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ABSTRACT: In this work we predict, among more than a billion possibilities, the best 
candidates of halogenated [6]helicenes in order to obtain excellent chiroptical properties in 
terms of the rotatory strength (R). We have used DFT calculations to randomly create 
derivatives from 1 to 16 halogen atoms, that were then used as a data set to train different deep 
neural network models. It is worth noting that the simplest model affords a parametrization that 
allows to easily predict the value of R for any hexahalogenated [6]helicene. The correlation 
between calculated and predicted data increases together with the complexity of the model. The 
results show that some positions and halogens are preferred to increase the R value. In this 
sense, we have also synthesized the derivatives with the higher predicted R, obtaining excellent 
correlation among the values obtained experimentally, by DFT-calculations and machine 
learning predictions. 
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INTRODUCTION 
[n]Helicenes are prototypical helical structures composed by n ortho-fused phenyl rings.1–3 They 
also present high racemization barriers (when n>5) and show interesting chiroptical 
properties.4,5 Remarkably, such properties can be now predicted with high confidence using 
DFT calculations with relatively low computational cost for the smallest members of the 
family.6–10 However, although the chiroptical properties are codified in the intrinsic physics of 
the molecule, it is not easy to extract any structure-property relationship (apart from absolute 
configuration) from such kind of calculations. Even in the case that any correlation would exist, 
a huge volume of examples or data should be necessary for its understanding. The situation 
becomes more complex if we consider substitutions in the [n]helicene core. As an example, if 
we consider multiple halogen substitution in any of the sixteen positions in [6]helicene (Figure 
1a), the challenge is intimidating. For instance, if we consider the mono-halogenation case only 
32 derivatives can exist, according to Eq.1: 
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ଵ
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16
𝑘

ቁ 4  Eq. (1) 

𝑁ଵ = 32   𝑁ଶ = 960    𝑁ଷ = 17920 

𝑁ସ ≈ 2.3𝑥10ହ   𝑁ହ ≈ 2.2𝑥10  𝑁 ≈ 1.6𝑥10 

 

This expression gives the number of different compounds that can be obtained with k 
substituents considering also the reflexion symmetry dividing the general expression by 2. Di-
halogenated [6]helicenes are a larger family composed of 960 members. In that case, the DFT 
calculations are costly but continue to be affordable in a reasonable period of time. 
Nevertheless, the in-depth analysis of the resulting data begins to be daunting. For tetra-
halogenated [6]helicenes the numbers go up to almost 2.33×105 possibilities, and for hexadeca-
halogenated [6]helicenes the variation gives an astonishing number of 2.15×109 different 
compounds (Eq. 1). In those cases, neither theoretical calculations nor the analysis becomes 
viable. Globally, considering from mono- to hexadeca-halogenated [6]helicenes, 7.63×1010 
structures should be evaluated. 

The problem is even more complex considering that the chiroptical properties are diverse and 
the corresponding magnitude of the response can be defined in many ways. In this work we 
have focused our attention on electronic circular dichroism (ECD), one of the prototypical 
chiroptical techniques employed.6 In this case, rotational strength (R0j) is a good indicator,11 
which is associated with each ground to excited state transition (0 to j). This scalar value 
represents the intensity of the chiroptical response, being the shape of the ECD spectra 
characterized by the most intense ones. A complete set of R0j values can be extracted from 
theoretical calculations (Figure 1c). 

Considering the above-mentioned framework, the answer to the question, “which is the 
maximum value for a rotatory strength in a (poly)halogenated [6]helicene?”, is beyond the 
human interpretative capabilities using standard approaches. As an alternative, machine learning 
techniques have succeeded in many cases to extract hidden patterns and develop predictions for 
complex problems only from data points of the observed phenomenon.12 Specifically, neural 
networks –the computational model behind deep learning– have shown efficiency in 
Chemistry13–15 as to classify organic reaction mechanisms,16–23 to accelerate DFT 
calculations,24,25 and to predict molecular properties26–33 and antibacterial activities.34 Indeed, 
despite machine learning methodologies have been applied to achiral nanomaterials, there is no 
examples including chirality in these structures.35 It is also worth noting that the approach in the 
search of new materials with improved properties must meet two important requirements: i) to 
be able to extrapolate values for the extreme cases, where exceptional materials are, and ii) to be 
synthetically viable.36 Within this context, we wondered if the starting point question can be 
accomplished using deep learning approaches, searching for exceptional responses. To that end, 
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predicting chiroptical properties in [6]helicenes in a faster way than typical DFT simulations is 
required to estimate the maximum R0j values (Rmax) of the vast number of interrogated systems 
(Figure 1c).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. a) [6]helicene structure. Geometry optimized at the M06/TZVP level of calculation 
(PCM dichloromethane). b) 1D vector notation examples employed for differently halogenated 
[6]helicenes. c) Interplay between DFT calculations and Deep Learning (DL) based training and 
prediction of chiroptical properties. 

Beyond scientific curiosity and gaining fundamental knowledge, this question is relevant owing 
to [n]helicenes have been proposed as promising candidates in terms of chiroptical responses 
and their consequent applications into devices.37–40 Therefore, the first question to be addressed 
is if there is a limit in the Rmax and, in case, which is its value. Thus, knowing the limit, we can 
either be impelled to explore those boundaries or, on the other hand, to turn to other chiral 
entities. Here we have designed and trained a neural network which is able to estimate Rmax of 
halogenated [6]helicenes with a minimal computational cost. In particular, the neural network 
produced results regarding the structure-property relationships for systems ranging from mono- 
to hexadeca-halogenated [6]helicenes (Figure 1a). Such results were then compared with the 
prediction of two simpler and physically interpretable models. Rmax values can be deconvoluted 
as a linear combination of coefficients depending on the relative position of 1 to 2 halogens on 
the structure. While the approach is less precise than DFT calculations, the developed models 
allow a rationalization of the results by two main reasons: i) the neural network is able to 

https://doi.org/10.26434/chemrxiv-2024-dbw0z ORCID: https://orcid.org/0009-0001-4548-4868 Content not peer-reviewed by ChemRxiv. License: CC BY-NC-ND 4.0

https://doi.org/10.26434/chemrxiv-2024-dbw0z
https://orcid.org/0009-0001-4548-4868
https://creativecommons.org/licenses/by-nc-nd/4.0/


4 
 

produce a big amount of data that additionally fits with those obtained through calculations and 
ii) simpler models give interpretable physical information of the behaviour of the system. The 
former allows the creation of a full database in which the selection of the better substitution 
pattern is straightforward even for blind interpretative models. Considering the latter, we have 
interestingly found that better values do not correspond to randomly distributed structures but 
indicate that some positions and atoms are preferred. Under this circumstance, a kind of 
parameterization can be made, assigning different weights to each halogen for each position. 
With significant differences, this situation resembles the concept of free energy linear 
relationships developed from seminal studies by Hammet.41 That is, primary positions of the 
halogens establish a relative weight using hydrogen atom substitution as a reference. Vicinal 
substitutions are then considered as secondary corrections. 

We have organized the discussion presenting sequential training of models (up to 
hexahalogenated [6]helicenes) for which parameterizations seem to be robust, allowing a 
confident prediction about Rmax. For highly substituted systems, the model has been statistically 
checked. Optimal weighting factors determine that the best response in terms of Rmax can be 
found for some tetra-substituted [6]helicenes among thousands of millions of potential 
structures. Our full analysis suggests that 2,3,14,15-tetrabromo [6]helicene 1 is the best 
candidate to achieve the highest rotatory strength. It is worth noting that Rmax value for this 
compound has been predicted, being outside of the training dataset. Besides, the product has 
been synthetized and its chiroptical properties experimentally determined, being in excellent 
agreement with those theoretically predicted 

RESULTS AND DISCUSSION 
Dataset and model training. The success of deep learning approaches relies on the capabilities 
of neural networks to approximate functions from a number of sample points. Thus, we decided 
to use data samples as pairs <X, Y>, where X is the representation of the molecule and Y is the 
property we calculate by DFT (in this case Rmax) for a given X. Since all the input molecules 
share the same carbo[6]helicene skeleton, we decided to represent the helicene as a 1D vector 
constituted by 16 elements representing the substitution of the molecule (Figure 1b). To this 
regard, the combination of a simple vector containing the hydrogen position to be exchanged (1 
to 16) and the nature of the saturating atom (0 = H, 1 = F, 2 = Cl, 3 = Br, and 4 = I) is enough 
for the complete description of the structure. Furthermore, all models are built to respect the 
reflexion symmetry of the molecule, being the position n equivalent to the position 17-n, with 
n=1,...,16 (Figure 1b).  

Despite the simplicity of the representation, all hidden contributions of any geometrical 
distortions (bond lengthening, resonance/inductive effects, etc) are codified in the calculated 
rotatory strengths. For the training, examples dealing only with the P configuration in the helix 
were selected. By symmetry, conclusions derived from the study are applicable to the opposite 
M helical configuration, just by changing the sign of the R0j values. At this point it is worth 
noting that R0j values can be positive and negative for each configuration. We have analysed 
both situations (positive and negative Rmax) independently. The model is then trained to fit Y for 
X, and more interestingly, to make a meaningful estimation of Y for a given X. To this end, it is 
desirable to train the neural network with the most diverse and accurate available data. Hereof, 
theoretical calculations of a randomly selected family of [6]helicenes provided the dataset, 
including molecules with low and high Rmax values.42,43 It should be also noted that all the results 
are indispensable in every machine learning protocol.44,45 

Although neural networks are suitable regressors to capture complex non-linear relations 
between input molecular representations and the target magnitude, they are black-box models 
and suffer a lack of interpretability. Therefore, we decided to accompany this approach with two 
simpler alternatives, so-called 1- and 2-body models, where the interpretation of the underlying 
physics is more easily achieved. In the simplest 1-body model, the maximum rotatory strength 
of a molecule can be obtained directly by adding the 16 contributions of each atomic position. 
The contribution of each substituent depends on its relative position in the [6]helicene and the 
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chemical species at that position. Accordingly, the model has 5×8=40 free parameters, coming 
from the number of different atoms (hydrogen plus four halogens) multiplied by the number of 
non-equivalent positions, taking into account the system symmetry (Figure 2a, Eq. 2 and Figure 
3a). Furthermore, the 2-body model considers the previous 1-body term plus an additional 
contribution accounting for adjacent interactions between first neighbours (Figure 2b, Eq. 3). 
While the 1-body term was defined by a 1D vector of size 5 for each position, the 2-body term 
is defined by a 5×5 matrix (Eq. 3). This increases the number of free parameters of the 2-body 
model up to 240. From such on-site and neighbouring parameters general conclusions about the 
physics of the system can be extracted. Following this terminology, the neural network model 
could be considered a many-body model, hereafter called N-body model (Figure 2c, Eq. 4), 
where contributions of single positions are mixed by a multilayer perceptron (MLP) to obtain 
the final output (Figure 3b). Obviously, the accuracy of the N-body neural network model, with 
9257 parameters, is better than that of the 1- and 2-body models. However, the possibility of 
easily parameterize the response together with the good correlations also obtained by simpler 
models, make them very attractive and powerful strategies. All the models have an adding 
constant (R0), which is set to the mean rotatory strength of the whole dataset. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. a) 1-body model equation with the definition of the main parameters. Note that the 1-
body contributions from positions 9 to 16 are equal to those of positions 8 to 1, to respect the 
symmetry. b) 2-body model equation. c) N-body model equation for obtaining rotational 
strength (R) values, where f is a neural network-based function constructed to impose the 
symmetry 
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Figure 3. Process diagram of a) 1-body and b) 2-body model. After applying the linear block, 
the same MLP (multilayer perceptron) is applied to the original and inverted features vector to 
approximate a function respecting the symmetry of the system. 

Our dataset was composed of 32 mono-halogenated [6]helicenes and randomly selected families 
of di (150), tri (200), tetra (200), penta (200) and hexa-halogenated [6]helicenes (400) 
examples, constituting 1182 examples in total. For each molecule, the ECD spectra as a set of 
R0j values versus absorption wavelengths were calculated using DFT methods as implemented 
in Gaussian 09 (see SI for details).46 Most of calculated positive Rmax values are around 400-700 
10-40 cgs units with minor subsets with examples presenting low (100-300 10-40 cgs units) and 
high (800-900 10-40 cgs units) ones (Figure 4d). Negative Rmax values present a mean absolute 
value of 250 10-40 cgs units (R0) with a very minor subset beyond 600 10-40 cgs units. Owing to 
this different behaviour we analysed the two scenarios independently.  

The dataset was then split into 80% of the molecules for training and 20% for testing. The 
robustness of the predictive models was tested by means of a 10-times repeated random sub-
sampling validation. All the models were implemented and trained using TensorFlow.47 The 
employed data and code are available (see SI). The prediction of Rmax is treated as a regression 
task, and we employ evaluation metrics such as Mean Absolute Error (MAE), Mean Absolute 
Percentage (MAPE), Mean Squared Error (MSE) and coefficient of determination R2, to assess 
the performance of the proposed methods. Among these metrics, MAE represents the mean of 
the absolute differences between the predicted values and the actual values. It assigns equal 
weight to all error values, thereby mitigating the impact of outliers. MSE calculates the mean of 
the squared differences between the predicted values and the actual values, amplifying the 
influence of larger errors, thus more susceptible to outliers.  

Case 1. Positive Rmax values for tetrahalogenated P-[6]helicenes. The number of potential 
tetrahalogenated [6]helicenes is 232960. Despite that individual DFT calculations are easily 
affordable with actual computers, such a volume of required individual calculations is too 
expensive to be practical. Therefore, we used this case to evaluate the feasibility of the DL 
approach to provide reasonable estimations for those compounds. As mentioned before, a set of 
582 individual DFT calculations (the [6]helicenes up to four substituents) was used as training 
and test dataset. Figure 4 shows the correlation results using the three models, expanding from 
very different Rmax values. It can be observed that the correlation improves with the number of 
bodies together with a decrease of data dispersion. In this sense, the N-body model also presents 
a reasonable Mean Absolute Error (MAE) of 17 and 30 10-40 cgs for the train and test datasets, 
respectively. The MAE remains similar independently of the substitution degree which also 
evidences the reliability of the model for the considered substitution (Figure S7). With the 
confidence that the model is suitable at this level of substitution, we then estimated the rest of 
the members of the tetrahalogenated family (Figure 4d). The prediction yielded an Rmax 
distribution very similar to that obtained with pure DFT dataset (Figure 4d, orange), spanning 
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mainly from 200 to 800 10-40 cgs units. On the other hand, the DFT-calculated Rmax value for the 
parent [6]helicene is 698 10-40 cgs and the predicted one 696 10-40 cgs units, which suggests that 
the N-body model is getting the underlying physics of the system and that in general the 
substitution is detrimental, minimizing the Rmax values.  

 

Figure 4. Correlation between model-predicted (y axis) vs DFT-calculated (x axis) rotational 
strength (R, 10-40 cgs units) values for halo[6]helicenes up to 4 halogen atoms employing a) 1-
body, b) 2-body, c) N-body models. d) Distributions of positive Rmax obtained from DFT, 1-, 2-, 
and N-body models for tetrahalogenated[6]helicenes. e) Location of halogens in molecules with 
high Rmax from N-body model for tetrahalogenated[6]helicenes 

 

Table 1. Statistic parameters for the three 1-, 2-, and N-body models within the 
tetrahalogenated[6]helicene. 

 
1-body 2-body N-body 

Train Test Train Test Train Test 

MAEa 37±2 39±6 22±1 37±4 17±1 30±4 

RMSEb 63±3 62±11 39±2 59±8 31±3 47±9 

MAPEc 9.4± 0.5 9±2 4.8± 0.3 8±1 3.8± 0.3 7±1 

R2 
score 

0.69±0.03 0.70±0.10 0.88±0.01 0.70±0.10 0.92±0.01 0.80±0.1 

a Mean Absolute Error, b Root Mean Squared Error, c Mean Absolute Percentage. All values 
are in 10-40 cgs units. 

 

To achieve a better understanding of the origin of the Rmax values, we analysed derivatives with 
Rmax>800 10-40 cgs units, finding a substantial preference (between 650 and 750 possibilities) 
when bromine and iodine atoms (Figure 4e, green and red bars respectively) are placed in the 
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2,3,14 and 15 positions. It clearly shows that some positions and specific halogens are 
consistently favoured. This intriguing preference could be rationalized simplifying the model 
and invoking a kind of parameterization. That is, the Rmax value could be obtained by simple 
addition of individual contributions of substituents to an initial R0 value. Not surprisingly, the 
use of the 1-body approach and the original N-body simulation look similar (Figure 4d, blue and 
red), pointing out that the position, the halogen, and the Rmax value are in fact closely related in 
an apparently systematic way. Thus, the extracted parameterization data (See Table 2) are 
relevant to rationalize the previous findings obtained at the level of the N-body model. 
Hydrogen substitution by a halogen is in general disfavoring the maximum Rmax value except in 
the 2,3,14 and 15 positions when a bromine or iodine atom is placed. Nevertheless, the spatially 
close 1,4,13 and 16 positions are intriguingly highly disfavoring. In any case, these 1-body 
simulations must be only used to look for tendencies owing to the predicted Rmax values are 
systematically higher than DFT ones. In fact, the 1-body model showed us 15 privileged 
candidates for high Rmax values (878 – 914 10-40 cgs units) (Table S12), all of them possessing 
bromine and iodine atoms in the 2,3,14 and 15 positions. It is worth noting that the model is 
able to extrapolate values beyond the ones used in the training dataset. This is in fact critical for 
our purpose. Their DFT Rmax values were then calculated. Although resulting values were 
usually lower than the predicted ones (Table S12), it is especially relevant the case of 2,3,14,15-
tetrabromo [6]helicene 1 case (Figure 5). For it DFT calculations give an astonishing Rmax value 
for a small molecule of 942 10-40 cgs units. 

Differences between 1- and N-body simulations come, most likely, from the inability of the 
simple model to describe secondary interactions between bulky halogens placed in contiguous 
positions. If the assumption is true, an improved model including such contributions should 
present a better correlation. Consequently, a 2-body model (Figure 4b) showed a better profile 
than the 1-body model (Figure 4a). It is worth noting that these new models have been built to 
rationalize the results, remaining the N-body one of the most reliable in terms of predictions. 
Nevertheless, the fact that they perform in acceptable way is important, showing that machine 
learning treatment can help suggesting a physical interpretation. The primary parameterization 
table (Table S3) remains similar to the previous one with similar contributions of positions and 
halogens. Secondary contributions correct the initial values using a new 5x5 matrix for each 
position (Tables S4-S11). A close inspection of the secondary corrections shows that very few 
combinations can increase Rmax, being the global value controlled by the primary 
parameterization. Although the parameterization is not perfect, general trends can be observed. 
Hydrogen atoms are the most efficient substituents for high Rmax values except for 2,3,14 and 15 
positions in which bromine and iodine atoms are the best ones. On the other hand, no synergies 
seem to appear by the presence of vicinal halogens. On the contrary, the observed trend points at 
an increase in the number of halogens is always detrimental to achieve high R values.  

Trying to rationalize the results from a photophysical perspective, we analysed in more detail 
some prototypical examples. Symmetric structures with two halogens (1,16-, 2,15-, 3,14-, … 
Figure S8) were then calculated by DFT to find any potential structure-property relationship. R0j 
is described as the scalar product of the electric (μ0j) and magnetic (m0j) transition dipole 
moments for a certain transition, Rij = μ0jm0j = |μ0j|·|m0j|·cosθ. It is maximum when the electric 
(μ0j) and magnetic (m0j) transition dipole moments are maximized, and the mutual orientation is 
parallel (or antiparallel). The module of vector m0j is usually several orders of magnitude smaller 
than the module of μ0j. Being a component of the equation, very low |m0j| values result in very 
poor chiroptical response. This value is maximized when the transition involves the extended 
helicene π-orbitals,48 while localized π-orbitals usually give low |m0j| values. On the other hand, 
the angle θ is also critical. Small changes in the substitution pattern can result in very different 
cosine values. The corresponding parameters for dibrominated [6]helicenes and the parent 
[6]helicene, for comparison, are presented in Table 3. 

As it can be seen, the best Rmax value appears as a result of an optimization of |m0j| and the 
corresponding angle θ. Employing the Multiwfn software package49 we were able to visualize 
the transition magnetic dipole moment density graphs. It can be observed that the magnetic 
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transition extends to the bromine atoms for some favoured (2,15 and 3,14) positions, thus 
creating a better electron circulation during the transition (Figure 5b). This phenomenon was in 
fact evidenced by the models in their predictions. The combination of such |m0j| increase with a 
slightly better angle is the base of the improved Rmax values. A similar analysis can be done for 
the iodine substitution (See Table S16). On the other hand, in compounds with fluorine and 
chlorine substitution |m| is not improved and at the same time the angle is also worse than the 
one in parent helicene (Tables S13-S14). Consequently, such substitution is detrimental for 
exceptional Rmax values. 

 

Table 2. Parametrized coefficients for each atom in each positiona obtained with the 1-body 
modelb 

Position H F Cl Br I 

1 35.66 -90.05 -81.33 -55.88 -7.11 

2 -21.49 -52.21 6.91 42.68 41.32 

3 -23.53 -25.70 4.88 25.39 26.16 

4 28.73 6.98 -21.90 -26.65 -102.83 

5 32.47 2.77 -49.25 -58.93 -96.61 

6 16.09 -16.64 -27.80 -24.26 -62.44 

7 14.41 -7.56 -29.08 -46.16 -73.10 

8 6.89 -14.32 -23.95 -26.53 -35.49 
a n position is equivalent to 17-n position (e.g. position 3 and position 14). 
b Green shading corresponds to the most favoring substitution and red shading to the worst 

one. R0 = 508.89x10-40 cgs units. 
 

Table 3. Electric and magnetic transition dipole moments, angle between them (θ), angle cosine, 
and rotational strength DFT-calculated values for selected dibromo[6]helicenes.a 

Bromine 
Position 

1020 |μ| 
/ esu cm 

1020 |m| 
/ erg G-1 

θ/ º cos θ 
1040Rmax 

/cgs units 

1,16 447 3.59 68 0.37 606 

2,15 473 3.98 62 0.47 866 

3,14 564 4.42 70 0.34 847 

4,13 563 3.91 75 0.26 541 

5,12 652 3.74 78 0.21 506 

6,11 515 3.20 68 0.37 611 

7,10 596 2.90 70 0.34 569 

8,9 542 2.49 64 0.44 569 

[6]helicene 556 3.65 70 0.34 698 

a Parameters with equal/better values than parent [6]helicene are shown in bold. 
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Figure 5. a) Structure of 2,3,14,15-tetrabromo[6]helicene 1. b) Transition magnetic dipole 
moment density map for the best substitutions, corresponding to (2,15-) and (3,14-)dibromo 
[6]helicene. 

 

Case 2. Positive Rmax values for hexahalogenated (P)-[6]helicenes. At this point we tested a 
more complex case, the prediction of the highest positive Rmax values for the hexahalogenated 
[6]helicene family. It should be noted that in the previous case the models have been developed 
to predict the response of around 200,000 molecules, while including helicenes with 5 and 6 
halogens means increasing the number of possible molecules to almost 19 million. The critical 
point is how to train the new model at the same level than for the Case 1 owing to the notable 
increase of the sample size. Moreover, the model should at the same time successfully predict 
the response of the previous less substituted structures. If such kind of concordance is possible, 
similar physical processes must be at the core of the prediction. In this case we used up to 1,182 
randomly selected molecules containing one to six halogens as training examples. Such number 
was the result of a steady increase of examples until the N-body correlation remained 
statistically stable with a MAE of 27 10-40 cgs for train and 36 10-40 cgs for test (see Figure S3 
and Table S17). We observed that with the new model the predicted Rmax values for 
halogenated[6]helicenes (Figure 6c), although reasonable, were slightly smaller than in Case 1 
owing to training values for hexahalogenated [6]helicenes are, in general, smaller. Such full data 
set presents a Rmean value of 508 10-40 cgs units (Figure 6d) in which very few cases with Rmax 
beyond 800 10-40 cgs units appear. 

We were then curious about unravelling if parameterization process would continue being valid 
in Case 2. 1- (Figure 6a) and 2-body (Figure 6b) models were created, both presenting a 
reasonable correlation. This fact suggests that a kind of parameterization is again present in the 
physics of the system. Coefficients of the 1-body and 2-body models for both cases present 
common main features (SI, Tables S2-S11 for 1-body model and Tables S18-S27 for 2-body 
model). Among them, it is worth highlighting that no synergies were detected in the secondary 
parameters, showing that the higher the substitution, the lower the Rmax value. Furthermore, the 
2-body model presented a better correlation than in case 1, which is reasonable since the 
database now includes more adjacently substituted helicenes. That is, examples where halogens 
are more likely to occupy adjacent positions.  

With the models in hand, the Rmax value distribution for the total 1.64x107 
hexahalogenated[6]helicenes structures were predicted. Distributions obtained for the three 
models are quite similar, being the N body one slightly narrower than the others, and also 
properly fitting the DFT Rmax value distribution (Figure 6d). Again, the substitution increase 
seems to be detrimental for high Rmax values. This observed trend is in qualitative agreement 
with the underlying physics extracted from case 1. The introduction of additional substituents is 
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disfavouring the electronic circulation of the π conjugated system during the transition, 
minimizing |m0j| values. If that assumption is correct, higher substitution numbers from hepta- to 
hexadecahalogenated [6]helicenes would always yield poor chiroptical responses. The model 
suggested good hexahalogenated [6]helicene candidates (ca. 20) with high values of Rmax (>910 
10-40 cgs units) (Table S28). All have bromine/iodine atoms in positions 2,3(14,15), supporting 
the conclusions from Case 1, and also fluorine/chlorine atoms in positions 8-9 (Figure 6e). The 
simplified models show, as in case 1, that vicinal interactions are mainly detrimental to Rmax 
value. Therefore, it is reasonable that the fifth and sixth halogen atoms, being fluorine and 
chlorine (the smallest ones), lie on the 8,9 positions (the furthest ones) (Figure 7). All the 
suggested candidates for Rmax values were then evaluated by DFT (Table S28). Nevertheless, 
neither resulted in Rmax values higher than that obtained for privileged compound 1. 

 

Figure 6. Correlation between model-predicted (y axis) vs DFT-calculated (x axis) rotational 
strength (R) values for halo[6]helicenes up to 6 halogen atoms employing a) 1-body, b) 2-body, 
c) N-body models. d) Distributions of positive Rmax obtained from DFT, 1-, 2-, and N-body 
models for hexahalogenated[6]helicenes. e) Location of halogens in molecules with high Rmax 
from N-body model for hexahalogenated[6]helicenes. 
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Figure 7. a) Role of position and nature of the substitution in [6]helicenes and b) Example of 
derivatives with high, normal and low Rmax values. Color code: iodine, violet; bromine, brown; 
chlorine, green; fluorine, pale green. 

Case 3. Positive Rmax values from hepta- to hexadecahalogenated (P)-[6]helicenes. 

The previous cases suggest that an increase in the number of halogens is detrimental for the Rmax 
values. To check if the model developed in Case 2 remains valid for higher substitutions we 
tested a dataset of 1000 randomly selected DFT calculated examples from hepta- to 
hexadecahalogenated [6]helicenes (100 samples each). They were estimated by the three models 
and the results summarized Figures S10-S19. Figure 8a shows the DFT Rmax values and those 
predicted by the N-body model for the 100 heptahalogen[6]helicenes. Regarding DFT examples 
it can be clearly seen that the diminishing of Rmax value is consistent with the increasing number 
of halogens (Figures S10-S19). N-body model seems to remain valid, reporting suitable values 
for higher halogenations degrees even being trained using only with up to six halogens. 1-body 
model, despite the simplicity, gives a reasonable agreement, although worse than the N-body 
one. The 2-body model, which was successful in cases 1 and 2, becomes invalid (e.g. Figure 
S19). Higher halogenation degree is related with an increase in the halogen close contacts and 
the model is unable to evaluate the simultaneous interactions with second neighbours and 
beyond. It is consistent with the training using only six maximum halogens and therefore low 
halogen contact, being the model biased to very low values. The negative predictions are in fact 
an artefact from the undertraining dataset. On the other hand, the non-lineal N-body approach, 
although less interpretable, deals with such multiple interactions owing to the nature of the 
model, considering all the potential contacts at any distance, and thus overpassing the 
limitations of the 2-body model. The relevant thing here is that the N-body and 1-body 
predictions remain essentially valid for any kind of substitution. For the latter one, it seems to 
catch the main feature of maximizing |m0j| value without disturbing the electron circulation 
during the transition, which is essentially dependent of the halogen position.  

Additionally, if the corresponding distributions are considered representative and a Gaussian-
type curve is assumed, an estimation of the expected values beyond some critical number can be 
done (Tables S29-S31). For example, the possibility of finding a heptahalogenated[6]helicene 
with a Rmax higher than 1000 is 3.79 10-06 (0.000379%). Despite being such small probability, 
the enormous number of candidates means that approximately 300 helicenes with Rmax higher 
than 1000 10-40 cgs units are statistically predicted. We evaluated Rmax values for the entire 
family of heptahalogenated [6]helicenes, composed by 9.4x107 molecules. The maximum value 
among them all using the N-body model was 846 10-40 cgs units, in line with previous findings. 
For higher substitutions 106 examples of each family were evaluated to have a better description 
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of the phenomena. As the number of halogens increases, the Rmean value diminishes (Figure 8b), 
hampering the existence of compounds with exceptional Rmax values (Figure 8c displays the 
largest value of Rmax for each type of substitution). With the above-mentioned distributions 
(Figure 8b), the expectation for Rmax values beyond 1000 10-40 cgs units is spurious and the 
Gaussian-type distributions do not reveal any candidate with an Rmax above 1150 10-40 cgs units 
(Table S32). Basically, almost no halogen substitution beyond four halogen atoms in privileged 
positions allows a reinforcement of the optimal rotatory strength of the system. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8. a) Distributions of positive Rmax obtained from DFT and N-body model for 
heptahalogenated [6]helicenes including mean (µ) and standard deviation (σ). b) Predicted Rmax 
distributions using N-body model for [6]helicenes ranging from hepta- to hexadeca- 
halosusbtituted ones. c) Evolution of Rmax values for the whole series of substitutions using N-
body model. Solid line = prediction employing all possible molecules. Dashed line = prediction 
employing 106 selected candidates of each family. 
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Case 4. Negative Rmax values from mono- to hexadecahalogenated (P)-[6]helicenes.  

Negative Rmax values were also evaluated using a similar approach. With the knowledge 
acquired with positive ones we prepared the corresponding N-, 1- and 2-body models using the 
same DFT-based data set. At first glance it can be seen that the correlation within the N-body 
model is reasonably good, being the simpler models less reliable (See SI, Figure S21). The 
second thing is that the Rmax value span is more limited, being the Rmean smaller than in the case 
of positive ones. The expectation for exceptional negative Rmax values is then smaller. To be 
more confident with this assumption, the full family of hexahalogenated P-[6]helicenes was 
simulated (Figure 9b). Very few examples with Rmax values beyond -850 10-40 cgs units were 
predicted (Table S34). Its evaluation using DFT calculations also supported that negative values 
are smaller in absolute value than the positive ones. Nevertheless, a geometric analysis of the 
data points out once again that some positions are preferred (3,14- and 5,12-). In this case, the 
associated transitions are located along the C2 axis of the [6]helicene core, being the magnetic 
contribution associated to an electronic circulation following that axis. The analysis of the 
corresponding involved transition dipole moments suggests that the success of the preferred 
positions comes from an elongation of the helicene electron density to the substituents and 
consequently the increase of the involved momenta (Table S35 and Figure S22). 

For higher substitutions we followed a similar reasoning than in case 3 and created a 106-
element simulation for each family. Again, we observed that the Rmax values strongly diminish 
with the substitution and no values around 900 10-40 cgs units can be obtained (Figure 9c). This 
case concludes that positive Rmax values are higher than negative ones in absolute value for the 
P-enantiomer. 
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Figure 9. a) Correlation between model-predicted (y axis) vs DFT-calculated (x axis) maximum 
negative rotational strength (R) values for halo[6]helicenes up to 6 halogen atoms employing N-
body model. b) Distribution of negative Rmax for halo[6]helicenes up to 6 halogen atoms 
employing N-body model (blue) and DFT (orange). c) Evolution of negative Rmax values for the 
whole series of substitutions using N-body model. Solid line = prediction employing all possible 
molecules. Dashed line = prediction employing selected 106 candidates of each family. 
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Synthesis of selected examples with exceptional chiroptical properties. Although machine 
learning approaches are considered valuable for exploring the extrema of desired properties, the 
subsequent validation of the predictions is highly infrequent. In our case, the evaluation of the 
fit between the predictions of the model and the reality was carried out. The most outstanding 
candidate in terms of chiroptical properties, compound 1 was synthesized (See SI for details). In 
addition, other related compound, 2,15-bromo[6]helicene (2), also proposed as candidate by the 
models, was also prepared for comparison following a described procedure.50 Structural 
assignment was carried out by usual NMR techniques but also by single crystal X-ray 
diffraction of suitable crystals for compound 1. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 10. a) Top (left) and front (right) views of the crystal structure of tetrabromo[6]helicene 
1. Angles and distances: φ1 = φ4, 7.2°; φ2 = φ3, 28.7°; a, 4.10 Å; b, 4.41 Å. H atoms have been 
omitted for clarity.51 b) Theoretical (dashed lines) and experimental (solid lines) ECD spectra of 
parent [6]helicene (grey) and di- (black) (2) and tetrabromo (red) (1) substituted ones. 

 

The results obtained from the refinement of the diffraction data confirmed the proposed 
structure of the compound. Its analysis revealed that the main geometrical features are similar to 
those of the unsubstituted [6]helicene.52 The higher distortion is observed in the central aromatic 
rings, with dihedral angles of 28.7° (φ3) while those on the more peripheral rings are 7.2° (φ4). 
The mean value of the dihedral angle is, therefore, 17.9°. The dihedral angles in the crystal 
structure of the [6]helicene are, however, slightly larger, with values of 11.1°, 30.1°, 31.2° and 
15.1° (mean value, 21.9°).53 As a result, the C2-C15 distance and that between the centroids of 
the outer aromatic rings are 4.10 Å and 4.41 Å, respectively. The corresponding distances in the 
solid-state structure of the [6]helicene are 4.64 Å and 4.49 Å. The angles between the mean 
planes of the outer rings of the helicene moiety are 52.2° for 1 and 59.6° for [6]helicene. 
Nevertheless, these subtle differences might arise from the different packing observed in both 
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crystal structures. Thus, for the [6]helicene there is a higher inclusion of the outer ring of 
another helicene molecule within the pitch, while for 1, this inclusion, which involves now the 
central part of the helicene, is less pronounced (see SI for details). 

We then studied the chiroptical properties, particularly the ECD, not reported for compound 2. 
For parent [6]helicene the values are also available for the comparison with the precedent ones.6 
It is worth noting that Rmax value is not directly extracted from the experimental ECDs. They 
usually register the ΔA or the molar circular dichroism Δε at any wavelength. Those values 
result from the summatory of contributions of different S0 to Sj transitions with different 
magnitudes and signs. Considering the same envelop function for all the transitions in the 
different compounds, DFT simulated ECD gives a suitable comparison scenario (Figure 10). 
Experimental ones for compounds 1 and 2 are in excellent agreement with the expected ones. 
Molar circular dichroism for tetrabromo[6]helicene 1 (317 M

–1cm–1) is higher than for the 
dibromo derivative (287 M

–1cm–1), matching as well their relative intensities. Those are higher 
than the reported for parent [6]helicene (259 M

–1cm–1).6 Overall, this final experimental work, 
validates the accuracy of the predicting models, according to their corresponding trainings. 
Thus, the reliability of the developed deep learning, turns it into a perfect tool on the rapid 
elucidation of optimal synthetic targets in order to maximize chiroptical properties. 

CONCLUSIONS 
Taking advantages of deep learning techniques, we have developed a neutral network to predict 
the Rmax values of billions of halogenated [6]helicenes, from one to the full 
hexadecahalogenated derivatives, with a minimal computation cost. We have built three 
different models with increasing complexity (1-body, 2-body and N-body respectively), whose 
predictions reasonably correspond with the DFT-calculated values. Although the best 
correlation is always obtained with the N-body model it is worth noting that a parametrization 
of Rmax acquire evident physical meaning when simpler 1- and 2-body models are used in 
derivatives with up to six halogen atoms. It has also been observed that increasing the number 
of halogens above four promotes a diminish of Rmax. More interestingly, we have found a 
structure-properties relationship, as there are favoured positions and halogen atoms that increase 
its value, mainly bromine and iodine in 2,3 and 14,15 positions. An exhaustive analysis of data 
has been done, considering both positive and negative values of rotational strength, presenting 
these last lower values. Finally, the predictions have been experimentally supported by the 
synthesis of the two best candidates predicted by the network, confirming the optimal ECD 
values in excellent agreement with the predicted by the deep learning approach.  
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