-validation with statistical hypothesis testing, adding a layer of reliability to the model
assessments. Our final evaluations include a practical scenario, where models trained on one source of data are
evaluated on a different one. This approach aims to bolster the reliability of ADMET predictions, providing
more dependable and informative model evaluations.

1 Introduction

The Absorption, Distribution, Metabolism, Excretion,
and Toxicology (ADMET) of compounds are com-
monly estimated throughout drug discovery projects,
as the feasibility of a compound to become a viable
drug highly depends on it. Through the years, a lot of
work has gone into building and evaluating machine
learning (ML) systems designed to predict molecular
properties that are associated with ADMET. Public
curated datasets and benchmarks for ADMET asso-
ciated properties are becoming increasingly available
to the community, creating the opportunity for more
widespread exploration of ML algorithms and tech-
niques in this space. The Therapeutics Data Com-
mons (TDC) ADMET leaderboard showcases this [1],
highlighting a wide variety of models, features, and
processing methods investigated over the past two
years.

The studies showcased on the leaderboard often
focus on comparing different ML models and architec-
tures, whereas the selection of compound representa-
tions is either not justified, or analyzed with limited
scope. For instance, many approaches concatenate a
number of compound representations at the onset for
the assessment of various models. While compound
representation and feature selection justification is
lacking, these approaches often yield very good results
against the TDC benchmarks [2, 3, 4]. In the present
study, we aim to improve the understanding of the im-
pact of feature concatenation, taking a step further to
provide a process that can inform dataset-specific, sta-

tistically significant compound representation choices.
Different deep neural network (DNN) compound

representations became prevalent over the past years
[5, 6, 7, 8]. We investigate how the DNN compound
representations compare to the more classical descrip-
tors and fingerprints in the ADMET ML domain.

In the present study, we conduct experiments to
enlighten the following research questions:

• Which types of algorithms and compound repre-
sentations are generally suitable for ligand-based
machine learning in the ADMET domain?

• Can cross-validation hypothesis testing serve as a
more robust model comparison than a hold-out
test set in the ADMET domain?

• How important are various forms of model opti-
mization in a practical scenario?

• What is the impact on the model performance
when available external data of the same property
is used in combination with internal data?

Public ADMET datasets are often criticised with
regards to data cleanliness. Issues range from inconsis-
tent SMILES representations and multiple organic
compounds found in a single fragmented SMILES
string, to duplicate measurements with varying values
and inconsistent binary labels. Different binary labels
for the same SMILES string have also been observed
across train and test sets. In order to mitigate these
issues in the present study, we begin by applying a
set of data cleaning procedures. The data cleaning re-
sults in the removal of a number of compounds across
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datasets1.
At a high level, the experiments in this study are

carried out sequentially, achieving the following:

1. A best-performing model architecture is identified
to both use as a baseline as well as optimized in
further experiments;

2. Features are combined iteratively until the best-
performing combinations are identified;

3. Hyperparameters of the chosen model architecture
are tuned in a dataset-specific manner;

4. Cross-validation hypothesis testing is done in or-
der to assess the statistical significance of the
optimization steps;

5. Test set performance is evaluated, assessing the
impact of the previous optimization steps, as well
as the contrast between the hypothesis test out-
comes and test set changes;

6. The optimized models are evaluated in a practical
scenario, where models trained on one data source
are evaluated on a test set from a different source,
for the same property;

7. Finally, the optimized model is trained on a com-
bination of data from two different sources, to
mimic the scenario when external data is com-
bined with increasing amounts of internal data.

2 Related work

Fang et al. have assessed the performance of many
popular ML models on their internal ADME assay
data [9]. While they look at a variety of models, the
investigation of different compound representations are
more limited, exploring only combinations of RDKit
descriptors and functional connectivity fingerprints
with a radius of 4 (FCFP4). Their experiments were
done in a sequential manner and evaluations were car-
ried out on temporal splits. They have also shared
their in-house ADME assay results for around 3,000
purchasable compounds. This dataset has been invalu-
able in our study, allowing us to assess the impact of
external data on internal data prediction.

Most recently, Green et al. carried out a study
on ADMET and quantitative structure-activity rela-
tionship (QSAR) tasks, focusing on a wide range of
models and features [10]. They propose a principled
implementation of uncertainty estimation (estimates
for both aleatoric and epistemic uncertainty) as well
as calibration, highlighting the superior performance
of Gaussian Process (GP) based models in particular.
While the group showed GP models to consistently
perform the best in bioactivity assays, there was no

1 Note this technically makes our results incomparable to any
of the public leaderboard models, even though the number of
removed compounds in the test sets is minor.

such clear conclusion for ADMET datasets, for which
they have found the optimal model and feature choices
to be highly dataset-dependent.

Deng et al. have carried out a study [11] that has
many similarities with ours; in particular, a number
of model were trained with both classical and deep-
learned feature representations on ADMET as well as
other datasets. The study contains a very thorough
analysis and comparison of generally popular ML meth-
ods in the area. The authors investigate fixed versus
learned (i.e. fine-tuned to the particular dataset) repre-
sentations, arriving at a conclusion that fixed represen-
tations generally outperform learned ones. Moreover,
the random forest model architecture was found to be
the generally best performing one. In our study we
investigate fixed representations, taking a step further
to investigate combinations of various representations
as well as identify a different best-performing model
architecture.

3 Methods

3.1 Data

Datasets Datasets pertaining to the ADMET prop-
erties of small molecules were obtained from different
public sources as laid out in Table 1.

From TDC [1], the single_pred method was
used to obtain exclusively human ppbr_az data.
For all other TDC datasets, the recommended
benchmark_group method and scaffold splits were
used. Kinetic solubility from the National Institute
of Health (NIH) as described by Guha et. al was ob-
tained from PubChem [12]. The scaffold split method
within the DeepChem library was used to split the
Biogen and NIH datasets.

Data cleaning Data cleaning was aimed at getting
consistent SMILES representations, and to remove
noise due to measurement ambiguity. For in vitro and
in vivo assays, we assume that the compound, or salt
thereof, is soluble in the medium used, and that the
effect observed can be attributed to the parent organic
compound in the case of salts.

For solubility, the properties of different salts of
the same compound may differ depending on the salt
component. All records pertaining to salt complexes
were removed from solubility datasets.

The standardisation tool by Atkinson et al. were
used to clean the compound SMILES strings [13]. We
included two modifications to definitions within the
tool.

• Boron and silicon were added to the list of organic
elements as such that an organic compounds is
defined as a compound that only consists of the
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following elements: H1, C6, N7, O8, F9, P15, S16,
Cl17, Br35, I53, B5, and Si14.

• Positive and negative hydrogen ions were added
to the pre-defined salt list as they were present
as salt components in some datasets, e.g. as
[H+].[Cl-].

In addition, a truncated salt list was created to omit
salt components that can in themselves be a parent
organic compound with a property measurement e.g.
citrate/citric acid. The truncated list was created
by excluding components that contain two or more
carbons from the tool’s pre-defined list. 36 components
were excluded as such.

The following steps were the taken to conduct data
cleaning across the datasets:

• Remove inorganic salts and organometallic com-
pounds from the datasets.

• Extract organic parent compounds form their
salts forms.

• Adjust tautomers to have consistent functional
group representation.

• Canonicalize SMILES strings.
• De-duplication. We either keep the first entry if

the target values of the duplicates are consistent,
or remove the entire group if they are inconsistent.
"Consistent" is defined as exactly the same for
binary tasks (i.e. the target values of the group
are either all 0 or all 1), and within 20% of the
inter-quartile range for regression tasks.

Finally, since the datasets are relatively small, visual
inspection of the resultant clean datasets were done
using DataWarrior [14].

Many of the ADMET endpoints in the datasets
are log-transformed. To address highly skewed dis-
tributions, we transformed another three of the
TDC datasets namely, clearance_microsome_az,
half_life_obach and vdss_lombardo. For these, the
metrics shown in this work are computed on the log
transformed values instead of the original ones listed
in Table 1.

3.2 Modeling and evaluation

Models The machine learning algorithms included
in the present study range from classical models to
more recent neural networks. Included is Support
Vector Machines (SVM) [17], tree-based methods com-
prising Random Forests (RF) [18] and gradient boost-
ing frameworks LightGBM [19] and CatBoost [20], as
well as Message Passing Neural Networks (MPNN) as
implemented by Chemprop [21] (Ver. 1.6.1).

Features Various descriptors, fingerprints, and em-
beddings were used on their own or in combination.

The following descriptors and fingerprints were imple-
mented using the RDKit cheminformatics toolkit [22]:
RDKit descriptors (rdkit_desc), Morgan fingerprints
with a radius of 2 (ecfp4) [23], atom pair fingerprints
(atom_pair) [24], Avalon Fingerprints (avalon) [25],
and Extended reduced graph (erg) descriptors [26].
Mordred fingerprints (mordred) were obtained using
the Mordred molecular descriptor calculator [27]. Em-
beddings used includes Mol2vec (mol2vec) [8], Graph
Representation frOm self-supervised mEssage passing
tRansformer (grover) [7], MolFormer (molformer) [6],
and BARTSMILES (bartsmiles) [5]. For MolFormer,
we made use of the open-source model version that was
trained on 10% of the data. BARTSMILES embed-
dings were extracted through loading the fairseq Bart
model with the pre-trained BARTSMILES checkpoint,
encoding the SMILES and extracting their features
using fairseq’s functions, and averaging them to create
a vector for each datapoint. MegaMolBart represen-
tations were computed using Nvidia’s BioNemo API
[28].

Evaluation metrics Following the work from
Green et. al, we used the normalized root-mean-square
error (NRMSE) for regression tasks [10]. It is defined
as the RMSE divided by the inter-quartile range (IQR)
of the training set. For binary classification tasks, the
area under the precision-recall curve (AU-PRC) was
used due to the presence of imbalanced datasets.

Statistics The Friedman χ2 test [29] was used to
detect differences across multiple pairwise model and
feature comparisons. The test compares ranks rather
than actual values, making it appropriate for non-
normally distributed data.

χ2
F =

12N

k(k + 1)

 k∑
j=1

R2
j −

k(k + 1)2

4

 (1)

In Equation 1, in the context of our study, N is the
number of pairwise comparisons (e.g. all 130 model
and dataset pairs that use rdkit_desc features), k is
the number of methods (e.g. the 10 different feature
sets), and Rj is the total sum of the ranks of the
method in question (e.g the rdkit_desc features).

After significant results were obtained from the
Friedman χ2 test, we used the Nemenyi post-hoc test
[30] to compare multiple groups.

Qij =
|Ri −Rj |√

k(k+1)
6n

(2)

The Nemenyi test were chosen due to its robustness
to the multiple comparisons problem compared to
other methods, such as the Wilcoxon rank sum test [31].
This is because the number of comparisons k is taken
into account when computing the test statistic Qij (Eq.
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Table 1: Dataset descriptions.

Dataset Name (Table) Property Units Size (Distribution)

TDCommons - regression (IQR)

caco2_wang (A16) Cell effective log(Papp) 632 (-5.7; -4.6)
permeability

lipophilicity (A36) Octanol/water distribution logD 4,199 (-0.6; 0.8)
ppbr_az (A31) Human plasma protein % bound 1,614 (85; 99)

binding
ld50_zhu (A17) 50% lethal dose log(kg·mol−1) 7,308 (1.9; 3.0)
vdss_lombardo (A30) Steady-state volume L·kg−1 1,105 (0.3; 2.8)

of distribution
half_life_obach (A23) Terminal phase half life hr 663 (1.8; 11)

from IV administration
clearance_microsome Human liver microsome mL·min−1g−1 1,102 (3.0; 43)
_az (A22) intrinsic clearance

TDCommons - binary Positive threshold (# positive)

bioavailability_ma (A33) Human oral bioavailability F ≥ 20% 638 (491)
hia_hou (A35) Human intestinal absorption FA > 30% 578 (500)
pgp_broccatelli (A34) P-glycoprotein inhibition IC50 < 15 µM, or 1,212 (647)

> 25% inhibition
relative to control

bbb_martins (A32) Blood-brain barrier logBB ≥ -1 1,945 (1,490)
penetration

cyp2c9_veith (A27) CYP2C9 inhibition inhibition below 57 µM 11,927 (3,993)
cyp2d6_veith (A29) CYP2D6 inhibition " 12,960 (2,491)
cyp3a4_veith (A28) CYP3A4 inhibition " 12,170 (5,037)
cyp2c9_substrate CYP2C9 metabolism as per literature 666 (141)
_carbonmangels (A24) annotation [15]
cyp2d6_substrate CYP2D6 metabolism " 663 (190)
_carbonmangels (A26)
cyp3a4_substrate CYP3A4 metabolism " 667 (354)
_carbonmangels (A25)
herg (A20) hERG inhibition pIC50 ≥ 4.4 603 (414)
ames (A19) Mutagenicity (bacterial colony growth in at 7,220 (3,941)

reverse mutation assay) least 1 of 5 strains
dili (A18) Drug-induced liver injury according to FDA 466 (230)

(hepatotoxicity) approved labeling [16]

NIH - regression (IQR)

solubility (A21) Kinetic aqueous solubility µg·mL 36,238 (4.0; 35)

Biogen - regression (IQR)

hppb Human plasma protein log(% unbound) 194 (0.2; 1.5)
binding

rlm (A12) Rat liver microsomes log(mL·min−1·kg−1) 3,054 (1.7; 2.8)
intrinsic clearance

solubility (A13) Kinetic aqueous solubility log(µg·mL) (pH 6.8) 2,173 (1.2; 1.7)
hlm (A15) Human liver microsome log(mL·min−1·kg−1) 3,087 (0.7; 1.8)

intrinsic clearance
mdr1-mdck (A14) P-glycoprotein efflux ratio log(B-A/A-B) 2,642 (-0.2; 0.9)
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2), which follows the studentized range distribution
[32].

The non-parametric nature of the statistical test
allowed us to use information from both the binary
classification and regression tasks, as only the relative
rankings are considered. Therefore, we combined the
rankings of the NRMSE values for regression tasks
with the rankings of the AU-PRC values for binary
classification tasks to perform the post-hoc tests.

3.3 Experiments

The experiments carried out in this study were sequen-
tial, each making use of the findings of the previous
experiments. They were structured as follows:

1. Model selection. Initially, we make use of the
single-fold experiment setup: train on training set,
evaluate of validation set, test set not used. In
the first stage, we aim to identify a single model
out of the five that we will take forward in more
detailed feature combination as well as hyperpa-
rameter tuning experiments. A model is trained
for each dataset, feature, and model combination,
and the models are ranked (1 to 5) in comparison
to each other. This results in 25 · 11 · 5 = 1375

trained models. Subsequently, we also compare
models trained using each of the features (except
mordred)2 in combination with rdkit_desc, a
popular feature representation that we have also
found to work well. The performance of a model
trained on a combination of features is important
as it can suggest whether the model architecture
will continue performing well as we expand the
number of combined features. This results in an-
other 9 feature combinations, corresponding to
25 · 9 · 5 = 1125 trained models. The models are
again ranked (1 to 5), their average rankings are
investigated and the significance of the best mod-
els’ performance is assessed using the Nemenyi
test.

2. Feature combination Once the model is se-
lected, the next step is to understand the impact
of using multiple feature representations on the ef-
ficacy of ADMET models. In order to assess this,
we iteratively add features one-by-one, starting
with the best-performing rdkit_desc, evaluating
the change in performance across the datasets at
every step. Features are added until we observe
no improvement from the additional features, thus
avoiding the inclusion of noise into the training
process. In these experiments, we discovered that
the impact of feature choice is very different for

2 mordred features were not combined with rdkit_desc because
the mordred descriptors already contain rdkit_desc, along
with a number of other features.

regression and binary classification datasets. We
therefore perform this iterative feature addition
separately for regression and binary classification
datasets. Once final feature combinations are
selected, hyperparameter optimization is done.

3. Hyperparameter optimization The hyperpa-
rameter optimization is performed in a dataset-
specific manner, unlike the previous optimization
steps which were evaluated across all the datasets
at once. We use a simple 3-fold cross-validation
method, using random search with 20 iteration
steps. Random search was chosen due to its ro-
bustness compared to grid search when redundant
hyperparameters might be involved [33]. The hy-
perparameter grid is defined in Table 2, chosen
based on recommendations from the model au-
thors [20].

Table 2: CatBoost hyperparameter grid used in the
random search with 20 iterations. The total size of
the grid amounts to 960 possible combinations. The
default hyperparameter values are bolded.

Hyperparameter Values

depth 4, 6, 8, 10
learning_rate 0.01, 0.03, 0.05, 0.1, 0.3
iterations 500, 1000, 2000
l2_leaf_reg 1, 3, 5, 7
bagging_temperature 0, 1, 3, 5

4. Cross-validation hypothesis testing To un-
derstand whether the optimization choices made
in previous steps are meaningful, we perform large
scale cross-validation hypothesis testing. In order
to maximize the statistical power of the Nemenyi
test, we use 10 cross-validation folds. Four model
configurations are evaluated:

• Baseline: catboost with default parameters
and rdkit_desc feature representations.

• catboost with default parameters and
rdkit_desc + ecfp4 feature representation
combination, which is a popular choice in
literature

• catboost with default parameters and the
optimized features, as described in Section
4.2.

• catboost with optimized hyperparameters
as well as optimized features.

For each of the four model configuration, we train
a model on 25 datasets with 10 folds each, result-
ing in 250 sets of four paired evaluations to draw
the statistical test from.

5. Test set evaluation Finally, the baseline as well

5
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as optimized models are evaluated on the held-out
test set and the improvements are listed for each
dataset. Importantly, the performances are shown
per-dataset, and they are compared parametri-
cally (NRMSE for regression tasks and AU-PRC
for binary classification); in the previous analy-
ses we have used relative ranking to identify the
superior models, without considering the mag-
nitude of the improvement. Moreover, together
with test set results we observe the hypothesis test
results for each dataset from the previous 10-fold
CV experiment. The hypothesis test outcome is
compared to the change in test set performance.

6. Transferability. Properties for which two or
more datasets were obtained were used to inves-
tigate whether, for a given property, data from
one laboratory can be used to predict the mea-
surements from a different laboratory. For these
transferability investigations across datasets of
the same property, the respective dataset values
were transformed to align the measurement units,
and overlapping compounds were removed, as well
as those with values greater or less than a thresh-
old. The three properties, human plasma protein
binding (hPPB), human liver microsome intrinsic
clearance (HLM), and kinetic solubility (solubil-
ity), for which there are both a Biogen dataset as
well as a dataset from TDC (AstraZeneca) or the
NIH, were used. For each property, two sets of
experiments were conducted.

• Firstly, the optimized models from the previ-
ous experiments are evaluated in a practical
scenario: catboost models were trained on
either the TDC or NIH data, and tested
on Biogen data. This was done using all
four model configurations described in the
cross-validation experiment.

• Secondly, an experiment is conducted to as-
sess the impact of using external (hypotheti-
cally represented by TDC or NIH) together
with internal (hypothetically represented by
Biogen) data. 50% of the Biogen data were
isolated as a test set via a scaffold split. The
remaining 50% of the Biogen data was incre-
mentally added (either 1% or 5% increments
up to 50%) to the additional dataset’s data,
resulting in training sets containing increas-
ing proportions of Biogen data. Dataset
compositions are summarised in Table 3.
catboost models with the optimal hyperpa-
rameters for the property were constructed
with these training sets using the combined
features. The models were evaluated based
on R2 against the isolated test set. Mod-
els were also trained using only the Biogen

portions of the training data to asses the
change in performance due to the additional
data. The experiments were repeated with
5 different 50% scaffold splits of the Biogen
datasets.

Table 3: Maximum combined dataset compositions
for transferability experiments.

Maximum Fraction Biogen
Property combined Biogen test

dataseta datab set size

hPPB 1,704 0.053 92
HLM 1,781 0.590 1059
solubility 37,308 0.029 1076

a TDC or NIH data combined with 50% of the Biogen
data. b Fraction of the maximum combined dataset
represented by the Biogen data.

4 Results

4.1 Model selection

Table 4 shows the relative model performances across
the single and combined feature experiments. While
catboost and svm have comparable average rankings
in the single feature experiment, catboost comes
out superior once the features are combined with
rdkit_desc.

This is corroborated by the p-value heatmaps (Fig.
1, 2). We observe that in the single feature experiment,
catboost is not significantly different from svm and
lightgbm. However, the difference becomes significant
when the combination of two feature sets are used.

Based on these findings, in the subsequent experi-
ments we chose to use the catboost model, both for
investigating feature combinations and hyperparame-
ter optimization.

4.2 Feature combination

First, we evaluate the catboost models trained on a
single feature representation, confirming rdkit_desc
as the superior standalone feature representation in
ADMET tasks. The average ranks of each feature
across the datasets are shown in Table 5. We can see
that its superiority is more prominent in regression
tasks compared to binary classification.

The process of iteratively adding features is shown
in Table 6 for regression datasets and 7 for binary
classification datasets. We find that the rdkit_desc +
erg + ecfp4 + avalon combination performs best on
average for regression datasets, and rdkit_desc + erg

6
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Figure 1: Model comparison, p-value heatmap ac-
cording to the Nemenyi test of all 11 features trained
individually. Each model is trained 275 times, for every
dataset and feature combination. Average ranks of each
model are shown in Table 4.
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Figure 2: Model comparison, p-value heatmap accord-
ing to the Nemenyi test of 9 features (previous 11 minus
rdkit_desc and mordred) trained in combination with
rdkit_desc. Each model is trained 225 times, for every
dataset and feature combination. Average ranks of each
model are shown in Table 4.

Table 4: Average model rankings in the single-fold
experiment. In the single-feature experiment, all 11
features are all trained, resulting in 1325 total models
trained across all datasets. For the two features ex-
periment, rdkit_desc features are concatenated with
the other features (except mordred), resulting in 1125
total models. The rankings are relative model perfor-
mances based on the validation set. Corresponding
p-value heatmaps can be seen in Figures 1, 2.

Model Average rank, Average rank,
single feature two features

svm 2.52 3.01
catboost 2.36 2.07
rf 3.29 3.13
lightgbm 2.79 2.52
mpnn 4.03 4.28

+ avalon for binary classification datasets. Adding
more features to these combinations decreases the
model performance across the datasets.

Table 5: Feature performance comparison in the
single-fold evaluation experiment, using a catboost
model with default hyperparameters. A model using
a particular feature representation is trained 25 times
for every dataset, and relative average rankings are
shown in the table. Separate rankings are also shown
for regression and binary classification datasets, of
which there are 12 and 13, respectively.

Feature Regression Binary Overall

molformer 6.91 6.00 6.38
bartsmiles 8.91 6.85 7.83
grover 5.91 6.15 6.08
mol2vec 5.82 6.23 6.08
atom_pair 7.09 6.62 6.79
ecfp4 7.91 6.38 7.04
rdkit_desc 1.91 4.31 3.21
erg 7.45 9.08 8.33
avalon 7.18 5.69 6.42
mordred 2.45 4.23 3.38
megamolbart 4.45 4.46 4.46
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Table 6: Performance (average rank) of iteratively added feature representations in regression datasets. Each
set of base features, denoted in the top row, is combined with an extra feature and their performances are
ranked compared to each other within same column. For example, in the first step, the rdkit_desc + erg has
the highest average ranking compared to other two feature combinations as well as the baseline rdkit_desc;
therefore we set it as the base two-feature combination in the subsequent column where a third feature is added
in the same manner. This process continues until adding an extra feature does not show improvement.

rdkit_desc rdkit_desc rdkit_desc rdkit_desc
+ erg + erg + erg

+ ecfp4 + ecfp4
+ avalon

No added feature 5.0 3.18 3.18 1.55
+ erg 2.5 - - -
+ ecfp4 3.08 2.45 - -
+ avalon 3.5 2.55 2.27 -
+ atom_pair 4.42 4.0 2.55 2.73
+ bartsmiles 9.25 8.0 7.18 6.0
+ grover 7.33 7.18 6.27 5.55
+ megamolbart 5.83 5.45 4.64 4.27
+ mol2vec 5.67 4.82 3.64 2.55
+ molformer 8.42 7.36 6.27 5.36

Table 7: Performance (average rank) of iteratively added feature representations in binary classification
datasets. Each set of base features, denoted in the top row, is combined with an extra feature and their
performances are ranked compared to each other within same column. For example, in the first step, the
rdkit_desc + avalon has the highest average ranking compared to other two feature combinations as well as
the baseline rdkit_desc; therefore we set it as the base two-feature combination in the subsequent column
where a third feature is added in the same manner. This process continues until adding an extra feature does
not show improvement.

rdkit_desc rdkit_desc rdkit_desc
+ avalon + avalon

+ erg

No extra feature 6.46 4.92 3.46
+ avalon 4.08 - -
+ erg 5.38 3.77 -
+ atom_pair 5.92 4.69 4.08
+ ecfp4 4.62 4.38 4.46
+ megamolbart 4.38 4.46 4.69
+ bartsmiles 6.62 6.08 5.77
+ grover 6.38 6.38 5.62
+ mol2vec 5.54 5.15 3.62
+ molformer 5.62 5.15 4.31
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Table 8: Performance of four different CatBoost
model configurations, with either default or optimized
hyperparameters as well as various feature represen-
tation combinations. Each configuration is trained
across 25 datasets with 10 folds each, and the configu-
rations’ average ranking is reported. The significance
of model improvements is visualized in terms of the
p-values in Figure 3.

Features Model Average
rank

rdkit_ catboost
desc default 3.09
rdkit + catboost
ecfp4 default 2.84
optimized catboost
features default 2.20
optimized catboost
features optimized 1.84

params

4.3 Cross-validation hypothesis testing

The four chosen model configurations are now trained
in a 10-fold cross-validation setting, where the large
number of paired performance measurements will al-
low for a thorough assessment of impact of various
optimization steps. We can see the average rankings
of each model configuration in Table 8. To create this
table, 25 (number of datasets) * 10 (number of CV
folds) = 250 sets of four model configurations were
compared, resulting in high statistical power of the
experiment; the results of the corresponding Nemenyi
hypothesis tests are shown in Figure 3.

However, we can also perform these hypothesis tests
for every dataset, using only 10 paired measurements
for every model configuration. The results of these
dataset-specific hypothesis tests (specifically, whether
the fully optimized catboost model gives significantly
different predictions to the baseline) are shown to-
gether with the results on the test set in Table 9.

4.4 Test set evaluation

Finally, the four model configurations are evaluated
on the test set, after training the models on the entire
available training/validation data. The results are
shown in Table 9. To visualize the impact of the entire
optimization process, we visualize the test set NRMSE
and AUPRC performances in Figures 4 and 5 specifi-
cally for the baseline and fully optimized (optimized
features + hyperparameter optimization) models. The
same figures with Pearson R, ROCAUC values are
available in Figures A9 and A10, respectively.

For 19 out of 25 datasets, the optimizations have led

O
p
t.
 H

P
, 
op

t.
 f
ea

tu
re

s

D
ef

a
u
lt
 H

P
, 
op

t.
 f
ea

tu
re

s

D
ef

a
u
lt
 H

P
, 
rd

k
it
 d

es
c 

+
 e

cf
p
4

D
ef

a
u
lt
 H

P
, 
rd

k
it
 d

es
c

Opt. HP, opt. features

Default HP, opt. features

Default HP, rdkit desc + ecfp4

Default HP, rdkit desc

p < 0.01
p < 0.05
not signif.

Figure 3: CatBoost model configuration compari-
son, p-value heatmap according to the Nemenyi test
comparing four differently optimized models. Each
model configuration is trained 250 times, for each of
the 10 folds across 25 datasets. Average rankings of
each model configuration are shown in Table 8.

to an improvement over the baseline model. This num-
ber jumps up to 21 out of 25 if either the non-optimized
or the optimized catboost model with optimized fea-
tures is considered, as opposed to the models using
standard rdkit_desc or rdkit_desc + ecfp4 feature
combinations. For 12 datasets, hyperparameter opti-
mization leads to a decrease in test set performance
compared to the non-optimized model with optimized
features.

Only for 11 datasets the optimizations were statisti-
cally significant according to the Nemenyi test using a
10-fold CV method. In all 11 cases, an improvement
on the test set performance was observed as well.

4.5 Transferability

The selected model configurations were subsequently
evaluated in a more practical scenario, compared to
the manually created test set splits. Multiple pub-
lic datasets for the same property, but from different
sources, were found for hPPB, HLM, solubility. Re-
spectively, 9, 11 and 20 overlapping compounds were
found in the dataset pairs for hPPB, HLM and sol-
ubility. After adjusting the values to reflect similar
units, Pearson correlations of 0.98, 0.92, and 0.89 were
obtained for the respective properties of the overlap-
ping compounds measured in different laboratories
(Fig. 6). Given the high correlation, we assessed the
influence of using data from one laboratory on the
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Table 9: Test set evaluation of model configurations at four different degrees of optimization. In the 10-fold CV
experiment, each configuration was trained 10 times for each dataset, allowing us to perform Nemenyi hypothesis
test to compare the model configurations. In the penultimate column, the outcome of the hypothesis (p < 0.05 or
not) is shown, specifically comparing the fully optimized (features and hyperparameters) model to the baseline
model. In the last column, we also denote whether the fully optimized configuration outperformed the baseline
on the held-out test set.

Dataset catboost catboost catboost catboost 10-fold CV Test set
default, default, default, optimized, Nemenyi improvement
rdkit_desc rdkit_desc optimized optimized test

+ ecfp4 features features p < 0.05

TDCommons - regression NRMSE (↓)

caco2_wang 0.342 0.336 0.323 0.335 ✓ ✓

lipophilicity 0.437 0.428 0.408 0.400 ✓ ✓

ppbr_az 0.847 0.859 0.830 0.829 ✗ ✓

ld50_zhu 0.817 0.811 0.781 0.752 ✓ ✓

vdss_lombardo 0.414 0.412 0.411 0.410 ✗ ✓

half_life_obach 0.552 0.561 0.562 0.557 ✗ ✗

clearance_microsome 0.429 0.437 0.437 0.453 ✗ ✗
_az

TDCommons - binary AUPRC (↑)

bioavailability_ma 0.890 0.882 0.909 0.900 ✗ ✓

hia_hou 0.994 0.993 0.994 0.991 ✗ ✗

pgp_broccatelli 0.935 0.937 0.939 0.935 ✗ ✗

bbb_martins 0.976 0.979 0.981 0.978 ✗ ✓

cyp2c9_veith 0.763 0.773 0.778 0.789 ✓ ✓

cyp2d6_veith 0.677 0.694 0.712 0.709 ✓ ✓

cyp3a4_veith 0.854 0.877 0.874 0.873 ✓ ✓

cyp2c9_substrate 0.418 0.416 0.448 0.345 ✗ ✗

_carbonmangels
cyp2d6_substrate 0.688 0.683 0.719 0.707 ✗ ✓
_carbonmangels
cyp3a4_substrate 0.680 0.696 0.709 0.712 ✗ ✓
_carbonmangels
herg 0.938 0.936 0.957 0.944 ✗ ✓

ames 0.890 0.896 0.896 0.902 ✗ ✓

dili 0.867 0.883 0.887 0.894 ✗ ✓

NIH - regression NRMSE (↓)

solubility 0.469 0.462 0.457 0.441 ✓ ✓

Biogen - regression NRMSE (↓)

rlm 0.507 0.489 0.485 0.474 ✓ ✓

solubility 0.905 0.911 0.877 0.933 ✗ ✗

hlm 0.425 0.422 0.424 0.409 ✓ ✓

mdr1-mdck 0.452 0.441 0.431 0.427 ✓ ✓
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predictive outcome of the properties measured in a
different laboratory.

Table 10: Performance of models at various levels of
optimization when trained on data from one source
(TDC or NIH) and evaluated on data from a different
source (Biogen).

Features Model hPPB HLM Sol.
RMSE RMSE RMSE
(R2) (R2) (R2)

rdkit_ catboost 0.345 0.366 0.301
desc default (0.534) (0.053) (0.410)
rdkit + catboost 0.345 0.364 0.291
ecfp4 default (0.534) (0.043) (0.433)
optimized catboost 0.355 0.360 0.277
featuresa default (0.523) (0.051) (0.458)
optimized catboost 0.345 0.361 0.274
featuresa optimized (0.531) (0.057) (0.465)

params

a rdkit_desc, ecfp4, erg, and avalon fingerprints

Firstly, the different levels of model optimization,
the baseline catboost model compared to optimal fea-
ture combinations and hyperparameters, had minimal
benefit when training on TDC data and testing on
Biogen data for hPPB and HLM (Table ??). In the
case of solubility, where models were trained with NIH
data and tested on Biogen data, a decrease of RMSE
(and increase in model correlation coefficient, R2) was
observed alongside the iteratively optimized features
and hyperparameters. For hPPB and solubility, R2

(percent variance explained) of around 50% (0.5) were
achieved (Table ??). This relates to around 30% per-
cent of standard deviation explained,3 meaning that
the models trained on the TDC and NIH data yields
errors that are around 30% smaller on average than
those of a constant-only model (e.g. predicting the
mean). Looking at the correlation between the pre-
dicted and measured values indicates that the hPPB
and solubility models tend to over-predict the lower
values (Fig. 7). The HLM model offered little ad-
vantage over predicting the mean (3% smaller errors
on average compared to predicting the mean given
the R2 of 0.06). Since the TDC data for both hPPB
and HLM stems from AstraZeneca data, we sought to
see whether compound similarity between the train-
ing and test sets would provide an explanation for
the difference in model performance. However, the
Tanimoto similarities (based on ecfp4) between test
set compounds and that of the most and least similar
compounds in the training sets, as well as the aver-
3 The percent by which the standard deviation of the errors is

less than the standard deviation of the dependent variable =
1 - square root(1 - R2)

age similarity, indicated no significant differences (Fig.
A12).

We continued to use the optimized features and hy-
perparameters in further experiments to assess the
influence of including Biogen data in the training
sets. Omitting, and then incrementally increasing
the amount of Biogen data in the training sets of the
models either does not affect, in the case of hPPB,
or increases R2 as the Biogen proportion of training
data increases (Fig. 8). The increasing effect is most
pronounced in the case of HLM, where a the propor-
tionally higher amount of Biogen data is available and
included (up to almost 60% of the training set). In all
cases, when only using Biogen data for training, the
increase in data increases the R2. For HLM with its
higher proportions of Biogen data, it reaches a point
where there is no benefit to including the additional
TDC data compared to only using the Biogen data.
However, the inclusion of additional data generally
reduces the R2 standard deviation when less Biogen
data is included, indicating that the additional data
affords better generalizability across different scaffold
folds.

5 Discussion

The experiments in this study extensively explore ML
models and features utilized in the ADMET space,
focusing on statistical significance when comparing
between them.

The initial model selection experiment via single-fold
evaluation has shown that when using a single feature
representation, catboost, svm and lightgbm all per-
form statistically similarly according to the Nemenyi
post-hoc test. However, when two feature represen-
tations are used (rdkit_desc combined with other
features), catboost comes out as a superior model
architecture, yielding significantly better performance
with p < 0.05 under the Nemenyi test.
random forest as well as mpnn model architectures

performed poorly in our experiments. The poor perfor-
mance of the mpnn is surprising considering it often is
shown to yield good results in the literature [21, 34, 35].
This could be explained by the hands-off approach of
our study, in which we did not supervise the training
process of either model, simply making use of the train-
ing and prediction CLI scripts as instructed. Deep
learning models often require some supervision besides
the early stopping criteria to ensure that the training
has converged properly. Moreover, deep learning mod-
els typically require more data compared to decision
tree based architectures. Therefore, we investigate the
differences in model performance between the baseline
mpnn and catboost models trained with rdkit_desc
features, with the dataset size in mind. This data
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Figure 6: Correlation between the property values for overlapping compounds across the datasets for A) hPPB,
B) HLM, and C) solubility.

Figure 7: Correlation between the measured and predicted property values for models trained on data from
one source and tested data from another across A) hPPB, B) HLM, and C) solubility.

can be seen in Table A11. We observe that as the
dataset size increases, the model performances become
more and more comparable, with mpnn ultimately out-
performing baseline catboost on the NIH solubility
dataset containing ∼36k compounds.

The feature performance investigation has showed
that using the rdkit_desc representation of com-
pounds is a safe choice for molecular property pre-
diction tasks in the ADMET domain, performing sig-
nificantly better used as a single feature compared to
any other single feature across all models. However, it
is a much more reliable representation for regression
tasks compared to binary classification, attaining av-
erage ranks of 1.91 and 4.31 respectively across pairs
of dataset-model combinations for both task types.

Iterative feature addition (Table 6 and 7) has re-
sulted in combinations that yield significantly better
performance for both regression as well as binary classi-
fication tasks across the datasets. In both cases, using
only rdkit_desc features, or a common rdkit_desc
+ ecfp4 feature combination does not bring out the
best possible model performance in the datasets. The
improvement that comes from using the optimized set
of features is more significant than the improvement
of subsequent hyperparameter optimization, as seen

both in the cross-validation analysis (Table 8) as well
as the test set evaluation (Table 9). Moreover, adding
extra features results in decreased performance, sug-
gesting that the added noise outweighs the additional
representational power.

The optimal sets of features for regression4 and bi-
nary classification5 tasks contain only standard chemin-
formatics representations, showing that deep-learning
based features (both LLM and graph-based) do not
perform well in the ADMET domain. Notably, as
a standalone feature, megamolbart has achieved an
average ranking of 4.46 in the binary classification
datasets, compared to the 4.31 of rdkit_desc, which
is the only time in the study where a deep-learning
based feature representation has come close to the
standard cheminformatics ones. A possible interpre-
tation for why deep-learning features do not perform
well in this domain is the high-noise, low-data issue:
the vast information encoded in the high-dimensional
compound embeddings of deep-learning models might
be too hard to uncover when guided only by the highly
noisy and sparse data.

Overall, the model optimization has been impactful

4 regression: rdkit_desc + erg + ecfp4 + avalon
5 binary: rdkit_desc + erg + avalon
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Figure 8: Performance of models trained with increasing amounts of Biogen data by itself, or combined with
TDC or NIH data. The standard deviation across 5-folds are indicated by the shading around the means for
experiments across A) hPPB, B) HLM, and C) solubility.

in increasing the test set performance. Non-optimized
models with either rdkit_desc or rdkit_desc+ecfp4
features only performed best on 4 out of 25 test sets,
whereas one of the optimized model configurations
performed the best on the remaining 21. Interestingly,
while the hyperparameter optimization was shown
to be statistically significant in the cross-validation
experiment, it had mixed results in increasing the
performance on the test set, where for 12 datasets
it has led to a decrease in performance. However,
only 3 of the 12 datasets were regression datasets,
suggesting that the optimization is less robust in the
binary classification setting.

In every set of comparisons, the Friedman χ2 test
was easily passed with p < 0.01; however, the post-
hoc Nemenyi test did not always identify significant
differences under p < 0.05. In particular, passing the
10-fold cross-validation hypothesis test is harder than
improving the test set performance; often even when
a substantial improvement in the test set is observed,
the hypothesis test did not pass with p < 0.05. How-
ever, for the 11 datasets where the hypothesis test
was passed, a test set improvement was observed too.
These results suggest that hypothesis testing can be
utilized as a more robust alternative to single hold-out
set evaluation, allowing to identify model improve-
ments that are much more likely to generalize. A case
for when such a robustness can be useful is seen in the
results of the transferability experiment.

Out of the three datasets used in the transferability
experiment, model optimization yielded a noticeable
improvement only in the solubility dataset, as seen
in Table 10. This aligns with our test set observations
(Table 9): for clearance_microsome_az, neither the
hypothesis test was passed nor a test set improve-
ment was observed, whereas the opposite was true for
the NIH solubility dataset. The remaining dataset
presents an argument for why the robustness of hy-
pothesis might be preferred to a test set evaluation:

for the ppbr_az dataset, we observe an improvement
in the test set. We might therefore incorrectly ex-
pect an improvement in the transferability experiment.
However, the hypothesis test was rejected; hence if we
were to be guided by the hypothesis test, the lack of
improvement is no surprise.

Provided that the assay conditions and endpoints
are similar, using data from a different laboratory in
predictive models could be beneficial when no data
from the laboratory in question, represented by Biogen
data in this study, is available (Fig. 7). The perfor-
mance of the models seem to be property dependent,
with similarity to compounds in the training set not
providing any indication of whether the model would
perform well.

As more Biogen data is included in model training,
the benefit of additional TDC or NIH training data
decreases (Fig. 8). In part, it appears to depend on the
amount of additional data compared to Biogen data.
For hPPB and HLM, the use of the additional data
starts to become insignificant when around 5% Biogen
data is available (Fig. 8). In the case of solubility, a
similar trend is apparent. However, as much more NIH
than Biogen data is available for solubility, the point at
which the additional NIH data becomes insignificant
was not reached and can thus not be concluded.

6 Conclusions

This study provides a detailed analysis of compound
representations and machine learning techniques in
ADMET tasks. The systematic approach taken across
baseline model and feature selection, and the incorpo-
ration of statistical methods in comparisons, advances
the accuracy and reliability of ML applications in the
ADMET molecular property space. Furthermore, the
systematic approach can reveal the degree of benefit
afforded by the combined use of data from different
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7 Appendix

7.1 Test set evaluation over different
metrics

In the main body of paper, only NRMSE and AUPRC
values are used for the datasets. Here we include
the test set evaluations on the regression and binary
classification tasks using other two popular metrics,
Pearson R and ROC-AUC, respectively.

7.2 MPNN versus CatBoost
comparison

A common notion is that deep learning models require
more data to be trained compared to decision tree
based architectures. Therefore, we investigate the
differences in model performance between the baseline
mpnn and catboost models trained with rdkit_desc
features, with the dataset size in mind. This data can
be seen in Table A11. We observe that as the dataset
size increases, the model performances become more
and more comparable.

7.3 Additional transferability
information

The figures below shows the Tanimoto similarity distri-
butions of test set compounds rfom one source to that
for training set compounds from a different source as
discusses in the transferability experiment. Further,
we include the predicted vs. measured correlations
for training sets consisting of 50% of the Biogen data,
and also the combination of the 50% Biogen data and
the TDC (hPPB and HLM) or NIH (solubility) data
respectively.

7.4 Data cleaning

The tables below show all the dataset-specific infor-
mation behind the data cleaning that was carried out.
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Table 11: mpnn and catboost performance comparison on the regression datasets, based on the dataset sizes.
The results are based on the single-fold hold-out set experiment (validation, not test).

Dataset Name Dataset Size mpnn R2 catboost R2

half_life_obach 662 0.16 0.25
caco2_wang 753 0.52 0.61

clearance_microsome_az 1102 0.26 0.32
vdss_lombardo 1105 0.35 0.45

ppbr_az 1614 0.37 0.44
solubility 2173 0.28 0.28

mdr1-mdck 2642 0.43 0.50
rlm 3054 0.47 0.49
hlm 3087 0.39 0.40

ld50_zhu 7323 0.14 0.25
nih_solubility 36238 0.32 0.27

Figure 11: Distribution of Tanimoto similarity between compounds in the test set and those in the training
set. For each compound in the test set, only the most similar (max) compound in the training set, the average
similarity to all training set compounds (mean), and the least similar compound (min). Training data from one
source and test data from another spans the properties A) hPPB, B) HLM, and C) solubility.

Table 12: Data cleaning breakdown for rlm

Metric Total Unchanged Transformed Removed

SMILES count 3054 2991 63 0

Transformation description Count

02 2-hydroxy pyridine -> 2-pyridone 30
canonicalized 21
03 4-hydroxy pyridine -> 4-pyridone (within-ring) 6
25 Charge-seperate sulphoxides 5
04 4-pyrimidone -> 2-pyrimidone (any) 1
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Figure 12: Correlation between predicted and measured values from models trained with 50% Biogen data (1st
panels), and the 50% Biogen data combined with the TDC or NIH data (2nd panels) across A) hPPB, B) HLM,
and C) solubility.

Table 13: Data cleaning breakdown for solubility

Metric Total Unchanged Transformed Removed

SMILES count 2173 2140 33 0

Transformation description Count

02 2-hydroxy pyridine -> 2-pyridone 18
canonicalized 7
25 Charge-seperate sulphoxides 4
03 4-hydroxy pyridine -> 4-pyridone (within-ring) 4

Table 14: Data cleaning breakdown for mdr1-mdck

Metric Total Unchanged Transformed Removed

SMILES count 2642 2587 55 0

Transformation description Count

02 2-hydroxy pyridine -> 2-pyridone 26
canonicalized 17
03 4-hydroxy pyridine -> 4-pyridone (within-ring) 7
25 Charge-seperate sulphoxides 4
04 4-pyrimidone -> 2-pyrimidone (any) 1
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Table 15: Data cleaning breakdown for hlm

Metric Total Unchanged Transformed Removed

SMILES count 3087 3023 64 0

Transformation description Count

02 2-hydroxy pyridine -> 2-pyridone 30
canonicalized 21
03 4-hydroxy pyridine -> 4-pyridone (within-ring) 7
25 Charge-seperate sulphoxides 5
04 4-pyrimidone -> 2-pyrimidone (any) 1

Table 16: Data cleaning breakdown for caco2_wang

Metric Total Unchanged Transformed Removed

SMILES count 910 587 45 278

Removal reason Count

inconsistent_duplicate 256
duplicate 21
multi_component 1

Transformation description Count

canonicalized 30
02 2-hydroxy pyridine -> 2-pyridone 4
25 Charge-seperate sulphoxides 4
13 Enol -> Ketone 1 3
04 4-pyrimidone -> 2-pyrimidone (any) 3
03 4-hydroxy pyridine -> 4-pyridone (within-ring) 1
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Table 17: Data cleaning breakdown for ld50_zhu

Metric Total Unchanged Transformed Removed

SMILES count 7385 7221 87 77

Removal reason Count

inconsistent_duplicate 66
duplicate 8
no_non_salt_or_inorganic 3

Transformation description Count

25 Charge-seperate sulphoxides 48
13 Enol -> Ketone 1 22
04 4-pyrimidone -> 2-pyrimidone (any) 8
canonicalized 3
03 4-hydroxy pyridine -> 4-pyridone (within-ring) 3
10 Fix heterocyclic tautomer 2 2
02 2-hydroxy pyridine -> 2-pyridone 1

Table 18: Data cleaning breakdown for dili

Metric Total Unchanged Transformed Removed

SMILES count 475 442 24 9

Removal reason Count

multi_component 6
multi_organic_salt 2
no_non_salt_or_inorganic 1

Transformation description Count

canonicalized 11
13 Enol -> Ketone 1 7
25 Charge-seperate sulphoxides 4
04 4-pyrimidone -> 2-pyrimidone (any) 2
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Table 19: Data cleaning breakdown for ames

Metric Total Unchanged Transformed Removed

SMILES count 7278 7069 151 58

Removal reason Count

inconsistent_duplicate 38
duplicate 16
no_non_salt_or_inorganic 4

Transformation description Count

02 2-hydroxy pyridine -> 2-pyridone 42
canonicalized 35
13 Enol -> Ketone 1 24
10 Fix heterocyclic tautomer 2 14
25 Charge-seperate sulphoxides 12
11 Fix heterocyclic tautomer 3 11
03 4-hydroxy pyridine -> 4-pyridone (within-ring) 9
11 Fix heterocyclic tautomer 3 and

02 2-hydroxy pyridine -> 2-pyridone 1
07 hydropyridin-4-imine -> 4-amino-pyridine 1
21 Fix 1,3 conjugated cation (non-aromatic) 1
14 Enol -> Ketone 2 1

Table 20: Data cleaning breakdown for herg

Metric Total Unchanged Transformed Removed

SMILES count 655 333 270 52

Removal reason Count

duplicate 29
inconsistent_duplicate 16
multi_component 6
no_non_salt_or_inorganic 1

Transformation description Count

canonicalized 260
25 Charge-seperate sulphoxides 5
04 4-pyrimidone -> 2-pyrimidone (any) 2
13 Enol -> Ketone 1 2
02 2-hydroxy pyridine -> 2-pyridone 1
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Table 21: Data cleaning breakdown for nih_solubility

Metric Total Unchanged Transformed Removed

Dataset count 36240 35775 463 2

Transformation description Count

04 4-pyrimidone -> 2-pyrimidone (any) 317
14 Enol -> Ketone 2 73
13 Enol -> Ketone 1 46
25 Charge-separate sulphoxides 16
canonicalized 7
11 Fix heterocyclic tautomer 3 3
04 4-pyrimidone -> 2-pyrimidone (any);14 Enol -> Ketone 2 1

Table 22: Data cleaning breakdown for clearance_microsome_az

Metric Total Unchanged Transformed Removed

SMILES count 1102 1065 37 0

Transformation description Count

02 2-hydroxy pyridine -> 2-pyridone 27
canonicalized 7
03 4-hydroxy pyridine -> 4-pyridone (within-ring) 3

Table 23: Data cleaning breakdown for half_life_obach

Metric Total Unchanged Transformed Removed

SMILES count 667 595 68 4

Removal reason Count

inconsistent_duplicate 2
multi_component 1
duplicate 1

Transformation description Count

canonicalized 48
13 Enol -> Ketone 1 12
02 2-hydroxy pyridine -> 2-pyridone 5
04 4-pyrimidone -> 2-pyrimidone (any) 2
06 hydropyridin-2-imine -> 2-amino-pyridine (N-subst.) 1
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Table 24: Data cleaning breakdown for cyp2c9_substrate_carbonmangels

Metric Total Unchanged Transformed Removed

SMILES count 669 613 53 3

Removal reason Count

duplicate 3

Transformation description Count

canonicalized 40
13 Enol -> Ketone 1 8
04 4-pyrimidone -> 2-pyrimidone (any) 2
25 Charge-seperate sulphoxides 1
01 hydroxy imine -> carboxamide 1
02 2-hydroxy pyridine -> 2-pyridone 1

Table 25: Data cleaning breakdown for cyp3a4_substrate_carbonmangels

Metric Total Unchanged Transformed Removed

SMILES count 670 614 53 3

Removal reason Count

duplicate 3

Transformation description Count

canonicalized 40
13 Enol -> Ketone 1 8
04 4-pyrimidone -> 2-pyrimidone (any) 2
25 Charge-seperate sulphoxides 1
02 2-hydroxy pyridine -> 2-pyridone 1
01 hydroxy imine -> carboxamide 1
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Table 26: Data cleaning breakdown for cyp2d6_substrate_carbonmangels

Metric Total Unchanged Transformed Removed

SMILES count 667 612 51 4

Removal reason Count

duplicate 2
inconsistent_duplicate 2

Transformation description Count

canonicalized 38
13 Enol -> Ketone 1 8
04 4-pyrimidone -> 2-pyrimidone (any) 2
25 Charge-seperate sulphoxides 1
02 2-hydroxy pyridine -> 2-pyridone 1
01 hydroxy imine -> carboxamide 1

Table 27: Data cleaning breakdown for cyp2c9_veith

Metric Total Unchanged Transformed Removed

SMILES count 12092 10958 969 165

Removal reason Count

multi_component 76
no_non_salt_or_inorganic 43
duplicate 23
inconsistent_duplicate 19
manual_inspection 2
sanity_check 1
multi_organic_salt 1

Transformation description Count

canonicalized 833
13 Enol -> Ketone 1 97
25 Charge-seperate sulphoxides 28
14 Enol -> Ketone 2 5
07 hydropyridin-4-imine -> 4-amino-pyridine 2
02 2-hydroxy pyridine -> 2-pyridone 2
13 Enol -> Ketone 1;14 Enol -> Ketone 2 1
01 hydroxy imine -> carboxamide 1
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Table 28: Data cleaning breakdown for cyp3a4_veith

Metric Total Unchanged Transformed Removed

SMILES count 12328 11246 924 158

Removal reason Count

multi_component 78
no_non_salt_or_inorganic 42
inconsistent_duplicate 22
duplicate 14
manual_inspection 1
multi_organic_salt 1

Transformation description Count

canonicalized 785
13 Enol -> Ketone 1 96
25 Charge-seperate sulphoxides 31
14 Enol -> Ketone 2 6
07 hydropyridin-4-imine -> 4-amino-pyridine 3
01 hydroxy imine -> carboxamide 1
02 2-hydroxy pyridine -> 2-pyridone 1
13 Enol -> Ketone 1;14 Enol -> Ketone 2 1

Table 29: Data cleaning breakdown for cyp2d6_veith

Metric Total Unchanged Transformed Removed

SMILES count 13130 11962 998 170

Removal reason Count

multi_component 80
no_non_salt_or_inorganic 40
inconsistent_duplicate 30
duplicate 17
manual_inspection 1
sanity_check 1
multi_organic_salt 1

Transformation description Count

canonicalized 830
13 Enol -> Ketone 1 118
25 Charge-seperate sulphoxides 39
14 Enol -> Ketone 2 6
07 hydropyridin-4-imine -> 4-amino-pyridine 3
13 Enol -> Ketone 1;14 Enol -> Ketone 2 1
01 hydroxy imine -> carboxamide 1
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Table 30: Data cleaning breakdown for vdss_lombardo

Metric Total Unchanged Transformed Removed

SMILES count 1130 394 711 25

Removal reason Count

duplicate 15
inconsistent_duplicate 10

Transformation description Count

canonicalized 673
13 Enol -> Ketone 1 16
25 Charge-seperate sulphoxides 10
04 4-pyrimidone -> 2-pyrimidone (any) 7
06 hydropyridin-2-imine -> 2-amino-pyridine (N-subst.) 2
03 4-hydroxy pyridine -> 4-pyridone (within-ring) 2
10 Fix heterocyclic tautomer 2 1

Table 31: Data cleaning breakdown for ppbr_az

Metric Total Unchanged Transformed Removed

SMILES count 1614 1572 42 0

Transformation description Count

02 2-hydroxy pyridine -> 2-pyridone 19
canonicalized 11
03 4-hydroxy pyridine -> 4-pyridone (within-ring) 10
01 hydroxy imine -> carboxamide 2

Table 32: Data cleaning breakdown for bbb_martins

Metric Total Unchanged Transformed Removed

SMILES count 2030 1743 202 85

Removal reason Count

duplicate 44
inconsistent_duplicate 36
multi_component 5

Transformation description Count

canonicalized 159
13 Enol -> Ketone 1 28
04 4-pyrimidone -> 2-pyrimidone (any) 9
25 Charge-seperate sulphoxides 6
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Table 33: Data cleaning breakdown for bioavailability_ma

Metric Total Unchanged Transformed Removed

SMILES count 640 580 58 2

Removal reason Count

no_non_salt_or_inorganic 1
multi_component 1

Transformation description Count

canonicalized 36
13 Enol -> Ketone 1 10
25 Charge-seperate sulphoxides 6
04 4-pyrimidone -> 2-pyrimidone (any) 3
02 2-hydroxy pyridine -> 2-pyridone 2
06 hydropyridin-2-imine -> 2-amino-pyridine (N-subst.) 1

Table 34: Data cleaning breakdown for pgp_broccatelli

Metric Total Unchanged Transformed Removed

SMILES count 1218 1157 55 6

Removal reason Count

duplicate 6

Transformation description Count

canonicalized 44
13 Enol -> Ketone 1 5
04 4-pyrimidone -> 2-pyrimidone (any) 3
25 Charge-seperate sulphoxides 2
01 hydroxy imine -> carboxamide 1

Table 35: Data cleaning breakdown for hia_hou

Metric Total Unchanged Transformed Removed

SMILES count 578 529 49 0

Transformation description Count

canonicalized 29
25 Charge-seperate sulphoxides 8
13 Enol -> Ketone 1 7
01 hydroxy imine -> carboxamide 4
02 2-hydroxy pyridine -> 2-pyridone 1
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Table 36: Data cleaning breakdown for lipophilicity

Metric Total Unchanged Transformed Removed

SMILES count 4200 4094 105 1

Removal reason Count

no_non_salt_or_inorganic 1

Transformation description Count

02 2-hydroxy pyridine -> 2-pyridone 63
03 4-hydroxy pyridine -> 4-pyridone (within-ring) 37
01 hydroxy imine -> carboxamide 2
25 Charge-seperate sulphoxides 1
canonicalized 1
04 4-pyrimidone -> 2-pyrimidone (any) 1
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