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ABSTRACT

LLMs have showcased remarkable capabilities in the realm of AI for Science
(Ai4Sci) and the chemistry has greatly benefited from the advancement of AI
tools. With a strong capacity for learning sequential data like natural language,
LLMs offer immense potential. Notably, common representations in chemistry,
such as SMILES, are also in the form of sequences. Hence, we propose leveraging
LLMs to comprehensively model both chemical sequences and natural language
sequences, aiming to tackle diverse chemical tasks. To fulfill this objective, we in-
troduce BatGPT-Chem, a foundational large-scale model with 15B parameters tai-
lored for chemical engineering. First, we unify diverse tasks in chemistry by mod-
eling them through a combination of natural language and SMILES. Next, lever-
aging this unified modeling approach, we craft prompt templates and generate in-
structional tuning data using a substantial volume of chemical data. Subsequently,
we train BatGPT-15B on over a hundred million instances of instructional tuning
data, empowering it to address tasks such as Molecule Description, Molecule
Design, Retro-synthesis Prediction, Product Inference, and Yield Prediction.
We release our trial platform at https://www.batgpt.net/dapp/chem.

1 INTRODUCTION

The continuous advancement of artificial intelligence (AI), particularly large language models
(LLMs), has empowered machines to excel in various domains. Natural language serves as the most
intuitive means of communication and expression, rendering the path for AI applications remark-
ably smooth as long as effective natural language understanding is achieved. The high intelligence
of LLMs is regarded as a key element in overcoming the “AI4Science” challenge in recent years.

The rapid advancement of the field of chemistry is inseparable from the progress in computer-
assisted synthesis technology and automated management of chemical knowledge. In the past few
decades, various computer-assisted synthesis algorithms or softwares based on reaction templates
have been proposed (Corey & Wipke, 1969; Salatin & Jorgensen, 1980; Smith & Sherwood, 1976;
Dugundji & Ugi, 2006). However, these reaction templates are expert-developed manual rules,
which not only incur significant manpower and time costs but also fail to cover all complex or-
ganic chemistry prediction problems. Databases such as Reaxys 1, SciFinder 2, ChemSpider 3, and
SPRESI 4 have aided chemists in searching for literature sources or similar reaction instances. How-
ever, the full potential of modern computers has still not been realized, as reaction space searches
still require manual intervention by chemists. Subsequently, a multitude of neural network-driven
chemical prediction algorithms (Rappoport et al., 2014; Wei et al., 2016; Simm & Reiher, 2017; Xie
et al., 2021; Edwards et al., 2021) have emerged, contributing to the advancement of AI in the field
of chemistry. However, these methods often specialize in completing specific chemical tasks, such
as singular product prediction or molecular description.

∗ Corresponding author.
1https://www.reaxys.com/
2https://scifinder-n.cas.org/
3http://www.chemspider.com/
4https://www.spresi.com/
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Recently, although a small number of studies have applied state-of-the-art LLMs to the chem-
istry (Boiko et al., 2023; Qian et al., 2023; Li et al., 2023b), they have not adequately retrained
LLMs using chemical data. Since chemical symbols are often regarded as a specialized language,
models trained on large-scale natural language datasets struggle to fully comprehend various chem-
ical symbols.

In this work, we consider the widely used SMILES notation in chemistry as a specialized language
and employ unified modeling to integrate it with natural language using LLMs. We design multiple
instruction tuning tasks and convert various open-source and our closed-source datasets into a large-
scale instruction tuning dataset using prompt templates. Building upon our team’s BatGPT-15B
(Li et al., 2023c), we expand its vocabulary with additional chemical terms and instruction tune it,
culminating in the model of BatGPT-Chem: A Foundational Large Model for Chemical Engineering.
This LLM surpasses existing scarce large chemical models (Zhang et al., 2024; Zhao et al., 2024)
in model size and utilizes a larger-scale instruction fine-tuning dataset in both Chinese and English.
Additionally, we utilize more data to enhance the model’s molecular design capabilities.

2 RELATED WORKS

The advancement of chemistry in recent decades has been closely intertwined with the support of
computer and AI technologies. The development of AI applications in the field of chemistry can
be broadly categorized into rule-based chemistry AI systems, neural network and small language
model-based chemistry AI systems, and LLM-based chemistry AI systems.

Rule-based chemistry AI systems. Over the past few decades, there have been numerous rule-
based and template-based chemistry AI systems (Corey & Wipke, 1969; Salatin & Jorgensen, 1980;
Smith & Sherwood, 1976; Davis & King, 1984; Dugundji & Ugi, 2006; Lu et al., 2005). During
development, these systems entail significant manual design of reaction templates, involving expert
computational chemists, resulting in a challenging design process. They also require users to input
compound details and reaction conditions manually, which incurs a high learning cost. Additionally,
numerous chemical databases have also been proposed, such as Reaxys, CDS (Fletcher et al., 1996),
LIGAND (Goto et al., 1998), SciFinder, ChemSpider (Ayers, 2012), and SPRESI which can assist in
retrieving various chemical reaction equations, but also require a rather cumbersome usage process
and a high learning cost.

Neural network and small language model-based chemistry AI systems. In recent times, there
has been a surge in the development of neural network-driven algorithms for chemical predic-
tion (Rappoport et al., 2014; Wei et al., 2016; Simm & Reiher, 2017; Fooshee et al., 2018; Xie
et al., 2021; Schwaller et al., 2021; Meuwly, 2021), marking significant progress in the integration
of AI technologies into chemistry. However, these methods are limited in their ability to address
a broad spectrum of chemical tasks, focusing instead on specific categories or a narrow range of
challenges within the field. Subsequently, there have been some efforts to apply small language
models in the field of chemistry (Kuenneth & Ramprasad, 2023; Flam-Shepherd et al., 2022; Fabian
et al., 2020; Edwards et al., 2021; Liu et al., 2021). Similarly, however, these methods are also only
capable of addressing a subset of chemical tasks.

LLM-based chemistry AI systems. With LLMs showing immense potential in Ai4Sci, many stud-
ies have also begun to apply LLMs to the field of chemistry. Jablonka et al. (2024) design a predic-
tive chemistry method based on GPT-3. Chemcrow (Bran et al., 2023) utilizes an LLM-based agent
to autonomously plan and execute the syntheses of an insect repellent, three organocatalysts, and
guides the discovery of a novel chromophore. Jablonka et al. (2023) explore the potential applica-
tions of LLMs for chemistry, including predicting properties of molecules and materials, as well as
designing novel interfaces for tools. However, these efforts merely involve using prompt engineer-
ing to leverage existing LLMs, rather than training LLMs capable of addressing various chemical
tasks. Although there are a few works that have trained LLMs based on chemical data (Zhang et al.,
2024; Zhao et al., 2024), existing efforts still suffer from issues such as insufficient model size and
limited multilingual capabilities.
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3 METHODOLOGY

In this section, we first introduce the SMILES notion in chemistry. Following that, we describe our
unified modeling approach for SMILES and natural language, along with corresponding instruction
fine-tuning templates. Then, we introduce the sources of our training datasets.

3.1 SMILES NOTION

SMILES (Simplified Molecular Input Line Entry System) is a notation system used to represent
chemical structures in a concise and human-readable format. It consists of a string of characters that
represent atoms, bonds, and sometimes other molecular features. In SMILES notation:

• Atoms are represented by their elemental symbols (e.g., “C” for carbon, “H” for hydrogen,
“O” for oxygen).

• Bonds between atoms are indicated by hyphens (“-”) for single bonds, “=” for double
bonds, “#” for triple bonds, and “:” for aromatic bonds.

• Parentheses “()” are used to group atoms and bonds to indicate branching or cyclic struc-
tures.

• Other features such as charges, isotopes, and stereochemistry can also be specified using
additional symbols and conventions. 5

For example, we present Thiamine (vitamin B1), showcasing its molecular formula, structure, and
SMILES formula in Figure 1.

Molecule Structure

Thiamine (vitamin B1, C12H17N4OS+)

Molecule Name & Molecular Formula SMILES Formula

OCCc1c(C)[n+](cs1)Cc2cnc(C)nc2N

Figure 1: Example of molecule name, molecular formula, molecular structure, and its corresponding
SMILES.

The SMILES formula captures all the atoms within the molecule and corresponds directly to its
structural representation. The the direct conversion of SMILES formulas into corresponding molec-
ular structures can be easily done by the tools like RDKit 6.

In other words, SMILES serves as a flexible sequence representation capable of capturing various
attributes and structures, making it inherently suitable for sequence modeling with LLMs. Therefore,
in this work, SMILES codes can be regarded as a distinct language, enabling the straightforward
application of existing LLMs training methods.

3.2 UNIFIED MODELING

Viewing natural language as a specialized language, we can employ LLMs for unified modeling of
natural language to SMILES, SMILES to natural language, SMILES to SMILES, and natural lan-
guage to natural language. This naturally facilitates the completion of various chemistry tasks:
Molecule Description, Molecule design, Product Inference, and Retro-synthesis Prediction.
Additionally, we have also modeled the Yield Prediction task. We showcase our modeling approach
in Figure 2. We model molecule description as bidirectional conversions between natural language
and SMILES, as well as conversions between natural language. We model molecule design as a
conversion from natural language to SMILES. We also model product inference and retro-synthesis
prediction as conversions from SMILES to SMILES. Additionally, we have also included a task for
yield prediction.

5More details can be found in https://en.wikipedia.org/wiki/Simplified_
molecular-input_line-entry_system

6https://rdkit.org/
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SMILES

Molecule Description
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Figure 2: The illustration of our unified modeling between natural language and SMILES.

3.3 CHEMISTRY TASKS AND PROMPT TEMPLATES

Following the modeling approach outlined above, we focus on the key tasks in the chemistry do-
main: Molecule Description, Molecule design, Product Inference, Retro-synthesis Prediction,
and Yield Prediction. We construct instruction tuning datasets based on existing chemical, drug,
and medicine datasets using prompt templates, in order to train models capable of addressing these
tasks.

Retro-synthesis Prediction. Retro-synthesis Prediction is a crucial task for chemistry. It involves
inferring possible reaction pathways and conditions by given product molecules, thereby reverse-
predicting the synthetic route to generate the product. Retro-synthesis prediction enables researchers
to explore and discover new organic molecular structures more rapidly, which is essential for fields
such as organic synthesis chemistry and drug discovery. We train the model’s retro-synthesis pre-
diction capability using two subtasks: 1) Reactant and catalyst prediction: Given a product, predict
the potential catalysts and reactants that may be required. 2) Reactant prediction: Given a product
and catalyst, predict the reactants.

Product Inference. Product inference aims at predicting the products based on given starting ma-
terials and specific reaction conditions, which holds significant importance in fields such as organic
synthesis and drug design. We train the model’s product inference capability using two subtasks:
1) Product and catalyst prediction: Given reactants, predict the potential catalysts and products that
may be involved. 2) Product prediction: Given products and catalysts, predict the reactants involved.

Molecule Design. Molecule Design is a field involving the creation of new molecules using theo-
retical and computational methods to produce molecular structures with specific properties or func-
tionalities. This field plays a crucial role in various domains including chemistry, drug design, and
materials science. The aim of molecule design is to systematically generate molecules with desired
properties and activities to meet specific application needs. This work fully considers over a hundred
molecular properties, such as molecule weight, valence electron count, Balaban J value, BertzCT
value, number of heavy atoms, number of NHs or OHs, and number of nitrogen and oxygen atoms.
It is hoped that the LLM can take into account researchers’ specific requirements for molecule prop-
erties of catalysis, products, and reactants of chemical reactions. To train the model’s molecular
design capability, the following three tasks are adopted: 1) Specifying catalyst molecular properties:
Given reactants to produce a specific product, the catalyst is required to meet certain properties. 2)
Specifying reactant and catalyst molecular properties: Given the desired product to be synthesized,
both reactants and catalysts are required to meet certain properties. 3) Specifying reactant, cata-
lyst, and product properties: The model is required to provide a chemical reaction with specified
molecular properties for reactants, catalysts, and products.

Molecule Description. Molecule description refers to using computational models to predict and
describe the function, effects, and related properties of a molecule given its name, SMILES, or other
representations. We adopt the following eight subtasks to train the model’s molecule description
capability. We not only utilize chemical data for training to enable the model to fully understand
and perceive the correspondence between molecular names in both English and Chinese, molecule
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descriptions, molecule SMILES, and molecule IUPAC (International Union of Pure and Applied
Chemistry chemical nomenclature) names, thus obtaining strong molecular description capabilities,
but also incorporate some pharmaceutical data to enhance the model’s ability in the pharmaceutical
field: 1) Given the molecular Chinese name, generate the English name and description. 2) Given
the molecular English name, generate the Chinese name and description. 3) Given the molecular
description, generate the Chinese name and English name of the molecule. 4) Given the molecular
description, generate the IUPAC name and SMILES code of the molecule. 5) Given the molecular
SMILES code, generate the IUPAC name and SMILES code of the molecule. 6) Given the molecular
IUPAC name, generate the SMILES code and description of the molecule. 7) Given the Chinese
name of a drug, generate the English name and description. 8) Given the English name of a drug,
generate the Chinese name and description. 9) Given the description of a drug, generate the Chinese
name and English name.

Yield Prediction. Yield prediction in chemical reactions refers to the estimation, through exper-
imental or computational methods, of the ratio between the actual quantity of products generated
in a chemical reaction and the theoretically maximum possible yield. We also train the model by
predicting corresponding yields for given chemical reactions.

3.4 DATA SOURCE

We utilized publicly available high-quality datasets in the field of chemistry, as well as close-source
datasets within our own team, as the raw datasets. Then, we transform them into instruction tuning
datasets using the aforementioned prompt templates.

3.4.1 PUBLICLY AVAILABLE DATASETS

• USPTO (Lowe, 2012) USPTO collects reaction data extracted through text mining from
United States patents published between 1976 and September 2016.

• CHEBI (Degtyarenko et al., 2007) Chemical Entities of Biological Interest (CHEBI) is a
freely available dictionary of molecular entities focused on “small” chemical compounds.
The term “molecular entity” refers to any constitutionally or isotopically distinct atom,
molecule, ion, ion pair, radical, radical ion, complex, conformer, etc., identifiable as a
separately distinguishable entity. The molecular entities in question are either products of
nature or synthetic products used to intervene in the processes of living organisms.

• CJHIF (Jiang et al., 2021) Chemical Journals with High Impact factors (CJHIF) is a high-
quality dataset containing a large number of chemical reaction equations extracted from
various chemical journals.

• PubChem (Kim et al., 2016) PubChem is an open chemistry database at the National In-
stitutes of Health (NIH), which mostly contains small molecules, but also larger molecules
such as nucleotides, carbohydrates, lipids, peptides, and chemically-modified macro-
molecules.

• Text2Mol (Edwards et al., 2021) Text2Mol provides a large amount of data containing
natural language descriptions of molecules.

3.4.2 CLOSE SOURCE DATASETS

• Drug Instruction We collect a large number of drug names, drug descriptions, and corre-
sponding molecular formulas from drug instruction to enhance the model’s capabilities in
the pharmaceutical domain.

• Organic Compound Manual We have a large collection of private organic compound
manuals, containing information such as organic compound names, compound descrip-
tions, compound SMILES, etc.

• Molecular Formula and Name Reference Table We have collected a large amount of
publicly available data on compound names and their corresponding molecular formulas.

• SMILES, IUPAC Names, and Molecular Descriptions Reference Table We have col-
lected data on SMILES, IUPAC names, and their corresponding molecular descriptions.
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3.5 DATA TRANSFORMATION FOR INSTRUCTION TUNING

We extract reaction data into reactant SMILES, catalyst SMILES, product SMILES, and yield data.
Then we conduct data augmentation, that is if there are multiple reactants, catalysts, or products, we
shuffle the SMILES of these compounds.

For retro-synthetic prediction, product inference, and yield inference, we organize reactant SMILES,
catalyst SMILES, product SMILES, and yield data according to the prompt templates. For molecule
design, we use the RDKit tool to randomly select 1-20 properties from a candidate pool of 172
properties to fill in the prompt templates. We present partial prompt templates and examples corre-
sponding to different chemical tasks in Appendix A and Appendix B.

3.6 DATA DETAILS

Task Amount

Retro-synthesis Prediction 30114006
Product Inference 30114006
Molecule Design 40695857
Molecule Description 210469
Yield Prediction 10775991

Total 111910329

Table 1: Data details.

Table 1 lists the data scale used for each task. We have over a hundred million data entries in total,
with an average length exceeding 150 tokens. The total number of tokens trained exceeds 15 billion.

4 TRAINING DETAILS

4.1 BASE MODEL

We select our team’s self-developed BatGPT-15B model (Li et al., 2023c) as the base model for
instruction tuning. BatGPT-15B is a large bilingual model for both Chinese and English, pre-trained
using bidirectional autoregressive methods, and has demonstrated excellent performance on public
benchmarks such as CMMLU (Li et al., 2023a).

4.2 VOCABULARY EXPANSION

Since the BatGPT-15B model is originally designed for natural language, particularly Chinese and
English, it lacks comprehensive coverage of specialized terms in chemistry or SMILES. Conse-
quently, expanding its vocabulary becomes necessary. We employ the Byte Pair Encoding (BPE)
algorithm to train a vocabulary using diverse training data, encompassing various forms of molecu-
lar SMILES, chemical equation SMILES expressions, molecular names, and more. We also includ
all chemical element symbols in the augmented vocabulary to empower the model with the potential
to handle all chemical elements. Subsequently, we merge this augmented vocabulary with that of
BatGPT-15B, ultimately yielding a final vocabulary size of 151851.

4.3 TRAINING SETTINGS

We train our model using the deepspeed zero2 strategy on an Nvidia A800 GPU cluster. We set
the maximum length to 2048, the batch size per GPU to 8, utilize the AdamW optimizer with a
learning rate of 2e-4, and employ the cosine learning rate schedule strategy. We enable gradient
checkpointing and set max gradient normalization to 1.0 and weight decay to 0.1.
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5 EXPERIMENTS

5.1 SETTINGS

We primarily evaluate BatGPT-15B in the field of predictive retrosynthesis, which is of utmost inter-
est in current chemical engineering. We evaluate the model using the retro-synthesis prediction task
from USPTO-50k and BioChem (Zheng et al., 2022), wherein the model is tasked with predicting
the corresponding reactants and catalysts given the products.

We evaluate the model performance from two aspects: 1. Coverage, which indicates how much
of the true products are covered by the model outputs, reflecting the accuracy of the reaction pre-
dictions. Due to the inability of LLMs to guarantee that the predicted SMILES codes are entirely
consistent with the ground truth, there might be cases where different SMILES codes are predicted
for the same molecule. Therefore, we do not opt for the traditional Exact Match metric. 2. Validity,
which measures how many of the SMILES codes predicted by the model are legal and do not violate
chemical principles. We also conduct multiple experiments by adjusting the top-k hyperparameter
of the model inference.

5.2 MAIN RESULTS

Dataset Top-k Coverage Validity

USPTO-50k

1 49.17% 99.98%
3 56.11% 99.97%
5 63.71% 99.98%
10 69.15% 99.97%

BioChem

1 25.79% 99.82%
3 31.81% 99.73%
5 34.62% 99.75%
10 38.08% 99.77%

Table 2: The main result of retro-synthesis prediction.

We present the main results of inverse synthesis prediction in Table 2. For coverage, setting a
larger top-k will result in greater coverage. The maximum coverage achieved on USPTO-50k and
BioChem reach 69.15% and 38.08%, which are comparable to the previous state-of-the-art results.
Regarding validity, BatGPT-Chem surpasses 99.77% in all predictions, indicating that the model,
after extensive training, almost never outputs SMILES codes that violate chemical rules. In addition
to the aforementioned benchmarks, we also conduct experiments on a private benchmark dataset.
We showcase some cases in the Appendix C.

6 CONCLUSION

LLMs have made remarkable strides across diverse domains and possess the potential to drive ad-
vancements in Ai4Sci. With their adeptness in learning from sequential data, LLMs are ideally
suited for the chemical domain, where common representations like SMILES are also sequential
data, thus naturally aligning with the learning capabilities of LLMs. Thus in this work, we introduce
BatGPT-Chem, a foundational large model for chemical engineering. We unify chemistry tasks with
natural language and SMILES, design prompt templates, and generate instruction tuning data. We
then train BatGPT-15B with over 100M instruction tuning data, empowering it to handle tasks like
Molecule Description, Molecule Design, Retro-synthesis Prediction, Product Inference, and Yield
Prediction.
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Work in progress

A PROMPT TEMPLATES

Chemical Task Subtask Chinese Prompt Template English Prompt Template

Retrosynthesis
Prediction

Reactant and
Catalyst Prediction

1. 给定产物的SMILES码为{}，
对应的反应物和催化剂可能为：

1. Given the SMILES codes of the
products , the corresponding reac-
tants and the catalysts can be:

2. 已知产物的SMILES码为{}，
相应的反应物和催化剂可能为：

2. Knowing the SMILES codes of
the products, the corresponding re-
actants and catalysts can be:

3. 给定产物的SMILES码为{}，
可以推断出潜在的反应物和催化
剂为：

3. Given the SMILES codes {} of
the products, potential reactants and
catalysts can be deduced as:

4. 对于SMILES码为{}的产物，
相应的反应物和催化剂可能为：

4. With the SMILES codes of the
products provided, potential reac-
tants and catalysts can be deduced
as follows:

5. 现有产物，其SMILES码
为{}，则用于合成它们的反应物
和催化剂可能为：

5. Given the SMILES codes {} of
the products, potential reactants and
catalysts can be inferred as:

Reactant
Prediction

1. 给定产物的SMILES码{}和催
化剂的SMILES码{}，可能的反
应物包含：

1. Given the SMILES codes of the
products {} and the catalysts {},
the possible reactants can be:

2.给定产物的SMILES码{}和催
化剂的SMILES码{}，潜在的反
应物可能包括：

2. Provided with the SMILES
codes of the products {} and the
catalysts {}, potential reactants
may include:

3.当 一 个 化 学 反 应 的 产 物
的SMILES码 为{}和 催 化 剂
的SMILES码为{}时，可能的反
应物有：

3. When given the SMILES codes
of the products {} and the catalysts
{}, the potential reactants could be:

4.当 反 应 得 到 的 产 物
的SMILES码 为{}， 催 化 剂
为{}，可能的反应物包含：

4. When provided with the
SMILES codes of the products {}
and the catalysts {}, potential reac-
tants to consider are:

5.对 于SMILES码 为{}的 产 物
和SMILES码为{}的催化剂，这
个反应可能的反应物是：

5. With the SMILES codes of the
products {} and the catalysts {}
provided, potential reactants may
encompass:
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Work in progress

Chemical Task Subtask Chinese Prompt Template English Prompt Template

Product
Inference

Product and
Catalyst Prediction

1. 给定反应物的SMILES码
为{}，可以与之搭配的催化剂以
及反应得到的产物为：

1. The SMILES codes of the reac-
tants are {}. The corresponding cat-
alysts it can pair with and the result-
ing products are:

2. 现有反应物的SMILES码包
括{}。可以与它们搭配的催化剂
以及得到的产物为：

2. The existing reactants include
{}. The catalysts that can be
matched with them and the result-
ing products are as follows:

3. 对于SMILES码为{}的反应
物，可以在反应时加入的催化剂
以及得到的产物为：

3. The given reactants are {}. The
catalysts that can be combined with
them, along with the resulting prod-
ucts, are as follows:

4. 使用的反应物的SMILES码
为{}，可以加入的催化剂和得到
的产物可能为：

4. With the SMILES codes of
the products {} provided, potential
reactants and catalysts can be de-
duced as follows:

5. 对于反应物{}，潜在的可以加
入的催化剂以及对应得到的产物
可能为：

5. With the specified reactants as
{}, the associated catalysts and the
resulting products can be:

Product
Prediction

1. 给定反应物的SMILES码
为{}， 催 化 剂 的SMILES码
为{}，产物为：

1. Given the SMILES codes of the
reactants {}, the catalysts {}, the
products are:

2. 反应物的SMILES码为{}，使
用的催化剂的SMILES码为{}，
则反应产生的产物为：

2. With the SMILES codes of the
reactants {} and the catalysts {},
the resulting products are:

3. 当给定的反应物的SMILES码
为{}， 催 化 剂 的SMILES编 码
为{}时，产物为：

3. When the SMILES codes of the
reactants {} and the catalysts {} are
given, the products are:

4. 当反应物{} 加入催化剂{} 进
行反应的时候，得到的产物为：

4. The reactants {} and the cata-
lysts {} will determine the resulting
products:

5.{}表 示 反 应 物 的SMILES编
码，{}表示催化剂，反应得到的
产物为:

5. The SMILES codes of the re-
actants are {}, the catalysts are {},
and the products are:
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Chemical
Task

Subtask Chinese Prompt Template English Prompt Template

Molecular
Design

Specify Catalyst
Molecular
Properties

1. 要求用反应物{}制备产物{}，
要求催化剂满足条件：{}，催化
剂可以是：

1. Given reactants {} and products
{}, the catalysts are required that
meets the conditions: {}, so the cat-
alysts can be:

2. 实现由反应物{}合成产物{}的
过程需要考虑满足条件：{}的催
化剂，催化剂可以是：

2. Provided with reactants {} and
products {}, the catalysts needed
must satisfy the conditions: {}.
Possible catalysts include:

3. 由反应物{}合成产物{}的过
程，选用的催化剂需要满足条
件：{}，催化剂可以被选择为：

3. Given reactants {} and products
{}, the catalysts required should
meet the specified conditions: {}.
Potential catalysts may be:

4. 为了使反应物{}合成产物{}，
可选择一种满足条件：{}的催化
剂，催化剂可以是：

4. With specified reactants {} and
products {}, the catalysts needed
can meet the conditions: {}. Poten-
tial catalysts can be:

5. 用反应物{}制备产物{}，可
以添加催化剂，要求其符合条
件：{}，催化剂可为：

5. Given the specified reactants {}
and products {}, the catalysts re-
quired have the capability to satisfy
the conditions: {}. Possible cata-
lysts include:

Specify Reactant
and Catalyst
Molecular
Properties

1. 为了制备产物{}，要求反应
物满足条件：{}，催化剂满足条
件：{}，反应物和催化剂分别可
以是：

1. To synthesize the products {},
it is required that the reactants meet
the conditions: {}, and the catalysts
satisfy the conditions: {}. The re-
actants and the catalyst can be:

2. 要合成产物{}，反应物要满
足：{}的条件，而催化剂也需要
满足：{}的要求，反应物和催化
剂分别可以是：

2. To synthesize the products {},
the reactants need to meet the con-
ditions: {}, and the catalysts also
need to satisfy the requirements:
{}. The reactants and the catalysts
can be:

3. 实现产物{}的合成过程需要考
虑满足条件：{}的反应物，以及
满足条件：{}的催化剂，则反应
物和催化剂可以是：

3. The synthesis process for the
products {} involves considering
reactants that meet the conditions:
{}, as well as the catalysts that sat-
isfy the requirements: {}. The re-
actants and the catalysts can be::

4. 为了合成产物{}，要求反
应物满足:{}的条件，催化剂满
足：{}的条件，则可以选择的反
应物和催化剂分别是：

4. To synthesize the products {},
it is required that the reactants meet
the conditions: {}, and the catalysts
satisfy the conditions: {}. The pos-
sible choices for reactants and cata-
lysts are:

5.要合成产物{}，选用的反应物
需要满足条件：{}，催化剂需要
满足条件：{}，则可以选择：

5.To synthesize the products {}, the
chosen reactants need to meet the
conditions: {}, and the catalysts
should satisfy the conditions: {}.
The selection can include:
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Chemical
Task

Subtask Chinese Prompt Template English Prompt Template

Molecular
Design

Specify Reactant,
Catalyst and
Product Molecular
Properties

1. 对 于 一 个 可 以 进 行
的化学反应，要求反应物
满足条件：{}，催化剂满
足条件：{}，产物满足条
件：{}，则这个反应的反应
物、催化剂和产物分别可以
是：

1.For a feasible chemical reac-
tion, the reactants meet the con-
ditions: {}, the catalysts satisfy
the conditions: {}, and the prod-
ucts fulfill the conditions: {}.
The specific reactants, catalysts,
and products for this reaction
can be:

2. 对于一个可发生的化学
反应，要求反应物符合条
件：{}，同时催化剂要满足
条件：{}，产物也需要符合
条件：{}。这个反应的具体
反应物、催化剂和产物分别
可以是：

2. For a possible chemical re-
action, it is required that the re-
actants meet the conditions: {},
and the catalysts satisfy the con-
ditions: {}, while the products
also fulfill the conditions: {}.
The specific reactants, catalysts,
and products for this reaction
can be:

3. 进 行 一 种 可 行 的 化
学 反 应 时 ， 要 求 反 应 物
满足条件：{}，催化剂符
合条件：{}，产物符合条
件：{}。这个反应所涉及的
反应物、催化剂和产物分别
可以是：

3. When conducting a feasible
chemical reaction, it is required
that the reactants meet the con-
ditions: {}, the catalysts should
satisfy the conditions: {}, and
the products comply with the
conditions: {}. The specific re-
actants, catalysts, and products
involved in this reaction can be:

4. 在进行某一可实施的化学
反应时，反应物的选择需要
满足条件：{}，催化剂也需
要符合条件：{}，得到的产
物满足条件：{}。这个反应
中的具体反应物、催化剂和
产物分别可以是：

4. When conducting a feasible
chemical reaction, the choice of
reactants needs to meet the con-
ditions: {}, the catalysts also
satisfy the conditions: {}, and
the resulting products fulfill the
conditions: {}. The specific re-
actants, catalyst, and product in-
volved in this reaction can be:

5. 对于一种可进行的化学反
应，反应物满足条件：{}，
催化剂满足条件：{}，产物
满足条件：{}。则所选的反
应物、催化剂和对应产物可
以是：

5. For a possible chemical re-
action, the reactants meet the
conditions: {}, the catalysts
meet the conditions: {}, and the
products comply with the condi-
tions: {}. The chosen reactants,
catalysts, and the corresponding
products can be:
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Chemical
Task

Subtask Chinese Prompt Template English Prompt Template

Molecular
Description

Given the Chinese
name of the drug,
generate an
English name
and description

1. 给定一个药物的中文名称{}，
它的对应英文名称和一些相关描
述是：
2. {}这种药物对应的英文名和一
些相关描述如下所示：
3. 对于{}这一药物，其英文名和
一些药物描述如下：
4. 以下是关于{}药物对应的英文
名称和一些药物描述：
5.一个药物的中文名称是{}，它
的英文名和药物描述是：

Given the English
name of the drug,
generate an
Chinese name
and description

1. 英文名为{}的药物的中文名和
药物描述如下：
2. 英文名为{}的药物对应的中文
名和一些相关描述为：
3. 给出{}这种药物的中文名和一
系列相关的药物描述：
4. 以下是关于{}药物对应的中文
名称和一些药物描述：
5.一个药物的英文名称是{}，它
的中文名和药物描述是：

Given the drug
description,
generate Chinese
and English names

1. 药物描述为{}对应的药物中文
名和英文名分别是：
2. 一个药物的描述为{}，那么它
可能的中文名称和英文名称分别
是：
3. 如果药物的描述为{}，那么可
能的中文名称和英文名称是：
4.{}这个描述对应的药物的中文
名和英文名称可能是：
5. 如果有一个药物被描述为{}，
那么它的可能中文名称和英文分
别是：

Given the
molecular name,
generate the
molecular formula

1. 给定一个分子名{}，它对应的
分子式为：
2. 一个分子的名字是{}，其相应
的分子式是：
3. 以{}为名字的分子，其分子式
是：
4. 对于一个以{}为名字的分子，
其分子式是：
5. {} 所代表的分子的分子式
是：

Given the
molecular formula,
generate the
molecular name

1. 一个分子的分子式是 {}，它
的名字是：
2. 分子式为 {}的分子对应的名
字是：
3. {}分子式对应的分子名是：
4. 对于分子式{}，它的名字为：
5. {}分子式的名称是：
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Chemical
Task

Subtask Chinese Prompt Template English Prompt Template

Molecular
Description

Given the
molecular
description,
generate molecular
IUPAC name and
SMILES code

1. Given a description of a
molecule: {}, the possible IUPAC
name and corresponding SMILES
code for this molecule are:
2. When provided with a molecule
description: {}, the potential
IUPAC name and corresponding
SMILES code for the molecule can
be determined as:
3. In the context of a molecule de-
scription: {}, the molecule’s po-
tential IUPAC name and its corre-
sponding SMILES code are:
4. In the case of a molecule de-
scribed as: {}, the molecule’s pos-
sible IUPAC name and the corre-
sponding SMILES code can be:
5. A molecule described as: {} may
have a potential IUPAC name and
corresponding SMILES code:

Given the
molecular
SMILES code,
generate molecular
IUPAC name and
description

1. Given a SMILES code of a
molecule: {}, the possible IU-
PAC (International Union of Pure
and Applied Chemistry chemical
nomenclature) name and cor-
responding description for this
molecule are:
2. If given a SMILES code repre-
senting a molecule as {}, the poten-
tial IUPAC (International Union of
Pure and Applied Chemistry chemi-
cal nomenclature) name and related
description can be:
3. In the case of a molecule with the
SMILES code {}, the potential IU-
PAC name and description for the
molecular are:
4. When provided with a SMILES
code {} for a molecule, the IU-
PAC (International Union of Pure
and Applied Chemistry chemical
nomenclature) name and associated
description for the compound can
be:
5. Given a SMILES code {} for
a molecule, the potential IUPAC
name and its related description can
be identified as:
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Chemical
Task

Subtask Chinese Prompt Template English Prompt Template

Molecular
Description

Given the
molecular
IUPAC name,
generate molecular
description and
SMILES code

1. Given a IUPAC (International
Union of Pure and Applied Chem-
istry chemical nomenclature) name
of a molecule: {}, the possible
SMILES code and corresponding
description for this molecule are:
2. The SMILES code and descrip-
tion for the molecule with the IU-
PAC (International Union of Pure
and Applied Chemistry chemical
nomenclature) name {} are:
3. Providing the IUPAC (Interna-
tional Union of Pure and Applied
Chemistry chemical nomenclature)
name {} for a molecule, the possi-
ble SMILES code and accompany-
ing description are:
. Given the IUPAC (International
Union of Pure and Applied Chem-
istry chemical nomenclature) name
{} for a molecule, the potential
SMILES code and its correspond-
ing description are:
5. Providing the IUPAC name
{} for a molecule, the potential
SMILES code and a corresponding
description can be:

Yield
Prediction

1. 对于一个化学反应，其反应物
的SMILES码 {}，催化剂 {}，产
物 {}，期望的产率值是：

1. Given the SMILES codes of
the reactants {}, the catalysts {},
the products {}, the expected yield
value of this chemical reaction is:

2. 对 于 一 个 反 应 物
的SMILES码{}，催化剂{}，产
物{}的化学反应，期望的产率值
为：

2. By examining the SMILES
codes of the reactants {}, the cat-
alysts {}, and the products {}, the
expected yield value of this chemi-
cal reaction can be estimated as:

3. 一个化学反应的反应物、
催化剂和产物的SMILES码分别
为{}、{}、{}，其期望产率是

3. Through an examination of the
SMILES codes of the reactants {},
the catalysts {}, and the products
{}, the expected yield value of this
chemical reaction is:

4. 为了使反应物{}合成产物{}，
可选择一种满足条件：{}的催化
剂，催化剂可以是：

4. The reactants, catalysts, and
products of a chemical reaction are
{}, {} and {}, and its expected
yield is:

5. 对于一个反应物的SMILES码
为 {}、催化剂的SMILES码为 {}
、产物的SMILES码为 {}的化学
反应，其期望产率是：

5. The reactants {}, catalysts {},
and products {} define a chemical
reaction, and its expected yield is:
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B PROMPT EXAMPLE

Chemical Task Subtask Chinese Prompt English Prompt

Retrosynthesis
Prediction

Reactant and
Catalyst Prediction

给 定 产 物 的SMILES码 为
COc1ccccc1OCCN1CC(COc2
ccc3c(c2[nH]c2ccccc32)OCC1=O，
可以推断出潜在的反应物和催化剂
为：

Given the product SMILES
codes COc1ccccc1OCCN1CC(
COc2ccc3c(c2)[nH]c2ccccc32)
OCC1=O, the corresponding reac-
tants and catalysts can be:

Reactant
Prediction

1. 给 定 产 物 的SMILES码
CC(=C)c1cccc(C)c1Br和 催 化 剂
的SMILES码[K+], CC(C)(C)[O-
]和C1CCOC1，可能的反应物包含：

1. Given the SMILES codes of the
products CC(=C)c1cccc(C) c1Br and
the catalysts [K+], CC(C) (C)[O-] and
C1CCOC1, the possible reactants can
be:

2.（不指定催化剂）给定产物
的SMILES码CC(=C)c1cccc(C)
c1Br，潜在的反应物可能包括：

2. (No catalyst specified) Provided
with the SMILES codes of the products
CC(=C)c1cccc(C)c1Br, potential reac-
tants may include:

Product
Inference

Product and
Catalyst Prediction

给 定 反 应 物 的SMILES码
为C(c1ccccc1)Br, c1(C)ccccc1,
C(C)(=O)C 和 C=C，可以与之搭配
的催化剂以及反应得到的产物为：

The SMILES codes of the reac-
tants are C(c1ccccc1)Br, c1(C)ccccc1,
C(C)(=O)C and C=C. The correspond-
ing catalysts it can pair with and the re-
sulting products are:

Product
Prediction

1. 给定反应物的SMILES码为
O=CN,O(C(=O)C(OC(C)=O)N1
C(CC#C[Si](C)(C)C)CC1=O)C
(C)C, C=C和COC(C)=O， 催
化 剂 的SMILES码 为C(Cl)Cl
和Cl[Sn](Cl)(Cl)Cl，产物为:

1. Given the reactant SMILES
codes O=CN, O(C(=O)C(OC(C
)=O)N1C(CCC#C[Si](C)(C)C)
CC1=O)C(C)C, C=C and COC
(C)=O, the catalysts C(Cl)Cl and
Cl[Sn](Cl)(Cl)Cl, the products are:

2. （ 不 指 定 催 化 剂 ） 反 应
物 的SMILES码 为c1c(F)cc(F)
c(N)c1和c1(CCCCn2nncc2)
ccc(cc1)OCc1occ(C(O)=O)n1， 则
反应产生的产物为：

2. (No catalyst specified) With the re-
actant SMILES codes Cl, C1OCCOC1
and n1c2c([nH]c1-c1c(I)ccnc1OC)
cc(C#N)cc2C, the resulting products
are:

Molecular
Design

Specify Catalyst
Molecular
Properties

用 反 应 物 [Na+], c1(C(c2ccc
(O)cc2)=O)ccccc1, [H-],
C(Br)C(CO)(CO)CBr 和
C(Br)C1(CO)COC1 制 备 产 物
O=C(C1=[CH][CH]=[CH][CH]
=[CH]1)C1=[CH][CH]=C(O
[CH2]C2([CH2][OH])[CH2]
O[CH2]2)[CH]=[CH]1， 可 以 添
加催化剂，要求其符合条件： 杂原
子的数量≥ 0.0 并且< 2.4, 酰胺的
数量≥ 0.0 并且<0.7, 氢键受体的数
量≥ 0.0并且 < 1.4，催化剂可为：

Given reactants CO, COC,
NC=O and COc1ccccc1OCCN
(CC(O)COc1ccc2c(c1)[nH]c1
ccccc21)C(=O)CCl and prod-
ucts COc1ccccc1OCCN1CC
(COc2ccc3c(c2)[nH]c2ccccc32)
OCC1=O, the catalysts required should
meet the specified conditions: the num-
ber of Heteroatoms ≥ 0.0 and < 2.4,
the number of Hydrogen Bond Donors
≥ 0.0 and < 1.9, the total number
of NHs or OHs ≥ 0.0 and < 2.5, the
number of Hydrogen Bond Acceptors
≥ 0.0 and < 1.4, Wildman-Crippen
LogP value ≥ -4.1 and < -0.1, the
exact molecular weight of the molecule
≥ 0.0 and < 204.6, Wildman-Crippen
MR value ≥ 0.0 and < 52.1. Potential
catalysts may be:
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Chemical
Task

Subtask Chinese Prompt English Prompt

Molecular
Design

Specify Reactant
and Catalyst
Molecular
Properties

要 合 成 产 物[CH3]C([CH3])
([CH3])OC(=O)N1[CH2][CH]=C(N(
[CH2]C2=[CH][CH]=[CH][CH]=[CH]
2)C(=O)C2=C(I)[CH]=[CH][CH]=[C
H]2)[CH2][CH2]1， 反 应 物 要 满
足： 分子的价电子数≥179.0 并
且<286.8, 分 子 的NH和OH总 数
量≥2.5 并且<5.5, 卤素原子的
数量≥1.0 并且<3.3, 旋转键的数
量≥0.0并且 <6.0, 羰基氧原子的数
量≥ 1.6并且<3.6, Wildman-Crippen
MR值≥129.0并且 <205.9的条件，
而催化剂也需要满足：分子的准确
分子量≥0.0并且 <204.6, 卤素原子
的数量≥0.0并且 <1.0, 氢键供体的
数量≥0.0并且 <1.9, 分子的氮氧原
子总数量≥0.0 并且<1.3 的要求，
反应物和催化剂分别可以是：

To synthesize the products [CH3]C([CH
3])([CH3])OC(=O)N1[CH2][CH]=C(N(
[CH2]C2=[CH][CH]=[CH][CH]=[CH]
2)C(=O)C2=C(I)[CH]=[CH][CH]=[C
H]2)[CH2][CH2]1, the reactants need
meet the conditions: the number of
amides ≥0.7 and <2.1, the number
of ether oxygens (including phenoxy)
≥0.0 and <1.5, the number of Hydro-
gen Bond Acceptors ≥ 1.4 and <6.1,
the total number of NHs or OHs ≥2.5
and <5.5, the number of Hydrogen
Bond Donors ≥0.0 and <1.9, Balaban’s
J value ≥-0.4 and <0.8, the number
of heavy atoms ≥32.7 and <52.5, and
the catalysts also need to satisfy the
requirements: Balaban’s J value ≥1.9
and <3.1, the number of Hydrogen
Bond Acceptors ≥0.0 and <1.4, the
number of benzene rings ≥0.0 and
<1.6. The reactants and the catalysts
can be:

Specify Reactant,
Catalyst and
Product Molecular
Properties

进行一种可行的化学反应时，要求
反应物满足条件：Wildman-Crippen
MR值≥ 129.0 并且 < 205.9, 分子
的价电子数≥ 179.0 并且 < 286.8,
醚氧原子的数量（包括苯氧基）≥
0.0 并且 < 1.5, BertzCT值≥ 146.5
并且 < 925.1, 氢键供体的数量≥
0.0 并且 < 1.9, Balaban’s J值≥ -0.4
并且 < 0.8, 分子的准确分子量≥
493.6 并且 < 782.5, 酰胺的数量≥
0.7并且 < 2.1,分子的NH和OH总数
量≥ 2.5 并且 < 5.5, 氢键受体的数
量≥ 1.4并且 < 6.1，催化剂符合条
件：Wildman-Crippen LogP值≥ -0.1
并且 ¡< 3.8, Balaban’s J值≥ 1.9并且
< 3.1, Wildman-Crippen MR值≥ 0.0
并且 < 52.1, 分子的重原子数≥ 0.0
并且 < 13.0,酰胺的数量≥ 0.0并且
< 0.7,分子的准确分子量≥ 0.0并且
< 204.6,氢键受体的数量≥ 0.0并且
<1.4,氢键供体的数量≥ 0.0并且 <
1.9,分子的氮氧原子总数量≥ 0.0并
且 < 1.3,醚氧原子的数量（包括苯
氧基）≥ 0.0并且 < 1.5，产物符合
条件：氢键受体的数量≥ 1.4 并且
< 6.1,酰胺的数量≥ 0.7并且 < 2.1,
苯环的数量≥ 1.6 并且 < 3.3, 分子
的准确分子量≥ 493.6并且 < 782.5,
Wildman-Crippen MR值≥ 52.1 并且
< 129.0。这个反应所涉及的反应
物、催化剂和产物分别可以是：

When conducting a feasible chemical
reaction, it is required that the reac-
tants meet the conditions: the num-
ber of ether oxygens (including phe-
noxy) ≥0.0 and <1.5, the number of
heavy atoms ≥32.7 and <52.5, the total
number of Nitrogens and Oxygens ≥1.3
and <7.1, the number of valence elec-
trons the molecule ≥179.0 and <286.8,
the total number of NHs or OHs ≥2.5
and <5.5, the number of Hydrogen
Bond Acceptors ≥1.4 and <6.1, the
catalysts should satisfy the conditions:
the number of Hydrogen Bond Accep-
tors ≥0.0 and <1.4, Balaban’s J value
≥1.9 and <3.1, Wildman-Crippen MR
value ≥0.0 and <52.1, the number of
carbonyl O ≥0.0 and <1.6, the num-
ber of valence electrons the molecule
≥ 0.0 and <71.3, the total number
of Nitrogens and Oxygens ≥0.0 and
<1.3, the number of amides ≥0.0 and
<0.7, Wildman-Crippen LogP value ≥-
0.1 and <3.8, the number of halogens
atoms ≥0.0 and <1.0, the number of
Heteroatoms ≥0.0 and <2.4, and the
products comply with the conditions:
the number of amides ≥0.7 and <2.1,
the total number of NHs or OHs ≥0.0
and <2.5, the exact molecular weight of
the molecule ≥493.6 and <782.5. The
specific reactants, catalysts, and prod-
ucts involved in this reaction can be:
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Chemical
Task

Subtask Chinese Prompt English Prompt

Molecular
Description

Given the drug Chinese
name, generate English
name and description

给定一个药物的中文名:先锋哌
唑酮，它的对应英文名称和一些
相关描述是

Given the drug English
name, generate Chinese
name and description

一个药物的英文名称是 Ped-el，
它的中文名和药物描述是：

Given the drug
description,
generate Chinese
and English names

一个药物的描述为 [类别]镇静
催眠抗惊厥药,[̈适应症] 用于治
疗神经衰弱、忆病、神经性失
眠、精神兴奋状态。 [用量用
法] 口服:每次10ml,1日3次。 [注
意事项] 1.不宜用于浮肿和少尿
及癫痫病人。 2.其他参见溴化钾
及溴化铵。 [规格] 溶液:含溴化
钾3%、溴化钠3%、溴化铵3%。
，那么它可能的中文名称和英文
名称分别是：

Given the molecular
name, generate its
molecular formula

给定一个分子名 trideuteriomethyl
2,2,2-tribromoacetate，它对应的
分子式为：

Given the molecular
formula, generate its
molecular name

分子式为 C21H14K4N2O9的分
子对应的名字是：

Given the molecular
description,
generate molecular
IUPAC name and
SMILES code

In the context of a molecule de-
scription: ’It has a role as an an-
timanic drug. It is an inorganic
chloride and a lithium salt.’, the
molecule’s potential IUPAC (Inter-
national Union of Pure and Ap-
plied Chemistry chemical nomen-
clature) name and its corresponding
SMILES code are:

Given the molecular
SMILES code, generate
molecular IUPAC name
and description

Given a SMILES code ’[Cl-].[K+]’
for a molecule, the potential IUPAC
name and its related description can
be identified as:

Given the
molecular
IUPAC name,
generate molecular
description and
SMILES code

Given a IUPAC (International
Union of Pure and Applied Chem-
istry chemical nomenclature)
name of a molecule: ’magne-
sium;dichloride;hydrate’, the
possible SMILES code and cor-
responding description for this
molecule are:

Yield
Prediction

对 于 一 个 化 学 反 应 ，
其 反 应 物 的SMILES码
CCl.CBr.Brc1ccc(cc1)C(=O)CN
(=O)=O.ON=C(Cl)c1cccc(Cl)c1，
催化剂 CCN(CC)CC.CO，产物
Clc1cccc(c1)c1onc(c1N(= O)=O)-
c1ccc(Br)cc1， 期 望 的 产 率 值
是：

Given the molecular for-
mulas of the reactants
CCl.CBr.Brc1ccc(cc1)C(=O)CN
(=O)=O.ON=C(Cl)c1cccc(Cl)c1,
the catalysts CCN(CC)CC.CO,
the products Clc1cccc(c1)-
c1onc(c1N(=O)=O)-c1ccc(Br)
cc1, the expected yield value is:
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C CASE STUDY

Figure 3: Case 1 from USPTO-50k. Give the product CNc1nc(Cl)ncc1[N+](=O)[O-], the model
successfully predicts the correct reactant CN.O=[N+]([O-])c1cnc(Cl)nc1Cl. It also simultaneously
provides a potential catalyst C1COCC1, which is a commonly used catalyst.

Figure 4: Case 2 from USPTO-50k. Give the product CCOC(=O)c1cnc(N)c2c(COc3cc(-
c4nnc(-c5ccc(Cl)cc5)o4)ccc3C)csc12, the model successfully predicts the correct reactant
N.Clc1c2c(scc2COc2c(C)ccc(-c3nnc(-c4ccc(Cl)cc4)o3)c2)c(C(OCC)=O)cn1. The model also
predicts a catalyst C(C)(O)C, which could possibly act as a solvent.
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Figure 5: Case 3 from BioChem. Give the product CNCC1Cc2cc(-c3ccccc3)cc(-c3ccccc3Cl)c2O1,
the model predicts the correct reactant CN.Cc1ccc(S(=O)(=O)OCC2Cc3cc(-c4ccccc4)cc(-
c4ccccc4Cl)c3O2)cc1. A catalyst S(C)(=O)C, which bears a resemblance to the reactant structure,
is predicted, possibly serving as a ”reaction fragment” or an ”intermediate product.”

Figure 6: Case 4 from BioChem. For the product
COc1ccc([C@@H]2Sc3cc(C)ccc3N(CCN(C)Cc3ccccc3)C(=O)[C@@H]2OC(C)=O)cc1,
the model successfully predicts the reactant
CC(=O)OC(C)=O.c12ccc(C)cc1S[C@@H](c1ccc(OC)cc1)[C@@H](O)C(=O)N2CCN(C)Cc1ccccc1
and provides a catalyst c1cccnc1, which could be a solvent.
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Figure 7: Case 5 from BioChem. For the product CCc1nc2ccccc2c(=O)n1CCCl, the model
predicts the correct reactants O=S(Cl)Cl.c12ccccc1nc(CC)n(CCO)c2=O, and provides a catalyst
ClC(Cl)Cl, which could be a solvent.
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Figure 8: Case 6 from our private benchmark. For the prod-
uct C=C[C@H](c1ccccc1)n1cnc2ccccc21, the model predicts a reactant
C=C.c12ccccc1[nH]cn2.O=C(OC/C=C/c1ccccc1)OC with an additional small molecule ethylene,
and successfully predicts furan as the solvent. The solvent information appears only in the original
paper of this reaction, demonstrating that the model successfully transfers knowledge from the
literature to retro-synthesis prediction tasks after being trained on a large dataset.

Figure 9: Case 7 from our private benchmark. For the reactant
C=C[C@H](c1ccc(Br)cc1)n1cnc2ccccc21, the model correctly predicts the reactant
c1nc2ccccc2[nH]1.CBr.C=C.COC(=O)OC\\C=C\\c1ccc(Br)cc1 but includes an additional
ethylene and its corresponding hydrogen halide molecule. The main reason might be the presence
of a halogen substituent on the reactant’s ring, which is relatively reasonable. The ligand is not
predicted, but furan is successfully predicted as the solvent.
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