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ABSTRACT 
The screening of chemical libraries is an essential starting point in the drug discovery process.  
While some researchers desire a more thorough screening of drug targets against a narrower scope 
of molecules, it is not uncommon for diverse screening sets to be favored during early stages of 
drug discovery. However, a cost burden is associated with the screening of molecules, with 
potential drawbacks if particular areas of chemical space are needlessly over represented. To 
facilitate triaged sampling of chemical libraries and other collections of molecules, we have 
developed Dedenser, a tool for the downsampling of chemical clusters. Dedenser functions by 
reducing the membership of clusters within chemical point clouds while maintaining the initial 
topology, or distribution, in chemical space. Dedenser is a Python package that utilizes 
Hierarchical Density-Based Spatial Clustering of Applications with Noise to first identify clusters 
present in 3D chemical point clouds, and then downsamples by applying Poisson disk sampling to 
clusters based on either their volume or density in chemical space. A command line interface tool 
is available with Dedenser, which allows for generation of chemical point clouds, using Mordred 
for QSAR descriptor calculations and uniform manifold approximation and projection for 3D 
embedding, as well as visualization. We hope that Dedenser will serve the community by enabling 
quick access to reduced collections of molecules that are representative of larger sets, selecting 
even distributions of molecules within clusters rather than single representative molecules. 
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INTRODUCTION 

The designing of chemical libraries is a major component of the drug discovery process, with high 
throughput screening of libraries enabling the identification of lead compounds for further 
investigation and development.1,2  Not long after this paradigm of chemical library synthesis and 
in vitro screening was introduced, there was incorporation of computational methods for the 
generation of initial chemical libraries and in silico screening.3 For the generation of chemical 
libraries, fragment based and combinatorial approaches have historically been employed, 1,2,4 
whereas structure-based approaches have been used for initial computational screening.5,6 While 
in silico approaches to the discovery processes have become institutional mainstays with various 
established workflows, researchers continue to pursue novel computational methods for 
optimizing the generation, screening, and work-up of chemical libraries. 

Machine learning methods to aid with assessment and de novo generation of molecules and 
chemical libraries in the drug development process are now commonplace.7–9 These machine 
learning methods allow researchers to generate libraries and rank compounds based on various 
chemical features of molecules ranging from distinct physical chemical properties,10–12 their 
predicted efficacy,13,14 toxicity,15–17 synthetic accessibility,18–21 to other targeted properties22. 
Ensuring an appropriate degree of chemical diversity is a desired feature when working up 
chemical libraries, resulting in the development of a plethora of cheminformatic tools for the 
analysis and synthesis of chemical libraries and their diversity.23–29 

The visualization of libraries can provide intuitive means of assessment and is a powerful 
addition to the various metrics developed by computational chemists for quantitative assessment 
and comparison of chemical libraries.30 By taking higher dimensional representations of molecules, 
often quantitative structure-activity relationship (QSAR) descriptors, and embedding them as 2D 
or 3D vectors, the chemical space of libraries can be visualized. Once embedded and visualized, 
researchers are able to interactively analyze their chemical libraries and perform tasks such as 
clustering and selecting representative molecules.31,32 Numerous approaches to clustering have 
been applied to chemical libraries, exploring various ways of selecting compounds from clusters. 
Considering nearest neighbors to cluster centroids has been a common way of producing 
representative sets of compounds.31–34 

In the field of computer graphics, 3D collections of points are referred to as point clouds 
such that chemical clusters will be referred to as point clouds throughout this discussion.35 While 
various applications surrounding point clouds exist, they are primarily used for 3D modeling and 
visualization of real world objects and spaces. By processing and analyzing point cloud data, it is 
possible to recreate the geometry and appearance of complex objects with high fidelity. Computer 
scientists have developed and adapted various algorithms for tasks such as data merging,36 
segmentation,37 filtering,38 and visualizations39 to accomplish many tasks surrounding the 
application of point clouds. 

Although representation of chemical space have been investigated for decades,40–42 the 
development of point cloud based applications have been somewhat limited in the chemical 
sciences beyond pharmacophoric point clouds.43–45 Point clouds have been recently repurposed for 
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chemistry when used for representing electrostatic potential surfaces,46,47 molecular 
coordinates,48,49 and interaction sites50. However, the native point cloud structure of 3D embedded 
chemical libraries and point cloud sampling algorithms from the computer graphics field have not 
been leveraged for diversity centric sampling of libraries. 

 In order to facilitate the curation of diverse and unbiased downsampled subsets of chemical 
libraries, we developed Dedenser. Available as a Python package, Dedenser is built around a 
downsampling algorithm which provides users with the ability to systematically reduce the number 
of molecules in a chemical library represented as a (chemical) point cloud. The downsampling 
process employed preserves the overall 3D topology of the chemical point cloud, and consequently 
the chemical space occupied by the set of molecules. This downsampling algorithm is largely 
defined as a two phase process: 1) the identification of clusters and singleton molecules and 2) 
volume/density based downsampling of clusters. For ease of use we have developed a command 
line interface for Dedenser, requiring no coding experience to utilize. Herein we discuss the details 
surrounding the theory, implementation, and brief case studies of Dedenser. Overall Dedenser 
provides an alternative to methods that draw single representative compounds from clusters, but 
instead provides diversity by downsampling the cluster such that an evenly distributed set of 
compounds is generated within each cluster based on relative cluster size.  

METHODS AND THEORY 

In this section, we discuss fundamental components of Dedenser including Poisson disk 
downsampling, clustering with an emphasis on the employed Hierarchical Density-Based Spatial 
Clustering of Applications with Noise (HDBSCAN) algorithm, and how they function within the 
overall formulation of the algorithm. 

Density Based Clustering 

Unlike point cloud centric/specific algorithms, clustering has been employed as a major 
component of cheminformatics and machine learning application surrounding chemistry, such as 
during library design,51,52 data driven synthesis,53,54 molecular dynamics simulations,55,56 and mass 
spectrometry57,58.  Dedenser utilizes HDBSCAN,59 a variant of DBSCAN,60 that employs 
hierarchical trees to define clusters within a given dataset. Briefly, the HDBSCAN algorithm is 
executed by: 1) calculating mutual reachability distances between data points based on their 
distances and local densities, 2) building of a minimum spanning tree from the mutual reachability 
distances, 3) converting the minimum spanning tree into a hierarchical tree, 4) condensing the 
hierarchical tree such that nodes are clusters of data points, and 5) extraction of clusters from the 
condensed tree. 

Regardless of the specifics surrounding its formulation, the choice to use HDBSCAN for 
clustering in Dedenser was due to two major aspects. First, the extraction of clusters is a data-
dependent process, often eliminating the need for users to fine tune parameters and the number of 
clusters. Second, datapoints not belonging to clusters are considered ‘noise’, allowing for our 
Dedenser algorithm to retain singletons in chemical space. The retention of chemical singletons is 
of particular interest when the aim of downsampling is to retain chemical diversity in part. 
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Poisson Disk Downsampling 

Dedenser’s ability to reduce chemical point cloud membership to a target value is built around the 
Point Cloud Utils package,61 a Python interface to C++ functions. Dedenser utilizes the function 
`downsample_point_cloud_poisson_disk` to achieve blue noise distributions. These blue noise 
distributions are defined as being evenly distributed points with no bias toward a specific radius 
from some central point and therefore the points should be distributed independently and randomly 
(Figure 1). Poisson disk sampling is utilized to downsample to a blue noise distribution.62 

 The Poisson disk downsampling function (f) as implemented in Point Cloud Utils is an 
iterative algorithm which will output a blue noise distributed point cloud (P*) when provided an 
initial point cloud (P) and a target number of points to keep (n). The Poisson disk represents a 3D 
disk in our case, though it generally may be N-dimensional, defined by a radius (r). Poisson disks 
are used to define a lower distance bound, ensuring that that no two points (p) are within a Poisson 
disk centered around any other point when (down)sampling. In our case, the distance (d) between 
points is the L2 norm in 3D Euclidean space (Euclidean distance), with the formalization of point 
cloud downsampling via Poisson disks displayed in eq. 1: 

(1) 𝑃𝑃∗ ∶= 𝑓𝑓(𝑃𝑃) = {𝑝𝑝1, … 𝑝𝑝𝑛𝑛},𝑑𝑑�𝑝𝑝𝑖𝑖,𝑝𝑝𝑗𝑗� ≥ 𝑟𝑟,∀𝑝𝑝𝑖𝑖,𝑝𝑝𝑗𝑗 ∈ 𝑃𝑃∗ 

 When provided a target number of points, the Poisson disk downsampling of point clouds 
is initialized by generating grid cells within the spatial boundaries of the point cloud and 
calculating upper and lower sample size tolerances. Since the radius is not provided, in our case, 
it is first defined in relation to the spatial size of the point cloud, and then adaptively scaled as the 
algorithm iterates. During each iteration, grid cells are generated with face lengths (s), where  
𝑠𝑠 = 𝑟𝑟 √3⁄  , ensuring that each grid cell can only contain a single point given the Poisson disk 
constraint. Given the radius resulting grid cells, a random grid cell with points inside is selected to 
initiate the inner-loop of the algorithm and the downsampling of the point cloud. After the initial 
grid cell is selected, a random point within the cell is selected followed by the selection of an 
adjacent cell which in turn has its points checked for one being outside the Poisson disks of other 
selected points. The process then continues until all grid cells have been evaluated, and is repeated 
with varying radius values until the downsampled point cloud falls within the target size tolerances. 
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Figure 1. Overview of Poisson disk downsampling. (a) Uniform distribution of points generated by random sampling. (b) 
Grid with face lengths of s. (c) Selection of points for downsampling (blue) with no more than one point per grid-cell nor 
within the Poisson disk of r = s√2 centered around each selected point.  (d) Blue noise distribution achieved by Poisson disk 
downsampling. 

Dedenser Algorithm 

The Dedenser algorithm is formulated to first cluster a chemical point cloud with HDBSCAN and 
then apply Poisson disk downsampling to clusters based on their relative hull volumes or weighted 
densities.  The goal of downsampling is to achieve a targeted percentage of retained compounds 
from the initial chemical point cloud. To calculate the number of molecules each cluster is to be 
downsampled to a remaining target (T*) is calculated as the difference between the initial target 
(T) and the number of chemical singletons (S), or ‘noise’ (eq 2.).  The hull volume for each cluster 
(vi) is then calculated, and used to determine the relative volume of each cluster which is then used 
to calculate the target number of molecules for each cluster (𝑇𝑇𝑖𝑖∗) (eq 3.).  Alternatively, Dedenser 
allows for cluster targets to be calculated from proportional weightings (Wi) of clusters (eq. 4), 
derived from exponential functions parameterized by a weighting term (w) to allow for greater 
differentiation between cluster properties (pi, either cluster density or volume) (eq. 5).  Additionally, 
by assigning negative weights, sparser/smaller clusters will be assigned greater relative target sizes 
compared to denser/larger clusters. 

(2) 𝑇𝑇∗ = 𝑇𝑇 − 𝑆𝑆 
(3) 𝑇𝑇𝑖𝑖∗ = 𝑇𝑇∗ × 𝑣𝑣𝑖𝑖 ∑ 𝑣𝑣𝑖𝑖𝑛𝑛

𝑖𝑖=1⁄ ,𝑛𝑛 = 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝑜𝑜𝑜𝑜 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 
(4) 𝑇𝑇𝑖𝑖∗ = 𝑇𝑇∗ × 𝑊𝑊𝑖𝑖 
(5) 𝑊𝑊𝑖𝑖 = 𝑒𝑒𝑤𝑤(𝑝𝑝𝑖𝑖/𝑝𝑝𝑇𝑇−1) ∑ 𝑒𝑒𝑤𝑤(𝑝𝑝𝑖𝑖/𝑝𝑝𝑇𝑇−1),  𝑝𝑝𝑇𝑇 =  ∑ 𝑝𝑝𝑖𝑖𝑛𝑛

𝑖𝑖=1  𝑛𝑛
𝑖𝑖=1⁄  

The two major caveats to the algorithm functioning as described above are greater noise 
membership than the overall target value of downsampling and cluster targets being greater than 
their overall membership.  For the former case, where the number of chemical singletons is initially 
greater than the desired number of molecules to be retained, Dedenser applies Poisson disk  
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downsampling to the noise before downsampling clusters.  In this case, the target for noise 
downsampling is defined as 80% of its equivalent, volume based target, effectively treating it as a 
cluster in eq. 2.  For the latter case, where clusters may have membership lower than their 
respective target for downsampling, an iterative loop is executed that retains all the molecules in 
these below target clusters, and subsequently recalculates the remaining targets.  This iterative 
process of checking and managing the cluster targets is executed until all remaining clusters have 
initial memberships greater than their respective target membership for downsampling.  Further 
details regarding the two-stage downsampling algorithm and some implementation details defining 
Dedenser are outlined in pseudocode (Algorithm S1.) for Dedenser using volume based cluster 
downsampling. 

One key advantage to Dedenser’s cluster based downsampling over simply applying Poisson 
disk downsampling to the entire chemical point cloud is the potential to capture all chemical 
singletons rather than simply reducing them to blue noise.  Additionally, dense clusters would be 
represented proportionally, by volume or density in chemical space, rather than also being reduced 
to blue noise relatively with the rest of the chemical point cloud.  This may be critical when 
downsampling libraries, such as those generated in a targeted manner.  Per example, if one were 
to generate an initial chemical library via a Bayesian sampling process10, areas with higher 
likelihoods from the fitted prior distribution may be desired for retention at a higher proportionality, 
yet still downsampled.   Alternatively, if desired, the epsilon parameter for cluster selection in 
HDBSCAN can be increased to treat all data as one cluster, effectively performing Poisson disk 
downsampling on the entire chemical point cloud. 

IMPLEMENTATION 

Dedenser is implemented such that it can be run as a command line tool, or as a Python library.  
Additionally, while it contains built-in functions for chemical descriptor calculation and 
embedding to 3D chemical space, the novel functionality regarding downsampling is agnostic and 
can handle any 3D point cloud representation. 

When developing Dedenser, we utilized Python 3 and various packages/libraries to enable the 
functionalities surrounding the Dedenser algorithm and user centric utilities. Regarding the 
implementation of the Dedenser algorithm various libraries were used as follows: scikit-learn63 for 
clustering with HDBSCAN and Gaussian Mixture Models, SciPy64 for convex hull calculations, 
Alphashape65 for concave hull calculations, and Point Cloud Utils61 for Poisson-disk 
downsampling.  Utility functions from the following libraries were used: pandas66 for data 
handling reading/writing of files, openpyxl67 for extending pandas read/write features to Excel, 
scikit-learn63 for standard scalar calculations, Matplotlib for visualization, RDKit68 and Mordred69 
for chemical descriptor calculations, and UMAP70 for embedding descriptor into chemical point 
clouds.  Additionally, NumPy71 was used for various data manipulations and reading/writing 
operations, with all further dependencies captured in the requirements.txt and ddenser.yml files 
hosted on GitHub. 
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Dedenser Library 

As a library, Dedenser is comprised of the main Dedenser class and utility functions for generating, 
visualizing and saving the indexes of chemical point clouds. Technical aspects and formulation of 
Dedenser and the chemical point cloud utilities are explained in detail within the Dedenser 
documentation at https://github.com/MSDLLCpapers/dedenser.  We would hope that others in the 
field would feel encouraged to incorporate their desired variations to chemical point cloud 
representations or modify the downsampling algorithm of Dedenser as they see fit, and that this 
may be assisted through documentation of the codebase.  Additionally, a general workflow and 
implementation details are expressed in the supporting information.  Regarding HDBSCAN, only 
epsilon and minimum cluster size are parameterized.  

CASE STUDIES 

To capture the usage and behavior of Dedenser with tangible examples of application, we have 
performed case studies with two datasets.  The first, involves a  subset of the ZINC72 compounds 
extracted by Gómez-Bombarelli et al.,73 the second is a set of aryl bromides from a study reported 
by Kariofillis et al.31. 

Downsampling of ZINC Compounds 

A 1000 member subset of the initial ZINC compound database was generated by taking nearest 
neighbors from a multivariate bimodal distribution among logP, molecular refractivity, molecular 
weight, polarizable surface area, and the complexity index BertzCT descriptors calculated using 
Mordred.  Once descriptors were calculated, they were embedded into a 3D chemical point cloud 
to allow for downsampling. 

Using default parameters, two clusters were identified in the initial chemical point cloud of 1000 
compounds and was downsampled with a target membership of 10%, or 100 molecules, of the 
initial set and yielded a downsampled set of 99 molecules. The overall topology of the initial 
chemical point cloud (Figure 2A) is preserved post downsampling (Figure 2B) when using the 
default Dedenser parameters.    The original distributions of the ZINC compounds was largely 
retained when downsampled (Figure 2C), demonstrating Dedenser’s ability to preserve chemical 
diversity when reducing chemical point cloud membership. 

To showcase the ability of Dedenser to leverage weighted cluster downsampling, positive and 
negative weighting of cluster densities were employed.  When using a positive density weighting 
of 5, the cluster occupying the lower range of UMAP dimensions 0 and 2 is given greater 
membership (Figure S1).  Conversely, by using a weighting of -5, the alternative cluster has greater 
membership (Figure S2). For the negative and positive weightings, molecules with lower and 
greater descriptor values are favored respectively and are distinct from random sampling (Figure 
S3).  In both cases, the downsampling done with Dedenser shows fewer clumping of molecules 
and more regular distribution in embedded chemical descriptor space when compared to random 
sampling (Figures S1-2). 
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Figure 2.  Chemical point cloud generated and downsampled ZINC compounds using Dedenser with their descriptor 
distributions.   (a) Initial chemical point cloud composed of 1000 compounds from ZINC by projecting their Mordred 
descriptors with UMAP.  (b) Downsampled chemical point cloud with a membership of 99 molecules, utilizing default 
parameters while targeting 10% initial membership.  (C) Density plots displaying the Mordred descriptor distributions of 
the original (blue) and downsampled (orange) distributions of Wildman-Crippen LogP (SLogP), Wildman-Crippen molar 
refractivity (SMR), molecular weight (MW), topological polarizable surface area (TopoPSA), and Bertz index (BertzCT). 

Downsampling Aryl Bromides 

To provide a more complex chemical space, we used the set of aryl bromides from Kariofillis et 
al.31.  Instead of calculating only selected descriptors, all 2D Mordred descriptors were calculated 
for the aryl bromides.  Again, once descriptors were calculated, they were embedded into a 3D 
chemical point cloud to allow for downsampling.   

Using the default parameters for downsampling to a target of 25% membership (671 molecules), 
the initial population of 2683 was downsampled to 763 molecules.  While the topography of the 
original chemical point cloud (Figures 3A & S4) and the downsampled point cloud (Figures 3B & 
S5) remain similar, and the distributions for selected descriptors is roughly scaled down (Figure 
3C), a major discrepancy in the targeted membership from downsampling is apparent.  A large 
portion of this discrepancy is due to 103 clusters having targeted memberships of zero, with one 
member being retained as the nearest neighbor to the cluster centroid.  By using the visualization 
flag, a large amount of clusters can be noted in addition to many chemical singletons (Figures S4-
5). 
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To promote larger clusters by HDBSAN and favor larger clusters by volume, we set the epsilon 
and volume weighting parameters to  0.22 and 4 respectively.  By doing so, the membership post 
downsampling was decreased to 657 molecules, a  12% reduction in error due to elimination of 
miniscule clusters.  The increase in cluster sizes is clearly illustrated in the UMAP plot generated 
using the visualization flag (Fig S6).  Overall the command line functionalities and rapid 
visualization included in Dedenser allows for user friendly curation of downsampled chemical 
libraries. 

 

 
Figure 3.  Chemical point cloud generated and downsampled aryl bromides using Dedenser.   (a) Initial chemical point cloud 
composed of 2683 aryl bromides by projecting their Mordred descriptors with UMAP.  (b) Downsampled chemical point 
cloud with a membership of 736 aryl bromides, utilizing default parameters while targeting 25% initial membership.  (C) 
Density plots displaying the Mordred descriptor distributions of the original (blue) and downsampled (orange) distributions 
of molecular weight (MW), relative negative charge (RNCG), topological polar surface area (TopoPSA), atomic 
polarizability (APol), and bond polarizability (BPol). 

 

CONCLUSIONS 

Due to the overhead presented by the synthesis, procurement, and screening of chemical libraries, 
triaged approaches to formulating optimal libraries are desired to alleviate such resource 
constraints.  To this end, we have developed Dedenser which functions by downsampling chemical 
point clouds to remove molecules from high density regions in chemical space, providing chemical 
libraries with reduced membership while maintaining diversity.  We hope that researchers will find 
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utility in Dedenser, as it can facilitate the generation of uniformly distributed clusters in datasets 
drawn from irregularly populated chemical space.  Additionally, a command line interface tool 
version of Dedenser allows for researchers to generate, downsample, and visualize chemical point 
clouds without any need to code.  Beyond the explanation for usage described within this 
manuscript, Dedenser is accompanied by full documentation to assist those that wish to utilize 
their own chemical point clouds or further modify the code. 
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Command Line Tool 

Beyond the formulation of the Dedenser algorithm and its implementation as a Python library, the 
Dedenser package has been developed such that it can be used as a command line interface tool.  
The overall process for using Dedenser through a command line is straightforward, with an 
example of the overall process of generating a chemical point cloud, downsampling, visualizing, 
and report generation bellow: 

python -m dedenser mkcloud -o <output> <path of SMILES input> 

python -m dedenser vis -f -o <output> <point cloud path> 

python -m dedenser dedense -o <output> -t <target> <point cloud path> 

python -m dedenser mksheet -o <output> -c <point cloud path> -d <downsampled index path> 

 

Dedenser Details 

Beyond the general algorithm described prior in the methods and theory section, implementation 
of Dedenser required various conditions, underlying approaches, and user features to be specified.  
Briefly significant implementation details can be listed as the following: 

• The argument for users to specify employment of convex or optimized concave hulls for 
calculating cluster volumes.  This allows for either the use of potentially more accurate 
concave hulls/alpha shapes or approximation with convex hulls when clusters contain too 
many molecules for efficient geometry calculations. 

• Saving of calculated Mordred descriptors as a CSV file when generating chemical point 
clouds. 

• Use of default parameters for HDBSCAN excluding the option to modify the minimum 
cluster size.  If users desire to change the HDBSCAN parameters, this can be remedied by 
the simple redefining of desired parameter values in a single line of source code. 

• Use of default parameters for UMAP embeddings, as the default parameters are typically 
satisfactory and skilled users may simply generate and provide their own chemical point 
clouds to their desired specificities. 

• Users provide the proportionality of downsampling desired (some value between 0 & 1).  
The target number of molecules to keep is calculated from this user defined proportionality 
value. 

• If the calculated number of points of a cluster to keep is less than 15, then random sampling 
is used to select the members of the cluster that are kept as well as one which is taken as 
the nearest neighbor of a fitted Gaussian’s mean (cluster centroid).  This is to aid in 
downsampling accuracy, as Poisson disk sampling may yield greater or fewer molecules 
than the target with proportionately significant disparity, due to spatial constraints, when 
the target value is this low. 

• If the calculated number of points of a cluster to keep rounds to 0, then the point closest to 
the cluster centroid is kept. 
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Table S1. Command line interface arguments and commands for Dedenser. 

Flag/Command Description 
-h [--help] Prints details regarding options/arguments. 

-o [--path_out] Path/file for output results 
Should not have file extensions i.e. ‘.xlxs’. 

-f [--fig] If used, saves figures rather than just displaying. 

-d [--down] Path/file for downsample list. Used with secondary 
commands 'vis' and 'mksheet'. 

-a [--alpha] Use optimized alpha shapes for cluster volume estimation. 
-s [--sep] Specify separator for SMILES file. 

-p [--pos] Specify position for SMILES in SMILES file. Note: position 
is zero indexed. 

-r [--rand] Random seed for downsampling. 
-m [--min] The ‘min_size’ parameter for HDBSCAN. 
-t [--target] Target downsampling percentage. 

-dw [--dweight] Weighting term for density bias.  If used, density based 
downsampling is utilized over volume. 

-vw [--vweight] Weighting term for volume bias.  If used, volume based 
downsampling is utilized with weighting of clusters. 

-c [--cloud] Path/file for chemical point cloud (only when using 'mksheet' 
command). 

-x [--excel] Use to load and save excel sheets rather than delimited text. 
Default is False. 

-H [--header] Specify if a header is present when loading sheets/delimited 
text. Default is False 

-S [--strict] Completely drops clusters with 'target values' of 0 rather than 
keeping a single molecule. 

--SHOW Display HDBSCAN clustering results prior to 
downsampling. 

mkcloud Generate a chemical point cloud with Mordred & UMAP 
given a file with SMILES. 

dedense The main downsampling algorithm in Dedenser. 

vis Visualize chemical point clouds either prior or after 
downsampling. 

mksheet Generate a report sheet containing SMILES and respective 
UMAP (3D) coordinates.  
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Algorithm S1.  Pseudocode for volume based downsampling with the Dedenser algorithm.  Given a chemical point cloud 
and a target percentage to be downsampled to, Dedenser clusters the point cloud with HDBSCAN and subsequently selects 
cluster members via Poisson disk downsampling.  Note that the calculation of target cluster memberships (lines 15 & 22) 
display the volume based approach described in eq. 2, and the weighted density based approach described in eq. 3 & 4 are 
implemented options in the Dedenser software package. 
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Figure S1.  UMAP plots of 1000 ZINC compounds (grey) where orange scatter points in the left column displaying 99 
downsampled compounds using Dedenser with a density weighting of 5 while blue scatter points in the right column display 
99 randomly selected compounds. 
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Figure S2.  UMAP plots of 1000 ZINC compounds (grey) where orange scatter points in the left column displaying 99 
downsampled compounds using Dedenser with a density weighting of -5 while blue scatter points in the right column display 
99 randomly selected compounds. 
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Figure S4.  Molecular descriptors for a 1000 molecules from ZINC and downsampled subsets displaying distributions of 
Wildman-Crippen LogP (SLogP), Wildman-Crippen molar refractivity (SMR), molecular weight (MW), topological 
polarizable surface area (TopoPSA), and Bertz index (BertzCT).  (a) Top in blue are the distributions of the initial 1000 
molecules.  In the middle in orange are the distributions of 99 molecules downsampled using Dedenser with density 
weightings of (b) 5 and (c) -5.  (d) Bottom in blue are the distributions of 99 molecules selected randomly. 
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Figure S5.  Clustering of aryl bromides using default Dedenser parameters and the visualization flag prior to downsampling.  
Note that cluster colors are arbitrary and are not unique due to the vast number of possible clusters.  Black scatter points 
represent chemical singletons considered as noise by HDBSCAN. 
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Figure S6.  Clustering of aryl bromides using default Dedenser parameters and the visualization flag post downsampling.   
Note that cluster colors are arbitrary and are not unique due to the vast number of possible clusters.  Black scatter points 
represent chemical singletons considered as noise by HDBSCAN. 
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Figure S7.  Clustering of aryl bromides using Dedenser with epsilon set to 0.22, volume weighting set to 4, and the 
visualization flag post downsampling.   Note that cluster colors are arbitrary and are not unique due to the vast number of 
possible clusters.  Black scatter points represent chemical singletons considered as noise by HDBSCAN. 
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