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We present for the first time a multiscale machine learning approach to jointly simulate atomic
structure and dynamics with the corresponding solid state Nuclear Magnetic Resonance (ssNMR)
observables. We study the use-case of spin-alignment echo (SAE) NMR for exploring Li-ion diffu-
sion within the solid state electrolyte material Li3PS4 (LPS) by calculating quadrupolar frequencies
of 7Li. SAE NMR probes long-range dynamics down to microsecond-timescale hopping processes.
Therefore only a few machine learning force field schemes are able to capture the time- and length
scales required for accurate comparison with experimental results. By using a new class of machine
learning interatomic potentials, known as ultra-fast potentials (UFPs), we are able to efficiently ac-
cess timescales beyond the microsecond regime. In tandem, we have developed a machine learning
model for predicting the full 7Li electric field gradient (EFG) tensors in LPS. By combining the long
timescale trajectories from the UFP with our model for 7Li EFG tensors, we are able to extract
the autocorrelation function (ACF) for 7Li quadrupolar frequencies during Li diffusion. We extract
the decay constants from the ACF for both crystalline �-LPS and amorphous LPS, and find that
the predicted Li hopping rates are on the same order of magnitude as those predicted from the
Li dynamics. This demonstrates the potential for machine learning to finally make predictions on
experimentally relevant timescales and temperatures, and opens a new avenue of NMR crystallog-
raphy: using machine learning dynamical NMR simulations for accessing polycrystalline and glass
ceramic materials.

I. INTRODUCTION

Probing dynamical effects is particularly important for
energy materials, in which mobile ions drive the device
functionality. The mobility of species and structural fea-
tures such as disorder and defects are closely interwoven,
and often are the critical factors for determining device
performance. In order to establish a correlation between
structure and dynamics, various experimental ssNMR
methods can be employed [1, 2]. One such method is SAE
NMR, which is commonly used to study Li dynamics in
operando within solid-state Li-ion battery materials [3–
6]. SAE probes the quadrupolar interaction of the EFG
tensor at the 7Li nucleus (spin I = 3/2) with its local
surrounding environment in order to observe the motion
of Li-ions hopping between various sites in a material.

Combining static experimental ssNMR spectra with
first principles density functional theory (DFT) is al-
ready an established method for elucidating structure
in crystalline and amorphous battery materials [7–11].
Yet, up to now, this field has placed a strong focus
on calculating chemical shielding (CSA) tensors, and a
less prominent focus on calculating EFG tensors, mainly
as quadrupolar interactions are only observed for nuclei
with I > 1/2. While the calculation of static EFG ten-
sors using DFT is a straightforward approach, a tech-
nique such as SAE requires computational methods that
are capable of following dynamic processes over both long
length and timescales. Studying these dynamics is of
course impossible with DFT calculated ssNMR tensors
(both CSA and EFG tensors), due to the computational
constraints associated with the fact that DFT typically
scales as O(N3). Even recent applications of machine
learning to NMR have been limited to static use-cases

[12], incapable of capturing dynamical or time-dependent
effects. A classical approach using the Sternheimer ap-
proximation has proven successful for tracking ion motion
in liquid electrolytes, where the fast ion motion reduces
the requirements for computing NMR observables to pi-
cosecond timescales [13]. However, for slower ion motion
(relative to the liquid state), this approach is not feasi-
ble, and therefore cannot be applied to study solid-state
Li-ion motion, which requires simulations on the order of
microseconds.

Fortunately, the recent introduction of machine learn-
ing inter-atomic potentials (MLIPs) has enabled simula-
tions of such long-timescale processes within reasonable
computational time and at sufficient fidelity for complex
materials [14–16]. The first generation of MLIPs achieved
speedups of three orders of magnitude over DFT, making
nanosecond simulations possible in many cases [17–19].
Even more recently, a set of Ultra-Fast machine learning
Potentials (UFPs) was introduced [17] which provides a
speedup of nearly five orders of magnitude over DFT,
while maintaining the same accuracy as some of the most
accurate MLIPs such as the Gaussian Approximation Po-
tential (GAP) [18]. With the UFP, it is now possible to
routinely simulate up to the microsecond timescale al-
most at DFT accuracy [20–23].

By using the UFP combined with a machine learning
model for EFG tensors, we can now extend the capabil-
ities of NMR crystallography to make dynamical simu-
lations on microsecond timescales a reality. Using this
UFP+ML-EFG model, we will demonstrate how to cal-
culate the relevant ACF of quadrupolar precession fre-
quencies for SAE experiments in the fast ion conductor
Li3PS4 (LPS). LPS is the ideal system to study dynamic
Li processes as it has both a crystalline (�-LPS) and
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amorphous (am-LPS) phase which are Li-ion conduct-
ing with predicted Li hopping mechanisms in the 105 to
107 s�1 range [24, 25]. We finally propose to use this
method in combination with experimental SAE in order
to further study the intermediate glass-ceramic LPS ma-
terials, which are known to have large amounts of disor-
der [26], as we show that SAE would be highly sensitive
to understanding Li-ion motion in these materials on the
micro-structural level.

II. METHODS

A. SAE NMR and the EFG tensor

SAE NMR is a probe of the change in the quadrupolar
precession frequency (!Q) over time for a specific nucleus
with a spin I > 1/2, such as 7Li, which has a nuclear spin
of I = 3/2. For the nucleus of a single Li atom, !Q is
extracted from the EFG tensor V, which describes the
interaction between the quadrupole of the nucleus and its
surrounding electric field. The EFG tensor is the second
positional derivative of the electric field V around the
nucleus,

Vij =
@2V

@xi@xj
. (1)

By diagonalizing the resulting tensor and finding the
eigenvalues and eigenvectors, !Q for each 7Li atom can
be computed,

!Q =
1

2
CQ(3 cos

2(✓)� 1� ⌘ sin2(✓) cos(2�)) . (2)

In Equation 2, CQ is the quadrupolar coupling constant
of a single atom of 7Li, which defines the magnitude of
the tensor V, ⌘ is the asymmetry parameter which de-
scribes the shape of the tensor V, and ✓ and � describe
the orientation of the tensor V with respect to an ex-
ternal reference system [27]. Using DFT, it is possible
to calculate an individual CQ and !Q for every single Li
atom in the simulation. An SAE NMR experiment mea-
sures an ensemble average of the single particle correla-
tion functions for each Li atom within different electronic
environments, which have distinct !Q [3].

To generate an echo experimentally, which is propor-
tional to the !Q(t), a Jeener Broekaert pulse-sequence is
used [28, 29], and the resulting hACF!Qi, measures the
phase of !Q(t = 0) with !Q(t = tm) where tm is the
mixing time used in the pulse sequence. In the case of
I = 3/2 [3],

hACF!Qi =
9

20
hsin (!Q (tm = 0) tp) · sin (!Q (tm) td)i .

(3)
The total hACF!Qi is calculated as an ensemble average
over all the Li sites within the sample for a given pulse
time tp, decay time td, and mixing time tm. In the case

of a simulated hACF!Qi, the pulse and decay time follow
{tp, td} ! 0, allowing us to simplify Equation 3 to [30],

hACF!Qi / h!Q (tm = 0) · !Q (tm)i. (4)

The hACF!Qi measures the probability of finding a Li-
ion at time t = tm in a position with an equivalent !Q

as it had at time t = 0. Thus, in materials in which the
Li atoms visit sites with different !Q, the hACF!Qi in
Equation 4 typically behaves as a decaying exponential
function and one can extract the decay time ⌧SAE directly
using a stretched exponential form of the Lipari Szabo
relation [3, 31],

hACF!Qi = b2 + (1� b2) · exp (�(tm/⌧SAE)
�). (5)

The exponential Lipari Szabo decay assumes normal
translational diffusion and a random orientation of the lo-
cal environment with respect to the magnetic field. This
assumption holds for glasses or polymer solutions which
have a random distribution of environments either due to
the amorphous nature of the material or due to the tum-
bling motion of the polymer in a liquid [13]. In an ideal
liquid with fast diffusion, the stretching factor � is 1.0,
and the exponential decays to 0. However, in complex
solids, some memory of previous sites may be retained
during the decay and averaging might not be complete,
and therefore the exponential decays to a constant value
and � < 1 occurs e.g. for cases of subdiffusion as in a
diffusion-trap model [32]. From the SAE decay time,
⌧SAE, the effective Li hopping rate is then given by ⌧�1

SAE.

DFT simulations access the limit of {tp, td} ! 0, as in
Equations 4 and 5, and neglect any experimental dead
time, hence allowing us to naturally simulate a non-
ensemble averaged ACF!Q for site specific trajectories
within a molecular dynamics (MD) simulation. We can
therefore target processes which are faster than the lower
limit of what is possible in experimental SAE, as the ex-
periment is limited by the lower bound on the order of
10 µs, defined by td and tp as well as the inverse of the
quadrupolar interaction [30, 33]. It is therefore possible
to extract an atomistic ACF!Q from an MD simulation
as long as one can calculate the EFG tensors for all Li
atoms across every snapshot of the simulation. A single
snapshot of the MD simulation with !Q and CQ calcu-
lated for each individual atomic site from DFT is the
equivalent of the 0 K temperature limit, in which all mo-
tion in the system is frozen and all ions remain in their
initial site. Under realistic room temperature experimen-
tal conditions for SAE, the quadrupolar observables are
averaged (C̄Q and !̄Q), not only over the fast timescale
hopping events which are masked in experiment but also
over thermal effects and different Li sites.
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FIG. 1. Workflow of the UFP+ML-EFG training. The left panel shows the active learning workflow (A) starting from
a set of structures used to train a GAP [18] for LPS [21] to the final training of the UFP (B) and ML-EFG model (C). The
UFP has an RMSE in the energies of 3.1 meV/atom and forces of 109.9 meV/Å . The ML-EFG model is assessed both by the
quality of the relative orientation of the tensors and the MAE in !Q. C shows the combined distribution function (CDF) of
the quaternion scalar product between the DFT and ML quaternions, qDFT · qML. This indicates that the majority of tensors
are oriented in the same direction comparing DFT to ML. The ML-EFG model has an error of 7.4 kHz on !Q, where the
experimental sensitivity of 7Li SAE is shown shaded in red, as 10 kHz for !Q.

B. UltraFast Potentials

Studying timescales relevant for spin alignment mea-
surements necessitates an efficient methodology for the
evaluation of energies and forces to drive molecular dy-
namics over microsecond timescales. Xie et al. have re-
cently introduced a new interatomic potential, match-
ing the accuracy of established MLIPs but boosting the
speed by one or two orders of magnitude, such that it is
comparable with the computational efficiency of classical
force-fields [17]. The architecture uses a local represen-
tation of atomic environments as established by funda-
mental work using SOAP and Behler-Parinello symmetry
functions [34, 35].

The energy of the system is expanded as a sum of
2-body and 3-body contributions using cubic B-splines,
which combine the beneficial properties of smoothness
and differentiability with the advantage of a compact sup-
port. Hence, the number of basis functions that need to
be evaluated in every energy computation step is strongly
limited, as a maximum of four functions can be non-zero
in every segment. The low number of basis functions
directly relates to a high computational efficiency [17].

The UFP is trained using the active learning procedure
shown in the workflow in Figure 1A. The initial dataset is
an existing set of LPS structures which was used to train

a GAP [18] for LPS [21]. The UFP is trained and itera-
tively improved by adding structures of �- and am-LPS
to the training set. Structures are drawn from UFP-MD
simulations, where the UFP used for each iteration is
the most recent UFP obtained during the training work-
flow. This active learning cycle of training, UFP-MD
simulation, and model evaluation is repeated iteratively
until convergence of the UFP energy and force errors is
achieved. Finally, the converged energy and force errors
over a withheld test set are displayed in Figure 1B (3.1
meV/atom and 109.9 meV/Å, respectively). These are
comparable with the corresponding errors for the GAP
for LPS [21]. In addition to the iterative training proce-
dure used to create a robust dataset, the hyperparame-
ters specific to the UFP model were also optimized. De-
tails are given in the Supporting Information Table I.

C. An ML-EFG model for EFG tensors

The Symmetry Adapted Gaussian Process Regression
(SA-GPR) machine learning framework, combines covari-
ant atomic descriptors with symmetry adapted kernels
in order to learn tensors of any dimension with Gaus-
sian process regression [36]. We have previously shown
that by using tensorial learning via the SA-GPR frame-
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work, we are able to predict quadrupolar frequencies (!Q)
for the 7Li nucleus within the experimental sensitivity of
SAE NMR [37]. We couple the workflow for tensorial
learning to the active learning procedure used for train-
ing the UFP, as shown in Figure 1A, in order to train a
model for predicting the 7Li EFG tensors of �- and am-
LPS. The final set of structures from the active learning
procedure for the UFP is used as the training set for
validating the ML-EFG model.

The final set of DFT computed 7Li EFG tensors over
structures of Li3PS4 contains 166 diverse structures from
the LPS UFP model, which have a total of 14,448 Li envi-
ronments. The EFG tensor for each atom is calculated for
all the structures using the plane-wave pseudopotential
DFT code CASTEP v22 [38, 39]. The hyperparameters
for the SA-GPR descriptor are optimized as described in
the Supporting Information, using a 5-fold cross valida-
tion procedure with a test set, which is withheld from
training. The resulting mean absolute error (MAE) for
the test set in !Q is 7.4 kHz, and the correlation plot
is shown in Figure 1C. It is important to note that the
density of points of !Q within the red bars is high, and
thus this representation highlights the outliers as they
are clearer to distinguish from the majority.

In addition to evaluating the MAE in !Q, it is also
important to validate how well the ML-EFG model pre-
dicts the orientation of the 7Li EFG tensors. Besides
magnitude (CQ) and shape (⌘), the hACF!Qi is a sensi-
tive measure of the orientation of one tensor at a time tm
relative to another at t0. We use the unit quaternion q
to uniquely define the orientation of each tensor [37, 40].
The unit quaternion is a superior metric for determining
orientation over Euler angles, as it is independent of the
choice of reference system. Therefore, in Figure 1C, we
show the cumulative distribution function (CDF) of the
scalar product between the DFT calculated and ML-EFG
predicted quaternions, q

DFT
·qML. A scalar product of 1

indicates perfect alignment, and from Figure 1C, we see
that around 75% of the predicted EFG tensors are well-
aligned with their DFT reference (qDFT

· qML
� 0.9).

This is an important factor as it will reduce the noise in
the hACF!Qi, Equation 4.

We finally test the ML-EFG model for size extensivity,
because the system sizes included in the training set are
between 200 and 256 atoms per unit cell, due to DFT per-
formance considerations, while our target structures for
�-LPS and am-LPS are 384 and 576 atoms, respectively.
Therefore, we calculated the EFG tensors using DFT for
two structures of �- and am-LPS each, extracted from
the final 1 µs UFP simulations, and predicted the 7Li
EFG tensors for these four structures using the ML-EFG
model (see Supplementary Information Figure S2). The
accuracy of the !Q parameter for these four larger mod-
els is 9.2 kHz, which is below the experimentally known
sensitivity of 7Li SAE experiments, 10 kHz. Thus we can
say with confidence that our model will have reasonable
accuracy on the larger system sizes used in the final 1 µs
UFP simulations.

III. RESULTS

A. Microsecond simulations with UFPs

In addition to the low energy and force errors of the
UFP shown in Figure 1, it is also important to validate
the behavior of the UFP relative to high quality first prin-
ciples methods. Therefore, we compare the structural
models generated using the UFP with literature models
generated from ab-initio molecular dynamics (AIMD).
The radial distribution function (RDF) for �-LPS and
am-LPS in a 300K, 1 µs simulation with the UFP is
shown in the Supporting Information, Figure S5, in com-
parison with two literature references for the RDF of �-
and am-LPS from AIMD [41, 42]. The UFP simulated
RDFs for both �- and am-LPS show excellent agreement
with AIMD. We also compare the UFP with the estab-
lished method of Turbo-GAP [43] for �-LPS and am-LPS
using the mean square displacement (MSD) at 500K (see
Figure S6 in the Supporting Information). We reach a
perfect agreement for the am-LPS and a deviation of a
factor of five for the �-LPS. The deviation can be ex-
plained with a much higher sensitivity of the MSD on
the barrier height and density in the crystalline mate-
rial and could potentially be improved by extending the
dataset with additional nudged elastic band calculations
over Li hopping events.

Furthermore, we can extract the average hopping rate
of Li-ions by discretizing the MSD of all independent sin-
gle ion trajectories (details of the discretization proce-
dure are given in the Supporting Information). From the
discretized trajectories we calculate Li hopping rates of
2.57⇥ 105 s�1 for �-LPS and 7.0⇥ 107 s�1 for am-LPS.
Our results of significantly faster ion diffusion in am-LPS
than in the crystalline �-LPS phase are in line with our
previous findings and experimental reports [21, 44, 45].

FIG. 2. MSD for �-LPS and am-LPS using the UFP
MSD of am-LPS and �-LPS (left), showing that transport
is roughly two orders of magnitude faster in the amorphous
material. A showcase of hopping detection (right) from the
absolute displacement in the case of �-LPS (top) and am-LPS
(bottom), hops are marked with green lines.

Finally, as a result of using the UFP, we are able to
simulate dynamics at 300K for 1 µs. To the best of
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our knowledge, simulations of this length have not yet
been executed using MLIPs. Typical simulation times
with MLIPs are on the order of nanoseconds, reaching
100 ns at most [46]. Additionally, most previous studies
use higher temperatures in their MD runs [21, 47, 48],
which induces an extrapolation error in their property
prediction at room temperature.
With an established methodology like the Turbo-GAP, a
1 µs MD simulation would require on the order of 1 mil-
lion CPUh. With an acceleration factor of 25 over Turbo-
GAP, the UFP-MD for LPS on the other hand was com-
putationally feasible in a couple of weeks (40,000 CPUh
on a single compute node).

B. ACF for quadrupolar frequencies

Using the UFP+ML-EFG model, we obtain the
hACF!Qi over a 1 µs simulation at 300 K run using the
UFP for both �- and am-LPS, as shown in Figure 3. The
hACF!Qi is averaged over all Li atoms in each system,
and normalized to [0, 1].

FIG. 3. hACF!Qi for �-LPS and am-LPS The hACF!Qi
given by Equation 4 calculated over a 1 µs UFP-MD simu-
lation at 300 K for 144 Li atoms in single-crystalline �-LPS
(top, orange) and 216 Li atoms in am-LPS (bottom, purple).
A decay time, ⌧SAE = 46ns can be extracted from the am-LPS
hACF!Qi.

1. �-LPS

As shown in Figure 3, there is no visible decay
present in the hACF!Qi of �-LPS at 300 K. Therefore

the hACF!Qi could not be fit using Equation 5. This
result is expected, and occurs for two reasons.

Firstly, and perhaps most importantly, we are simulat-
ing an infinite, pristine, single crystal, by imposing pe-
riodic boundary conditions over the unit cell of �-LPS.
Because SAE can only distinguish between sites with an
inequivalent average local EFG [3], if Li hopping events
only occur between sites with equivalent average EFGs
(!̄Q(t1) = !̄Q(t2)), the hACF!Qi will not exhibit the
characteristic exponential decay. While this would usu-
ally be associated with vanishing mobility (which is not
the case in �-LPS as shown in Figure 2), it can also be due
to insensitivity of SAE with respect to motion between
equivalent !̄Q. Thus, if there are a few sets of mutually
inequivalent sites with similar !̄Q one would obtain a
partially averaged !̄Q [33], which is the weighted average
between the !̄Q for each of these sites. A single crystal,
therefore, will always be such a case, because all of the
sites have the same predominant orientation throughout
the simulation. A slow decay, beyond the microsecond
timescale, would be dominated in a polycrystalline ma-
terial by Li motion across grain boundaries of differently
oriented crystalline grains. In this case, the ⌧SAE decay
could be modeled as a function of the Li diffusion coeffi-
cient and grain size distribution.

Secondly, in this particular example of �-LPS, there
are only two crystallographically inequivalent Li sites, a
tetrahedral LiS4 site and an octahedral LiS6 site, which
posses almost identical local EFGs. We can show this
by looking at a distribution of the DFT calculated !Q

values of all the crystalline �-LPS structures included in
the training set for our ML-EFG model, shown in the left
panel of Figure 4. The distributions are fairly narrow and
the average !̄Q for LiS4 is 10.8 kHz, and for LiS6 !̄Q is
13.8 kHz, a difference of less than 4 kHz. A close look
at the first 250 ns of the �-LPS hACF!Qi suggests that
there is a small initial decay due to the inverse jump
rate between LiS4 and LiS6 sites, which is undetectable
due to both the signal-to-noise ratio of the hACF!Qi as
a result of the overlap in !Q between the sites, as well as
the low number of Li sites (144 total) in the �-LPS unit
cell. This could likely be resolved in the model with a
larger sampling of trajectories, but is not relevant for the
observable quantities in the SAE experiment, where one
would observe the residual, partially averaged coupling,
shown in green.

To highlight the intricate relationship between tensor
shape and orientation in �-LPS that leads to the very
similar and narrow !Q distributions displayed in Fig-
ure 4 (left) we also compute a theoretical autocorrelation
function hACFCQi of the orientation-independent cou-
pling constant, CQ, experienced by the Li ions during
their motion through the crystalline model in the MD
simulation. We note that this is not a directly accessi-
ble quantity in the SAE experiment [49]. We compute
this hACFCQi in a similar fashion to that for !Q given in
Equation 4,
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hACFCQi / hCQ(tm = 0) · CQ(tm)i , (6)

and fit the resulting hACFCQi over the stretched expo-
nential given by Equation 5 to extract a decay constant
⌧ and Li hopping rate ⌧�1.

A histogram of all of the individual atomistic CQ val-
ues calculated using DFT on the �-LPS training set is
shown in Figure 4, right panel. The spread of CQ val-
ues for the LiS6 sites is much wider than that for LiS4,
and their averages are able to be discriminated (a 30 kHz
difference). LiS6 sites have an average C̄Q of 124.1 kHz,
whereas LiS4 sites have an C̄Q of 90.9 kHz . Thus while
!̄Q cannot be used to distinguish these two sites, their
C̄Q values could be a good target to understand the local
structure in ideal single crystal �-LPS.

FIG. 4. Distributions of !Q and CQ in �-LPS. The left
panel shows the distribution of tetrahedral LiS4 sites (blue) to
octahedral LiS6 sites (green), calculated using DFT, for the
crystalline �-LPS structure. The right panel uses the same
color scheme to show the distributions of CQ sites for �-LPS.
CQ and !Q are calculated for all 33 �-LPS structures in the
ML-EFG model.

Using the UFP-MD, we are able to track single-atom
trajectories across the simulation, and therefore can cal-
culate a single-atom ACFCQ , for each site in the �-LPS
crystalline structure. In order to understand how the
hACFCQi behaves, we separate the individual single atom
ACFCQ , by the Li sites at time t = 0. In Figure 5, we
plot both the individual ACFCQ and hACFCQi, where
the individual ACFCQ are colored by the site in which
the Li atom started at time t = 0. The hACFCQi average
is calculated over the 13 Li ions that experience a hop to
a different site (either LiS4 ! LiS6 or vice versa) during
the 1 µs simulation, to reduce the noise in the hACFCQi.
We show that averaging over only the sites which hop
is a reasonable assumption to make by comparing these
results to a 1 µs simulation at 350 K, shown in the Sup-
porting Information Figure S3, in which 102 Li atoms
hop during the simulation, and there is better averaging
over more sites.

From the top panel in Figure 5, we can clearly distin-
guish the individual ACFCQ for LiS6 sites (green), LiS4

sites (blue), and hopping events between the sites, as
there is a steep rise (or drop) in the ACFCQ at each hop-
ping event. Taking the average over all 13 Li sites, the
hACFCQi does exhibit an exponential decay. Fitting the
hACFCQi in Figure 5 to Equation 5, we find a decay time
of ⌧ = 1.19 µs, or a Li hopping rate of 8.41⇥105 s�1. This
is on the same order of magnitude as the Li hopping rate
extracted from the MSD, 2.57⇥105 s�1. Additionally, by
removing the orientation dependence, and averaging over
only the hopping sites, we achieve better signal to noise
ratio, and can more clearly distinguish the small initial
decay at (tm < 50 ns).

FIG. 5. hACFCQi for �-LPS By considering only the Li
atoms in the 300K simulation which perform a hop to another
site during the 1 µs simulation (either LiS4 ! LiS6 or LiS6

! LiS4), and calculating the hACFCQi over these sites which
hop during the simulation time we extract ⌧ of 1.19 µs. The
colors of the individual atom ACFCQ shown in the top left
panel correspond the starting site of the Li atom at time t = 0.
Thus LiS6 sites at t = 0 which hop to LiS4 sites have an
ACFCQ in green, and LiS4 sites at t = 0 which hop to LiS6

sites are shown in blue. The trajectories of all Li atoms are
colored in the same fashion in the right panel of the Li atoms
trajectory.

2. am-LPS

In contrast to the �-LPS hACF!Qi, which exhibits no
exponential decay, as shown in Figure 3, the hACF!Qi for
am-LPS shows a clear, fast exponential decay which can
be fit to the Lipari-Szabo relation [31] given in Equation
5 (� = 1.0). The decay time extracted from hACF!Q for
am-LPS is ⌧SAE = 46 ns, which corresponds to a Li hop-
ping rate of ⌧�1

SAE = 2.17⇥ 107 s�1. Comparing this with
the hopping rate extracted from the MSD (7.0⇥107 s�1),
we see that both methods predict the same order of mag-
nitude hopping rates for Li at 300 K. The hopping rate
extracted from ⌧�1

SAE is a slight underestimation to the
rate extracted from the MSD, however this is consistent
with the fact that the hACF!Qi is not sensitive to all ion
hops that occur within the material, only those for which
!tm 6= !t0 , as discussed above.
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Previous work on Li hopping in LPS using a 100 ps
AIMD simulation of am-LPS with 48 Li atoms at 600 K,
predicts Li hopping rates in the range of 1011 Hz [50].
Their method for determining a Li hopping event in-
volved tracking the escape time for Li atoms to leave a 3
Å radius surrounding the nearest polyanion and fitting
this escape mechanism to an exponential decay function.
Given the short timescale of the simulation, they were
only able to access hopping events with residence times
shorter than 100 ps (1010 Hz). As the shortest ⌧SAE = 46
ns, for real ion hops in am-LPS, this requires a simula-
tion of at least several nanoseconds at 300 K considering
the signal-to-noise ratio in the simulation to accurately
estimate the hopping rate. This highlights the impor-
tance of simulating both at room temperature and for
a sufficiently long simulation time, in order to achieve
convergence of the Li dynamics and observe the correct
motion of Li atoms within LPS. Similar inaccuracies from
simple extrapolation to ambient conditions are expected
for any material with broad and complex distributions of
migration barriers that become progressively accessible
upon temperature increase.

IV. DISCUSSION

This study pioneers the application of the latest gener-
ation of machine learning techniques to directly predict
dynamical ssNMR observables at microsecond timescales
from atomistic simulations. It is important to stress
that an ssNMR calculation with DFT accuracy on the
µs timescale would not be possible without leveraging
machine learning to predict the EFG tensors. Calculat-
ing EFG tensors for the 576 atom am-LPS unit cell over
a 1 µs simulation would cost roughly 22.5 million CPUh,
with snapshots taken every 100 ps. The same prediction
made using the ML-EFG model uses 500 CPUh. This
is a factor of 45,000 speedup over DFT-calculated EFG
tensors. Therefore, this is, to the best of our knowl-
edge, the first dynamical ssNMR calculation performed
at DFT level accuracy, and on an experimentally relevant
timescale.

By integrating first-principles methodologies, it en-
sures consistent multi-scaling between NMR calculations
derived from DFT and predictions applied to large-scale
structures. Unlike AIMD studies on Li-ion conduction
and diffusivity, where high temperatures are necessary in
order to promote ion motion and gather enough statis-
tics, we are able to simulate LPS at 300 K, which is the
relevant temperature for comparison with realistic exper-
imental solid state electrolyte systems.

By calculating hACF!Qi in both �- and am-LPS, we
find that the decay time for Li in am-LPS at 300 K is on
the order of 46 ns, while the hACF!Qi of single-crystalline
�-LPS exhibits no characteristic exponential decay, and
instead oscillates about an average value of hACF!Qi.
By considering the orientations of the EFG tensors dur-
ing the simulations in both �-LPS and am-LPS we can

FIG. 6. Heatmap ✓ and � distributions in �- and am-
LPS. The heatmaps show the concentration of the angles ✓
and � across the full 1 µs UFP-MD trajectory. The distri-
butions are colored by the total number of sites with that
combination of angles (✓,�), and in �-LPS the angle pairs
which arise from LiS4 and LiS6 sites are indicated.

see more clearly the differences in behavior of the EFG
tensor in these two materials. Figure 6 shows a 2D his-
togram of all of the accessed angles during the full 1 µs
simulation at 300 K for �- and am-LPS. In the �-LPS his-
togram (Figure 6 left), the majority of the angles (✓, �)
are clustered around either (⇡/2, 0) for LiS4 tetrahedra
or (⇡/2±⇡/6, ±⇡/4) for LiS6. On the other hand, there
are no clear preferred values of (✓, �) for am-LPS, indi-
cating that the Li atoms experience a wide array of en-
vironments during the 1 µs simulation. The large spread
in angular distribution in the am-LPS case is what leads
to the characteristic rapid decay shown in Figure 3, as
the Li ions visit sites with all possible orientations during
the full simulation, leading to loss of correlation, which
is normally characteristic of SAE in glasses or polymers
[13, 51]. Once Li atoms are in a single crystalline grain,
this orientational memory loss is no longer possible, and
we see slow, or non existent decay as in �-LPS.

We assessed the two limits of overall microstructure
in the LPS fast ion conductors. The �-LPS crystal rep-
resents an infinitely large fully uniform single crystal of
LPS, as depicted in orange in Figure 7. As such, all the
!Q values in both LiS4 and LiS6 sites have the same
predominant value (c.f Figure 4 left), which does not
vary throughout the simulation, even during Li hopping
events. In addition, the mean !̄Q for LiS4 and LiS6 are
only 4 kHz apart, and the spread of the individual atomic
!Q for LiS6 is entirely contained within the distribution
for LiS4, as presented in Figure 4. Therefore, we would
expect a vanishingly small decay of hACF!Qi for single
crystal �-LPS, in which only those two sites are accessi-
ble, and then observe a residual, partially averaged cou-
pling throughout. However in a polycrystalline material,
shown in green in Figure 7, where LiS4 and LiS6 sites
are oriented along different crystal axes in neighboring
grain boundaries, we are no longer limited by the pre-
dominant orientation of the ideal single crystal. In this
case, we would expect lower ⌧SAE, and a better sensitivity
to inter-grain Li-ion motion for SAE.
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At the other extreme, we consider the bulk am-LPS,
represented by the unstructured purple square in Figure
7, and find that hACF!Qi decays rapidly over a period
of 46 ns. In the homogeneous amorphous regime, we
can see that as the amorphous PS4 backbone changes
across the simulation, Li atoms experience continually
changing electronic environments, and thus we can think
of the Li atoms moving in a “glass-like” ensemble of sites
embedded in PS4 environments. At a 46 ns decay rate,
⌧SAE is outside of the range detectable by a real SAE
experiment which would, at best, yield a small residual
coupling b > 0 (see Equation 5). In a fast ion conductor,
we expect this rapid decay of the hACF!Qi, however this
is the first time we are able to accurately quantify the
rate of this decay in an amorphous material, highlighting
the importance of this UFP+ML-EFG approach.

These two regimes (single crystal and fully amor-
phous), which are straightforward to simulate, are not
representative of the realistic microstructure in glass-
ceramic LPS electrolytes [26]. All of the glass ceramic
materials that are critical for building the next genera-
tion of all solid state batteries such as LISCION, LIPON,
LGPS, and LPS [52] lie within this range between fully
amorphous to fully crystalline Li-ion conductors with hy-
pothetical ⌧SAE decay constants schematically depicted
in Figure 7. That is, they are a mixture of glassy regions
and crystalline regions (depicted as the Glass Ceramic
and Polycrystalline in Figure 7), in which the Li-ion con-
ductivity across grain boundaries is often the determining
factor for the quality of these super-ionic conductors. In
these cases, we propose that SAE will provide a unique
grain-boundary sensitive technique for understanding Li-
ion diffusion, as the intra-grain diffusion will be at either
the amorphous or crystalline limit, and therefore unde-
tectable with SAE.

Experimentally, the Grahnwehr group has observed
⌧SAE ⇡ 30 � 50 ms [53] in a polycrystalline sample of
beta-LPS, which is well above the intra-grain decay rates
we have predicted here . This can likely be rationalized
by sufficiently fast (⌧  1 µs) intra-grain diffusion lead-
ing to partially averaged coupling tensors, combined with
long timescale inter-grain diffusion processes between the
polycrystalline grains (⌧SAE ⇡ ms). However, determin-
ing the rates and mechanisms of these processes which
combine to give an experimental decay rate in the ms
time scale, requires dynamical NMR crystallography and
analysis techniques that allow one to unfold the vari-
ous timescales and effective partially averaged interaction
tensors contained in the measured data [49]. From this
point onward, we now have the capability to make such
an approach, by combining dynamical ssNMR with data
analysis and simulations to interpret the unfolded data
in terms of atomistic processes.

Beyond suggesting further work on grain-boundary
simulations, we demonstrate the potential to access mo-
tion even in single pristine crystalline Li-ions, by deriv-
ing hACFCQi and calculating a corresponding ⌧ , which
does exhibit a decay at 300K for �-LPS. Furthermore,

FIG. 7. Schematic of range of crystalline to amorphous
⌧SAE The left shows a range of decay functions, Equation 5,
with ⌧SAE from 50 ns to 5 million ns. The inset figures show
schematics of the expected microscale structure at each of
these varying decay rates, with black lines in the glass ceramic
and polycrystalline denoting different grains.

we show that the Li hopping rate predicted by ⌧�1 from
hACFCQi is comparable with that calculated from the
�-LPS MSD.

We are just at the beginning of this new era of
NMR crystallography in which we are able to accurately
model dynamical processes at the same temperatures
and timescales as experiment. This workflow combin-
ing UFPs and experimental observables is a baseline on
which the next generation of machine learning for mate-
rials methods can be based. We are now one step closer
to bridging the gap between theory and experiment, and
can tackle more dynamic in operando calculations, which
were previously computationally infeasible.
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FIG. 8. TOC Graphic Using machine learning we are able simulate Li dynamics and predict the autocorrelation function for
7Li spin alignment echo NMR in crystalline and amorphous Li3PS4.
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Supporting Information

Appendix A: ML-EFG model hyperparameter
optimization

All DFT calculations were performed with CASTEP
v22.1 [38] using the C19 pseudopotential set and PBE
exchange correlation functional [54]. The individual com-
ponents of the EFG tensor, Vij , were converged to within
4⇥10�3 V/Å2 at a plane wave cutoff of 1200 eV and k-
point spacing of 0.03⇥2⇡Å�1. The ML-EFG approach
uses �-SOAP as the descriptor [36] which has hyperpa-
rameters l, n, rc, and �. These describe the number of
angular components, number of radial components, cut-
off radius, and Gaussian width of the descriptor. These
hyperparameters were optimized using a combination of
a Box-Behnken [55] design-of-experiment approach with
5-fold cross validation across a training set of 11,391 Li
EFG tensors (80% of the total dataset). The optimal hy-
perparameters are l = 6, n = 6, rc = 6.0 and � = 0.3,
which have a mean absolute error (MAE) of 7.4 kHz in
!Q over the remaining 3057 Li environments (20% of the
total data set) in the test set, which was withheld from
cross validation. The MAE in CQ and ⌘ is given in Fig-
ure S1. There is good Pearson correlation in both cases
(r > 0.85) and low MAE (6.8 kHz MAE in CQ and 0.99
MAE in ⌘).

FIG. S1. MAE over test set for CQ and ⌘ Histogram
and correlation plot for CQ and ⌘ evaluated over the 20%
separated test set of 2057 Li environments in the ML-EFG
model.

By testing the model using 11,391 Li EFG tensors on
four additional large-scale structures withheld from train-
ing (results shown in Figure S2), we show that the ML-
EFG model can be extended to the large LPS structures
in our �-LPS and am-LPS simulations. The MAE in !Q

over four large structures extracted from the UFP-MD
trajectories is 9.2 kHz, which is within experimental ac-
curacy of 7Li SAE.

FIG. S2. MAE in !Q for four large structures extracted
from the UFP-MD trajectories The left panel shows the
MAE and distribution of !Q for a set of two �-LPS and two
am-LPS structures extracted from the 1 µs UFP-MD simu-
lations. Two of the structures are shown in the right panel,
with PS4 tetrahedra shown in purple (P) and yellow (S) and
Li atoms shown in green.

Appendix B: Calculating autocorrelation functions

For all autocorrelation function calculations of �- and
am-LPS, snapshots were extracted every 100 ps across
the full trajectory. For the 1 µs calculations, this resulted
in 10,000 total snapshots over which the 7Li EFG tensors
were predicted. The am-LPS structure has 576 atoms
total with the stoichiometry Li3PS4, so there are a total
of 216 Li atom trajectories in am-LPS over which the
hACF!Qi is averaged. For �-LPS there are 144 Li atoms,
which hACF!Qi is averaged over, and for hACFCQi, the
average is taken over only the Li ions which hop during
the simulation (13 sites at 300 K and 102 sites at 350K).

Both hACF!Qi and hACFCQi were calculated using a
sliding window averaging method in order to reduce the
numerical noise between !̄Q or C̄Q at different timesteps,
ti. The sliding window average was 10 ns for hACF!Qi

and 1 ns for hACFCQi. For the individual atom ACFCQ

shown in Figures 5 and S3, the window was 10 ns to
highlight the differences between LiS4 and LiS6. We
can justify the validity of using the sliding window av-
eraging through ergodicity, as averaging over a longer
timescale is equivalent to averaging over a larger num-
ber of Li atoms at a fixed time. In addition, in order to
account for the equilibration within the am-LPS struc-
ture, the initial !Q(t0) used to reference the hACF!Qi

was taken as the average over the first 100 frames, or
h!Q(t0),!Q(t1), ...!Q(t100)i. Finally, the hACF!Qi is
normalized between [0, 1].
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Appendix C: Simulations at 350 K

Given the slow diffusion time in �-LPS, there are a low
number of hops (13 in total out of 144 Li atoms) at 300K,
and for that reason, we have included another trajectory
at 350K for �-LPS which has 102 hops in 1 µs. The
corresponding hopping rate at 350 K is 1.70⇥106 s�1, as
extracted from the hACFCQi shown in Figure S3. This
is an order of magnitude faster than for �-LPS at 300 K,
which is the expected difference in hopping rates between
these two temperatures.

FIG. S3. hACFCQi for �-LPS at 350K The calculated
hACFCQi for a 1 µs trajectory of �-LPS at 350K gives a
decay rate of 0.59 µs or a Li hopping rate of 1.70⇥106 s�1.
Of the total 144 Li atoms in the cell, 102 atoms experienced
a Li hopping event during the 1 µs simulation. The top panel
distinguishes hopping events based on the initial site the Li
atom was in at time t = 0. Initial LiS6 sites (green) and
initial LiS4 sites (blue). The ACFCQ of each hopping event
is labeled.

In addition to the hACFCQi over the 1 µs simulation,
we also compare the angles ✓ and � across the different
sites in �-LPS in Figure S4. In the top panel, we find
that for the Li atoms which remained in their original
site, the angles (✓, �) were centered around (⇡/2, 0) for
LiS4 tetrahedra and (⇡/2±⇡/6, ±⇡/4) for LiS6. For the
Li sites which experience a hopping event at some point
during the 1 µs simulation, we separate these into Li-ions
which started out at a LiS4 and LiS6 site, respectively.
As expected, the distribution of angles is wider for the
hopping sites than for those that do not hop, but the
majority of the hopping sites are LiS6 sites which hop to
another LiS6 site. We can see this in the LiS6 hop his-
togram (bottom right Figure S4) which has the highest
density of (✓, �) at (⇡/2±⇡/6, ±⇡/4), which are all LiS6

sites. Whereas, the LiS4 hopping sites have a distribu-
tion of angles at both (⇡/2±⇡/6, ±⇡/4), and (⇡/2, 0),
indicating that some ions from LiS4 sites hop into LiS6

sites. However, all of these hopping events are masked
in the hACF!Qi, as in Figure 3, and are only shown here
in Figure S4 by decomposing the Li trajectories by their
angular components.

FIG. S4. Distribution of ✓ and � in �-LPS MD at 350K
separated by local environment. The four heatmaps
show, qualitatively, the different angular environments ac-
cessed during the 1 µs simulation for sites which do not expe-
rience a hopping event (top) and sites which do experience a
hopping event (bottom) starting from either an LiS4 or LiS6

site. The histograms are colored by the number of Li sites
across the trajectory which have a given (✓,�).

Appendix D: Technical details of the UFP fitting

The UFP-MD simulations for training are executed at
temperatures ranging from 300 K to 1000 K, using a time
step of 2 fs, and a simulation time of either 1 ns or 1 µs in
the NpT ensemble. All DFT reference calculations used
for generating the UFP are performed using FHI-AIMS
[56], the PBE exchange-correlation functional [57] and a
2⇥2⇥2 k-point sampling. Hyperparameter optimization
was performed and the results are shown in Table I. The
RDFs of �-LPS and am-LPS compared to AIMD from
[41, 42] are shown in Figure S5.

TABLE I. Hyperparameters of the UFP
Description 2B 3B
cutoff 6 Å 5 Å
lower cutoff 1 Å 1 Å
spline distance 0.4 Å 0.4 Å
ridge regularisation 1e-5 1e-6
curvature regularisation 1e-5 1e-5
 0.1
leading trim 0
trailing trim 3
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FIG. S5. Radial distribution functions of �-LPS and
am-LPS in comparison to AIMD references. �-LPS
(top) is compared to the AIMD RDF from Sadowski et al.

[41] and am-LPS (bottom) to the AIMD RDF from Smith et

al [42].

Finally, to compare the atom dynamics in the UFP
versus another high quality machine learning potential
for LPS, we simulated a 1 ns trajectory at 500K for both
�- and am-LPS using the UFP [17] and TurboGAP [43].
The resulting MSDs are shown in Figure S6, and we find
that for am-LPS the MSD is comparable between Turbo-
GAP and the UFP, and for �-LPS we have a five times
faster transport in the TurboGAP compared to UFP.
This can be explained by a insufficient barrier sampling
in the approaches, as the fitting of the interatomic poten-
tials is done using snapshots from MD simulations. Those
snapshots are strongly biased towards the minima and a
better estimate of the barrier height could be achieved
by including nudged elastic band [58] trajectories from
DFT into the training sets of both MLIPs.

Appendix E: Technical details of jump detection

For the discretization in order to detect jumps, we uti-
lize a hopping classification inspired by Smith et al. [42],

hi(t, a) = ✓(|ri(t)� ri(t0)|� a)), (S1)

where ✓ is the Heaviside function and a is a threshold
of square displacement. We set a to 3 Å and provide a
sensitivity analysis for this parameter (Figure S7). The

FIG. S6. Mean square displacement of a 1 ns MD run
of �-LPS and am-LPS at 500K The MSD for �-LPS (left)
and am-LPS (right) is compared between 1 ns simulations
in TurboGAP [43] and UFP [17] in order to validate the Li
diffusion behavior in the UFP model.

hopping detection method, Equation S1, is run over a
single Li trajectory until a hop is detected, and then re-
peated iteratively, using the detected hopping point as
a new starting point. Also an additional filter is used
which ensures a residence time of 0.5 ns to exclude jump
attempts from the detection. Examples of discretized Li
squared displacement trajectories of the �-LPS are shown
in Figure 2b.

We test the sensitivity of the calculated jump fre-
quency from MD simulations on the selected threshold
a from Equation S1 and show the result in Figure S7.
We find a plateau between 2.8 and 3.2 Å and thus select
a cutoff of 3 Å.

FIG. S7. Sensitivity of the computed jump frequency
on the selected threshold a of the absolute displace-
ment for am-LPS By varying the threshold distance, a for
computing a jump frequency we find a window in which the
jump frequency is stable (between 2.8 and 3.2 Å) and use this
to select the optimal threshold distance, 3.0 Å.

https://doi.org/10.26434/chemrxiv-2024-k4fbw ORCID: https://orcid.org/0000-0002-0699-0450 Content not peer-reviewed by ChemRxiv. License: CC BY 4.0

https://doi.org/10.26434/chemrxiv-2024-k4fbw
https://orcid.org/0000-0002-0699-0450
https://creativecommons.org/licenses/by/4.0/

	 Tracking Li atoms in real-time with ultra-fast NMR simulations 
	Abstract
	Introduction
	Methods
	SAE NMR and the EFG tensor
	UltraFast Potentials
	An ML-EFG model for EFG tensors

	Results
	Microsecond simulations with UFPs
	ACF for quadrupolar frequencies
	
	


	Discussion
	Author Contributions
	Conflicts of Interest
	Acknowledgements
	References
	ML-EFG model hyperparameter optimization
	Calculating autocorrelation functions
	Simulations at 350 K
	Technical details of the UFP fitting
	Technical details of jump detection


