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Abstract 

 

Predicting ADMET (absorption, distribution, metabolism, excretion, and toxicity) properties of 

small molecules is a key task in drug discovery. A major challenge in building better ADMET 

models is the experimental error inherent in the data. Furthermore, ADMET predictors are 

typically regression tasks due to the continuous nature of the data. This makes it difficult to apply 

existing methods as most focus on classification tasks. Here, we develop denoising schemes based 

on deep learning to address this. We find that the training error can be used to identify the noise in 

regression tasks while ensemble-based and forgotten event-based metrics fail to detect the noise. 

The most significant performance increase occurs when the original model is finetuned with the 

denoised data using training error as the noise detection metric. Our method has the ability to 

improve models with medium noise and does not degrade the performance of models with noise 

outside this range. To our knowledge, our denoising scheme is the first to improve model 

performance for ADMET data and has implications for improving models for experimental assay 

data in general.  

 

1. Introduction 

 

Predicting ADMET properties is a crucial task in the optimization of small molecules during 

drug discovery.1-3 In the early 2000’s, it was found that about 50% of the attrition in drug 

candidates came from poor pharmacokinetics and toxicity profiles.4 Due to advances in high-

throughput screening (HTS) and machine learning, we are now able to more accurately predict the 

ADMET profile of drug candidates in silico during early stages of drug discovery to reduce the 

likelihood of late-stage attrition.2,5 An ADMET predictor is also an integral tool in the lead 

optimization of candidate molecules as it can help make informed decisions and prioritize the most 

promising compound for synthesis.6-8    
ADMET assays, in practice, have experimental errors even when using validated procedures.9 

Erroneous measurements stem from multiple factors including procedural changes between 

different sources or overtime,9 calibration error of instruments,10 impurity or degradation in 

starting material,10 and human error. In addition, compounds with assay values beyond the 
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measurement limits can lead to incorrect values, resulting in a high peak near the measurement 

threshold in the data distribution. The error can be reduced or characterized by performing multiple 

measurements; however, in many cases this is impractical due to factors such as cost or time.9 It 

is challenging to directly reduce or identify noisy measurements within ADMET datasets, 

especially those that are large. Studies have shown that these experimental errors worsen the 

predictive performance of ADMET models11 and pose challenges in accurately evaluating the 

model’s true performance.12 It is thus crucial to devise a denoising scheme that can effectively 

reduce the noise in the ADMET data and recover the model performance. 

Denoising research has been primarily focused on imaging datasets to recover image quality and 

improve image classification tasks with corrupted labels.13-15 For other data types, including those 

related to health care, chemistry, and bioassays, denoising and noise detection have mainly been 

studied for class noise rather than regression noise.16-19 For example, two works in 2000 and 2016 

looked at denoising for improving the predictive performance of machine learning classifiers for 

rheumatic disease diagnosis and breast cancer diagnosis based on clinically-measured 

descriptors.16, 17 We explore existing denoising studies in more detail in the related work section, 

below. ADMET predictors are typically regression-based due to the continuous nature of the data, 

making it difficult to apply existing classification-based denoising schemes. Denoising studies 

conducted on regression tasks are very limited, and those leveraging chemical or drug discovery 

datasets are even more scarce leaving the topic largely unexplored. 

In this study, we survey several noise detection metrics, including ensembling, forgotten events, 

and training error, and devise deep learning based denoising schemes for ADMET assay data. 

Machine learning models are trained on several ADMET endpoints with artificial noise added and 

tested on a held-out set to evaluate the performance improvement after denoising. The results show 

that finetuning the model with the data denoised based on a deep learning model training metric, 

the training error, gives the best performance improvement. In addition, we present thorough 

analysis on the impact of data imbalance and dataset size on the denoising schemes. We also 

investigate how experimental errors in the test set affect the perceived model performance. Lastly, 

the effect of noise on multi-task models is examined to determine if the noise in one task 

propagates and affects performance on other tasks in the model. To our knowledge, this is the first 

study to present a denoising scheme for drug discovery ADMET data that improves predictive 

performance on regression tasks.  

 

2. Related Work 

 

2.1 Ensemble-Based Methods 

 

Many studies use ensembling of multiple submodels as a way to detect and filter noisy labels. 

Nguyen et. al. used ensembles of both models and epochs in their denoising framework to 

progressively filter noisy labels in image classification tasks.20 Yuan et. al. employed an ensemble 

of models trained on separate splits of data and filtered out data based on disagreement for a 

regression task related to glaucoma diagnosis.21 Both studies demonstrated that the ensembling-

based approach can identify noise and improve predictive performance of machine learning 

models. However, Heid et al. found that ensemble variance as a metric is a quantification of the 

prediction uncertainty based on model variance rather than model bias or error due to noise.12 This 

is a concern when using ensemble-based metrics for noise-detection. 
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2.2 Forgetting Events 

 

Catastrophic forgetting is a phenomenon where neural networks forget previously learnt 

information.22-23 Toneva et. al defined a forgetting event as an event where an example is classified 

correctly at time t in neural network training but subsequently misclassified at time t’ where t’ > 

t.24 This study showed that the samples in image classification datasets that exhibit a higher number 

of forgetting events tend to have noisy labels. However, in datasets with no noise, a higher number 

of forgetting events indicates that the sample may be more valuable to model performance. Toniato 

et. al. adopted this forgetting events strategy to both identify and denoise chemical reaction data 

for forward and retrosynthesis predictions.25 They found an increase in model accuracy and 

confidence with a decrease in bias when using this denoising strategy. 

 

2.3 Training Error 

 

Li and Mao conducted a study on denoising regression tasks from publicly available datasets 

covering various types of data including finance, real estate, social media, and the environment.26 

For this, they used training error as a noise detection metric. To combat the inhomogeneity of 

example types in a dataset, they used an iterative adaptive threshold for filtering noisy samples. 

Recently, Zhou et al. employed scaled versions of training error such that they account for varying 

epistemic and aleatoric uncertainties in the dataset.27 In a study from another group, training error 

was used to detect noise in bioactivity and toxicity datasets for both classification and regression 

tasks but the authors found that their filtering scheme did not improve, and was in fact detrimental 

to, prediction accuracy.28 To our knowledge, the training error metric has been utilized much less 

than aforementioned metrics and has not been shown to be successful in denoising schemes for 

chemical data. 

 

3. Methods 

 

3.1 Datasets 

 

Four ADMET assay datasets were collected from the literature29-34 as listed in Table 1: logD, 

human Fu,p, Papp, and hERG binding. These assays were chosen because they are important 

endpoints that are commonly measured in small molecule drug discovery that span a fairly accurate 

and diverse range of achieved model predictive performances. Each of these assays has inherent 

experimental error within the dataset that has not been reported and is difficult to quantify. To 

address this, we additionally used two quantum chemical property tasks from the QM9 dataset,35,36 

namely HOMO-LUMO gap and H298, as clean data for this study. These are synthetic data 

computed using density functional theory (DFT) at the B3LYP/6-31G(2df,p) level of theory. As 

these quantum chemical data contain no experimental noise, they serve as great alternative 

references for validating our denoising approaches. Each public dataset was split randomly such 

that the training set contained 80% of the molecules and the other 20% of molecules were used as 

a held-out test set. Our methods were additionally tested on internal data collected from Merck & 

Co., Inc. (Rahway, NJ, USA) as shown in Table 2. We used seven key ADMET endpoints from 

our drug discovery programs with varying levels of experimental error. These endpoints include 

logD, human Fu,p, rat Fu,p, Papp, hERG binding, kinetic FaSSIF solubility, and kinetic solubility at 

pH 7. The internal ADMET datasets were split to create clean test sets in the following way: only 
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the datapoints with multiple measurements and whose standard deviation among multiple 

measurements is less than 0.2 times the standard deviation of the entire data distribution are placed 

in the test set. The rest of the data was used in the training set. 

 

Table 1. Public datasets used in this study 

Dataset Data Count Description Data 

source 

LogD 4190 Distribution coefficient between octanol 

and water at pH 7.4, log10 transformed 

(29) 

Fraction of unbound 

plasma in human 

(human Fu,p) 

2717 Fraction unbound, log10 transformed (30-31) 

Apparent Permeability 

(Papp) 

6457 Apparent permeability in Caco-2 cells, 

in 10−6 cm/s,  log10 transformed 

(32-33) 

hERG binding 5108 Binding affinity (IC50) to human hERG 

potassium (K+) channel, in nM, log10 

transformed 

(34) 

QM9 HOMO-LUMO 

gap 

133802 Synthetic dataset from MoleculeNet of 

organic compounds with up to 9 heavy 

atoms. Computed at the B3LYP/6-

31G(2df,p) level. HOMO-LUMO gap in 

Hartree (duplicate SMILES deleted) 

(35-36) 

QM9 H298 133802 Synthetic dataset from MoleculeNet of 

organic compounds with up to 9 heavy 

atoms. Computed at the B3LYP/6-

31G(2df,p) level. Enthalpy at 298 K in 

kcal/mol (duplicate SMILES deleted) 

(35-36) 
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Table 2. Internal ADMET datasets used in this study, from Merck & Co., Inc. (Rahway, NJ, USA) 

Dataset Data Count Description 

LogD 608053 Lipophilicity measure at pH 7 where logD is 

the ratio of a compound’s concentration 

between organic solvent (octanol) and water, 

log10 transformed 

Fraction of unbound plasma 

in human (human Fu,p) 

23369 Fraction of the unbound (free) drug in human 

plasma, log10 transformed  

Fraction of unbound plasma 

in rat (rat Fu,p) 

56572 Fraction of the unbound (free) drug in rat 

plasma, log10 transformed 

Apparent Permeability (Papp) 55807 Apparent permeability through a cell 

monolayer. In-house Papp measurements in 

LLC-PK1 and MDCKII cell lines in 10-6 

cm/sec, log10 transformed 

hERG MK499 370148 Binding to the HERG channel through the 

displacement of MK-499 in Molar (M), -log10 

transformed 

FaSSIF Solubility 307341 Kinetic (high-throughput) solubility in FaSSIF 

(Fasted State Simulated Intestinal Fluid) 

solution in Molar (M), log10 transformed 

Solubility at pH 7 (SOLY 7) 454288 Kinetic (high-throughput) solubility at pH 7 in 

Molar (M), log10 transformed 

 

3.2 Model Details 

 

All ADMET models were built on a directed message passing neural network (D-MPNN) based 

architecture as implemented in Chemprop v1.6.1.37,38 The model takes the SMILES strings of 

chemical compounds as input and generates graph-based structures of compounds with initial atom 

and bond features. The graph representations pass through a message passing neural network and 

convert into molecular latent representations, which are fed into a feed-forward neural network to 

provide property predictions. A single-task model was constructed for an individual dataset. 

Hyperparameter optimization was performed on the datasets, and an optimal set of 

hyperparameters that provides reasonable accuracy across multiple datasets was selected as listed 

in Table 3. Chemprop’s default hyperparameters were used for model parameters not specified in 

the table. An ensemble of four submodels was used for all models discussed in this work unless 

otherwise noted. The ensemble was generated by using two different random training/validation 

set splits and subsequently using two different parameter initializations for each training/validation 

split, resulting in a total of four submodels. The average of the ensemble predictions was used to 

assess the model performance on a held-out test set. Unless further specified, the error bars in each 

figure correspond to the standard deviation among the four submodels of the stated metric in the 

figure.  
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Table 3. Chemprop model parameters  

Hyperparameter Value 

MPN Depth 3 (4 for internal) 

MPN hidden size 600 

FFN number of layers 3 (4 for internal) 

FFN hidden size 1200 (1300 for internal) 

Dropout 0 

Aggregation Norm 

Number of folds (training/validation split 

seed) 

2 

Ensemble size (parameter initialization seed) 2 

Epochs 80 (60 for internal; 15 for finetuning) 

 

3.3 Adding artificial noise 

 

 

 

 

 

 

Figure 1. Overview of noisy dataset creation. This creates nine unique noisy training and test sets 

for each dataset. 

Artificial noise was added on the aforementioned datasets as described in Figure 1. For the 

purpose of quantifying noise in each datapoint, we defined the original ADMET data as clean (“no 

noise”) reference data and measured our denoising schemes against the added artificial noise. We 

randomly sampled a subset of the data from the original dataset with a percentage  

𝑝 𝜖 {30, 50, 100}. Noise was added to each datapoint of this sampled subset. For each datapoint, 

the value of noise, 𝑔 , was determined by randomly sampling a gaussian distribution with 

magnitude scaling factor 𝑚 𝜖 {0.5, 1.0, 2.0} as shown in Equation 1. 

 

𝑔 ← 𝑁𝑜𝑟𝑚𝑎𝑙(𝜇 = 0, 𝜎 =  𝑚 ∗  𝜎𝑒𝑥𝑝)  (1) 

The standard deviation of the full original dataset, 𝜎𝑒𝑥𝑝, normalizes the magnitude of noise added 

to each unique dataset. The datapoints with the artificial noise were then combined with the 

remaining datapoints without noise to generate a noisy dataset. Combining all sampled percentages 

and magnitudes resulted in 10 different noise combinations for each dataset, including the original 

data set which has no artificial noise added. This procedure is done both on the training and testing 

sets separately. The performance of the models was evaluated on a 20% held-out test set both with 
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and without artificial noise. The training set was randomly split into around 90% training and 10% 

validation sets with different split seeds as described in Section 3.2. 

 

3.4 Noise Detection Methods 

 

Four noise detection metrics were applied: (1) Training error, (2) number of forgotten events, 

(3) ensemble variance, and (4) split variance. The procedure below outlines each noise detection 

metric.  

 

3.4.1 Training Error (TE) 

 

A model was trained on the training set. This model was used to predict values of the molecules 

in the same training set. The absolute training error was calculated on a per molecule basis.  

 

3.4.2 Number of Forgotten Events (FE) 

 

A forgotten event at epoch n occurs when the training error of epoch n is greater than the training 

error of epoch n – 1 (Equation 2).  

 

FE = {
1 if Training ErrorEpocb 𝑛 >  Training ErrorEpocb 𝑛−1  

0 otherwise 
(2) 

The number of forgotten events is calculated for an individual datapoint by the summation of 

forgotten events across all epochs used for training.  

 

3.4.3 Ensemble Variance (EV) 

 

Each chemprop model was trained using an ensemble of four submodels as described in Section 

3.2. The variance among the four model predictions was calculated on a per molecule basis.  

 

3.4.4 Split Variance (SV) 

 

Three chemprop models were trained on three non-overlapping splits of the training set. Each 

model gave predictions on the entire training set. The variance among the three model predictions 

was calculated on a per molecule basis.  

 

3.5 Denoising schemes  

 

Four main denoising schemes were tested as visualized in Figure 2. The TE Filter Model filters 

out the top 10% molecules with the highest training error. The remaining 90% filtered dataset was 

then used to train a new chemprop model. The TE Finetune Model uses the same filter as the TE 

Filter Model, however, the final model comes from finetuning the original model on the filtered 

dataset rather than training a new model from scratch. In this approach, the model parameters from 

the original model trained on the entire dataset were used to initialize the second model, which 

was subsequently fine-tuned on the filtered dataset. The Mean Correction Model differs from the 

two filter models as it replaces corresponding values of the top 10% molecules rather than filtering. 
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This model corrects by taking the mean of the predicted and original values. Similarly, the 

Prediction Correction Model replaces these values with just the prediction. The other metrics were 

tested using a denoising scheme analogous to the TE Filter Model. These models are referred to 

as the FE Filter Model, EV Filter Model, and SV Filter Model accordingly.  

  
Figure 2. Overview of the four denoising schemes tested. In this visualization, absolute training 

error is being used as a metric to detect noise. The noise detection metric is interchangeable for 

each denoising scheme. 

We also assessed performance against models built using two baseline schemes that are 

analogous to the TE Filter Model. The Ground Truth (GT) Filter Model is an oracle which filters 

the 10% data with the true highest noise. The Random Filter Model filters out 10% of the data 

randomly. 

The denoising schemes were evaluated on the same test set and compared using the coefficient 

of determination (R²) and mean absolute error (MAE) as the main performance metrics. It should 

be noted that the data filter or correction was performed only on the training set, and the test set 

remains intact and untouched throughout the analysis. 
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4. Results and Discussion 

 

4.1 Noise Detection 

 

 
 

Figure 3. Correlation with noise for each noise detection metric. The results presented are from 

the public logD dataset. (a-c): Absolute training error correlation to artificial noise with increasing 

amounts of noise added. (d-f): Other three noise detection metrics. Subfigures b and d-f have the 

same noise combination. We define low noise data points as those with artificial noise less than 

0.5 ∗ 𝜎𝑒𝑥𝑝 , medium noise data points as those with artificial noise between 0.5 ∗ 𝜎𝑒𝑥𝑝  to 1.0 ∗

𝜎𝑒𝑥𝑝, and high noise data points as those with artificial noise above 1.0 ∗ 𝜎𝑒𝑥𝑝. 

To evaluate the suitability of each noise detection metric, we compared the Spearman rank 

correlation coefficient r between the chosen metric and the absolute artificial noise added. A higher 

absolute value of the correlation coefficient indicates a better ability to detect noise. The results on 

the public logD dataset are displayed in Figure 3, and the corresponding figures on the other 

ADMET datasets can be found in the Supporting Information Section S1. 

Both split and ensemble variance metrics yield an uncorrelated scatter plot and small Spearman 

r correlation values as shown in Figure 3e-f. In addition, their stacked bar plots of the noisy 

distribution are uniform across all percentiles of their corresponding error metrics. Similarly, the 

forgotten events metric has a low correlation with the added noise and does not identify high noise 

data particularly well at either extreme (Figure 3d). This suggests that split variance, ensemble 

variance, and forgotten events are not suitable metrics for detecting noise. These findings are 

contrary to findings from prior studies using forgotten events or ensembling as a noise detection 
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metric,14,18,20-21,24-25 and this could be attributed to differences in the model when performing 

regression rather than classification.  

The training error metric correlates with data noise considerably more compared to the other 

metrics at the same noise scale (Figure 3b). The correlation becomes more pronounced when the 

dataset contains more noise (Figure 3a-c). In addition, the stacked bar plot shows that 85% of the 

molecules in the highest 10% of training error have high noise. This suggests that the training error 

metric is suitable for noise detection.  

In addition to its strong noise detection capabilities, training error is simple and quick to calculate 

for each datapoint. This metric is thus extremely applicable in practice compared to more complex 

noise detection methods, especially when noisy data needs to be quickly identified for hundreds 

of thousands of compounds for ADMET datasets. These results are observed across all datasets 

(see Supporting Information Section S1).  

 

4.2 Effects of Noise in Test Sets 

 

Prior studies indicated that the perceived performance of a predictive model is heavily dampened 

by a noisy test set.12,39 When testing on noisy data, metrics will show how well the model predicts 

on values with error rather than the population mean of the measurement.  

The same phenomena is observed in our results as shown in Figure 4. In every noise 

combination, the true performance of each model on the clean test set (blue bar) is much higher 

than the perceived performance on the noisy test set (orange bar). Overall, the un-denoised model 

(denoted as “No Filter” in Figure 4) demonstrates robustness to small magnitude of noise (0.5𝜎𝑒𝑥𝑝) 

when evaluated on the clean test set while the perceived performance underestimates the 

robustness with R2 decrease of 0.1 or more. The deviation between the true and perceived 

performances becomes more pronounced when the magnitude of noise becomes high (2𝜎𝑒𝑥𝑝). On 

the clean test set, the performance of the un-denoised model drops by R2 of 0.14 to 0.26 with high 

amounts of noise added whereas on the noisy test set, the drop is more substantial, ranging from 

R2 decrease of 0.5 to 0.7. Additionally, the perceived increase in performance from our denoising 

schemes is heavily dampened (Figure 4i). These trends are consistent across all ADMET assays 

tested (Supporting Information Section S2). 

This highlights the necessity of utilizing clean test sets when assessing the accuracy of ADMET 

models and comparing the change in performance between different models. This is especially 

important when determining the efficacy of a denoising scheme as it is difficult to tell the true 

performance improvement after denoising when the test set has noise. Thus, in this study, we 

compare the performance of the models on the clean test set without artificial noise to determine 

the true performances of the models. 

 

4.3 Denoising Scheme Performance on ADMET Data 

 

The performances of each denoising scheme for each noise combination is reported in Figure 4. 

In most noise combinations, the methods using the TE metric (blue numbers) perform better on 

the test set compared to the other metric filter methods (gold numbers). This corroborates our 

earlier findings that identify training error as the best metric for noise identification and proves its 

utility in a denoising scheme. 
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Figure 4. (a-j): Results summary for all noise combinations and all denoising schemes on the 

public logD dataset. Black numbered columns represent the baselines, gold numbered columns 

represent the denoising schemes using EV, SV, and FE, blue numbered columns represent the 

denoising schemes using TE, and the green numbered column is the ground truth baseline. EV, 

SV, FE, TE, and GT stand for ensemble variance, split variance, forgotten events, training error, 

and ground truth respectively. The clean test set is the original test set with no noise added while 

the noisy test set has the same combination of noise added as the training set, denoted in the title 

of each figure. Error bars are calculated using the standard deviation of the R2 among the four 

ensembles.  

 Our models yield varying performance changes relative to the original un-denoised model 

across different noise regions. For analysis throughout the paper, we identify the “low noise 

region” as all combinations where 𝜎 = 0.5 ∗ 𝜎𝑒𝑥𝑝 and noise is added to 30% or 50% of the data, 

the “medium noise region” as all combinations where 𝜎 = 1 ∗ 𝜎𝑒𝑥𝑝 or 2 ∗ 𝜎𝑒𝑥𝑝 and noise is added 

to 30% or 50% of the data, and the “high noise region” as all combinations where noise is added 

to 100% of the data. The noise combinations are categorized in these three separate regions because 

similar results are observed empirically within each region for all public datasets. 

In the original dataset with no artificial noise added, it appears that our denoising methods yield 

the same performance as the un-denoised model (Figure 4a). However, as discussed earlier, this 

may be because the test set has inherent noise which dampens the perceived performance increase 

of our models.  

The performance of our denoising schemes in the low noise region are similar to that of the un-

denoised model (Figure 4b-c). As observed previously in Figure 3, there is a weaker signal between 

training error and added noise when the dataset has smaller/less noise. The true noisy values are 

thus identified less by the proposed denoising schemes in this region. In addition, because the 

magnitude of noise is low, the inherent noise in the original dataset, which was assumed to be 

clean, could have a larger effect on the perceived performance of the models, resulting in an 

underestimated true performance increase. However, considering that the performance of the 

original model only decreases by 0.02-0.03 R2 when the noise is added for the low noise region 
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(𝜎 = 0.5 ∗ 𝜎𝑒𝑥𝑝 to 30%, 50% data), it is also possible that the room for model improvement is 

marginal for these cases. In fact, the ground truth (GT) filter yields only 0.01 or no R2 enhancement 

for the low noise region, which indicates that the benefit of denoising the training set is minimal 

for the low/less noise combinations. In the high noise region, the TE Finetune Model does not 

display any significant performance decrease whereas the other models have worse performance 

than the original model without denoising (No filter) as shown in Figure 4c,g,j. The TE Filter 

Model is a naive approach to denoising. Simply removing data limits the total examples the 

algorithm can learn from. Because the remaining training set still has high noise and fewer 

examples after filtering, the model performance is worse as it is more likely to overfit to the high 

noise examples. The Mean Correction and Prediction Correction models are heavily dependent on 

the accuracy of the un-denoised model. In the high noise region, the un-denoised model is less 

accurate and likely adds more noise into the dataset when being used to correct data values. In 

contrast, the TE Finetuning Model has less loss of information due to pretraining with the 

unfiltered dataset and does not introduce additional noise to the dataset, explaining its superiority 

to the other denoising approaches. 

Our methods increase the performance of the models in the medium noise region (Figure 4e-f, 

h-i). The TE Finetune method and the two correction methods are the best performing denoising 

schemes in the medium noise region. Very similar results are seen with all public ADMET datasets 

we tested (Supporting Information Section S2).  

Overall, the TE Finetune Model is the best performing denoising scheme for models using the 

10% training error cutoff. Figure 5 shows a summary of the performance of each model relative to 

un-denoised model averaged over all four ADMET assays. This further reinforces that the TE 

Finetune Model does not exacerbate the predictive performance in the low and high noise regions 

and enhances the performance in the medium noise region. Comparing our model with the ground 

truth baseline further demonstrates its utility. The ground truth baseline improves the R2 value by 

0.03 – 0.1 on average in the medium noise region while our TE Finetune Model improves the R2 

by 0.01 – 0.05 on average (Figures 5e, 5f, 5h, 5i). These improvements are on the same order, 

which is impressive given that the ground truth marks a theoretical upper bound to the denoising 

methods. Furthermore, it is evident that the performance increase of the TE Finetune denoising 

scheme is not due to randomness. Figure 5 shows that in most noise cases, the random filter 

baseline deteriorates the performance of the model on average while our TE Finetune denoising 

method performs significantly better than the random baseline. Additionally, finetuning is less 

computationally intensive and quicker relative to training a new deep learning model from scratch. 

These findings support and extend a previous study which used training error to denoise chemical 

datasets.28 This study found that simply dropping the noisy samples labeled by training error 

deteriorated the performance of the model due to overfitting to the remaining, smaller training set. 

However, this was tested where noise was added to 100% of the data and with relatively smaller 

datasets (most of them with less than 1000 data points). For similar cases (high noise, p=100%), 

our TE Filter method yielded similar results to their study, leading to lower model accuracy. On 

the contrary, we find that the TE Filter can improve the model performance in different noise 

combinations such as the medium noise cases displayed in Figures 5 e,f,h,i. A more extensive set 

of noise combinations and denoising schemes is investigated in our study, which demonstrates that 

regression-based ADMET data can be denoised for model improvement, especially when using 

the TE Finetune method.  
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Figure 5. (a-j): Performance of each denoising scheme relative to the un-denoised model across 

all four public datasets for each noise combination. Each bar corresponds to the average R2 change 

over four ADMET assays tested. “Adapt. TE FT” indicates the adaptive training error finetuning 

model.   

4.4 Determining an Adaptive Threshold for Denoising 

 

The TE Finetuning scheme is further tested using various threshold values to refine the amount 

of data removed in the finetuning step. So far, our denoising schemes have dropped or corrected a 

fixed 10% of the training data for all noise combinations. However, this approach is inefficient 

when the dataset contains much more or less noisy samples than the 10%. We therefore tested 

several thresholds that adaptively filter data depending on the amount of noise present in the 

dataset. From the analysis, it is found that using one standard deviation of the entire training data 

distribution (𝜎𝑡𝑟 ) as the threshold typically optimizes the performance of the TE Finetuning 

method (refer to Supporting Information Section S3). This threshold naturally filters out more or 

less data for higher or lower noise cases, respectively.  

The TE Finetuning denoising scheme is tested on the same public ADMET datasets with the 

chosen threshold value of 𝜎𝑡𝑟. This approach yields up to 0.07 R2 performance increase on average 

in the medium noise range compared to the un-denoised model, performing better than simply 

finetuning the model with 10% of the data removed (“Adapt. TE FT” in Figure 5). However, in 

the high noise cases, too much data are removed and as a result the model performance deteriorates 

and underperforms compared to the simple filtering of the 10% data. Although high noise 

combinations show slight deterioration in performance, this may not be an issue as these noise 

ranges in which noise is added to 100% data are not typically practical for real ADMET datasets. 

Figure S7 is a figure corresponding to Figure 5 comparing the TE Finetune methods with the un-

denoised model using mean-absolute error (MAE) as an evaluation metric, where similar results 
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are observed. We further evaluate the utility of the adaptive threshold on our internal datasets as 

discussed in Section 4.8.  

 

4.5 Denoising Scheme Performance on QM9 Data 

 

In order to benchmark our findings on truly clean data, we applied the TE Finetuning method 

using the 10% training error filter on two tasks in the QM9 dataset: (1) HOMO-LUMO gap and 

(2) H298. Since the QM9 dataset is formed from calculated data based on DFT, it can be assumed 

to be free of noise. The results on these tasks are presented in the Supporting Information Section 

S4. We observed no significant change in performance across all noise combinations when the TE 

Finetune method is used to denoise the dataset (Figures S12 and S13). Also, the effect of artificial 

noise was found to be minimal for the QM9 dataset as the R2 decreases by only 0.006 - 0.05 even 

for the highest noise cases. It appears that predicting these quantum chemical properties is a 

relatively easy task for the model, and the un-denoised models are extremely robust to noise, 

achieving R2 of 0.92 - 0.99 for all noise cases. Since the model is already robust to noise, our 

denoising scheme has little impact on the model performance.  

Generally, it is harder for the model to learn generalizable information when the training set size 

is smaller. Due to this, we postulated that decreasing the dataset size would make the models less 

robust to noise leading to more room for model improvement by denoising when artificial noise is 

added. This loss in robustness is discussed further in our internal datasets in Section 4.7. To test 

this, we created randomly sampled training sets from size 500 to 10000 where each smaller dataset 

is a subset of the larger ones. Five folds of random training sets for each size were used, which 

reduces uncertainty due to randomness especially for smaller data sets. The average performance 

of models trained on each of the five folds separately for each size is reported in Figure 6 for the 

noise combination where noise is added to 30% of the data at 𝜎 = 0.5 ∗ 𝜎𝑒𝑥𝑝. We used the MAE 

metric to enable comparison of prediction performance in terms of experimental units.  

For smaller training sets, we observed MAE decreases of up to 3.24 kcal/mol and 1.03 kcal/mol 

in the H298 and HOMO-LUMO gap datasets, respectively, with the TE Finetune scheme. In the 

H298 dataset, the MAE change increases as the data size becomes smaller up until data size 2000 

where the MAE decrease is maximized. At smaller data sizes, the model performance worsens, 

which likely causes the training error metric to be less accurate. At larger data sizes, the model 

becomes more robust to noise, reaching the point where denoising has little effect on the 

performance. This differs in the HOMO-LUMO gap dataset as the MAE improvement is maximal 

at data size 1000. The data size which the model has the most improvement from our method varies 

depending on the endpoint because each task has varying learning difficulties. In summary, the TE 

Finetune method increases the performance of the models built on data with purely artificial noise 

when the models are less robust to noise. Similar results are observed in the other noise 

combinations, especially in the medium noise region where performance increase was observed in 

the public ADMET data, as can be seen in Figures S14 and S15. Figures S16 and S17 show the 

corresponding results using the R2 evaluation metric.  

Additionally, it is interesting to note that the perceived performance of the model is substantially 

underestimated compared to the true performance (see Figures S12 and S13). When the noisy test 

set is used, the R2 drops to 0.17 - 0.19 for the highest noise case while the true performance on the 

clean test set remains around 0.92 - 0.99. This finding further emphasizes the necessity of 

employing a clean test set for precise model assessment. 
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Figure 6. Performance of the TE finetuning denoising scheme compared to the base un-denoised 

model at varying training set sizes. Results shown are for the noise combination where noise is 

added to 30% of the data at 𝜎 = 0.5 ∗ 𝜎𝑒𝑥𝑝. The ~100000 bar cluster refers to the models trained 

on the full training set, which did not use five folds of random training sets. Error bars in all other 

data sizes represent the standard deviation among the five folds. In the full data, the error bars are 

the standard deviation among the four submodels as mentioned in Section 3.2. Results shown are 

tested on the same clean, held-out test set for each task. HOMO-LUMO gap MAE was converted 

to kcal/mol from Hartree for better comparison. 

4.6 Effect of Sample Imbalance and Prediction Difficulty on Training Error Metric 

 

Although the majority of the compounds that are identified as noisy samples by the TE metric 

are indeed the compounds with high added noise, some clean samples with low or no added noise 

have high TE and are mislabeled as noisy, particularly in low noise regimes (Figure 7, Figures S22 

– S24). Such mislabeling causes our denoising scheme to underperform compared to the Ground 

Truth model, and therefore we investigated several potential approaches to avoid filtering out clean 

samples. Other studies using training error as a noise detection metric attempted to use more 

complex schemes in order to mitigate the mislabeling of clean samples as noisy. In one study, a 

filter was designed that varied the filtering threshold with respect to a sample’s k-nearest neighbors 

(kNN) to account for varying densities of similar sample types and varying fitting difficulties in 

datasets.26 This was applied iteratively to label samples as potentially noisy initially, gradually 

increasing the confidence that a sample is truly noisy over iterations. A final threshold filter is 

created for each iteration based on the mean squared error of the regressor. Additionally, Zhou et 

al. claimed that samples with high uncertainties are more likely to be mislabeled as noisy when 

using the training error metric.27 Prediction uncertainty inherently stems from data scarcity and 

randomness in the relationship between the covariates and target values, making targets more 

difficult to predict.27 To combat this, they used a noise detection metric referred to as a veracity 

score which scales the training error by the prediction uncertainty.  
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Based on these studies, additional analysis was conducted on ADMET datasets to determine if 

a more complex noise detection scheme would improve the performance of our models or if 

training error itself is sufficient. Namely, we investigated the effects of underrepresented samples 

and difficult tasks on the training error metric. To identify underrepresented samples and difficult 

tasks in the training set, we looked at the following measures: (1) Tanimoto similarity of 

molecules, (2) molecules with unique atom types, (3) molecules in sparsely filled clusters, (4) 

activity cliff (AC) molecules, and (5) prediction uncertainty. We used ensemble variance to 

estimate prediction uncertainty in samples.   

The Tanimoto similarity of each molecule was calculated against all other molecules in the 

training set and averaged across the set.40 A lower Tanimoto similarity suggests the molecule is 

underrepresented as it is less similar to the training set. We observed that there is no correlation 

between the Tanimoto similarity score and training error in all noise combinations across all 

datasets (Supporting Information S5.1). This suggests that less similar molecules are not being 

mislabeled as high noise when using training error as the noise detection metric.  

Furthermore, there can be imbalance in the dataset when there are molecules containing atom 

types that are less typical in drug-like molecules. In the public ADMET datasets used in this study, 

the molecules containing Br, I, P, B, and Si are relatively scarce compared to other atom types. 

Yet, we found that the molecules containing the underrepresented atom types generally do not 

produce higher training errors than other molecules as shown in Figure 7. This finding is consistent 

across all public ADMET assays (Supporting Information Section S5.2). Moreover, these 

underrepresented molecules follow the general trend of the correlation between the noise and 

training error and are not filtered out at a higher rate than the molecules with more highly 

represented atom types. This further indicates that less represented molecules are not being 

mislabeled as noisy. 

Additionally, the molecules were k-means clustered by a PCA-reduced form of their 

Morgan/circular fingerprint, a typical vectorized representation used to determine the similarity 

between molecules.41 Similar results are observed as the molecules in the smallest clusters are not 

being filtered out at a higher rate and do not lead to higher training errors (see Supporting 

Information Section S5.3). Additionally, the molecules that have no added noise but high training 

error were visualized throughout the clusters in the 2-dimensional PCA map (Figures S29 – S32) 

to investigate whether the compounds in certain clusters or locations are mislabeled at a higher 

rate. However, no apparent trend was observed for these molecules within the clusters.  

We also adopted the method developed by Walter et al.42 to determine whether the compounds 

that are falsely identified as noisy by the training error metric are also an activity cliff (AC) 

compound. AC compounds are those that have vastly different activity values compared to other 

chemically similar compounds. The properties of AC compounds have been reported to be difficult 

to predict when using machine learning models.11,42,43 Walter et el. defined the structure activity 

landscape index (SALI) as shown in Equation 3 and labeled a compound as AC if the median SALI 

exceeds 1.42  

 

𝑆𝐴𝐿𝐼 =  
∆𝑎𝑐𝑡𝑖𝑣𝑖𝑡𝑦

1−𝑇𝑎𝑛𝑖𝑚𝑜𝑡𝑜
  (3) 

 

Since the SALI value is dependent on the activity/assay value for the compound and its 

neighbors, we visualized the AC compounds identified using both clean and noisy activities as 

presented in Supporting Information Section S5.4. In the following discussion, “clean AC” 
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compounds refer to the AC compounds with SALI values calculated using data with no artificial 

noise and “noisy AC” compounds refer to the AC compounds with SALI values calculated using 

data with artificial noise. In the Papp dataset, we observed that when the noise is low, the “clean 

AC” compounds with the top 10% training error were frequently mislabeled as noisy samples 

(Figure S35). This observed trend is not very apparent in the other datasets tested (Figures S33, 

S34, S36). Though this shows the possibility to detect mislabeled samples in specific cases, we are 

not able to attain the “clean AC” labels when dealing with noisy data. In a realistic setting in which 

the assay data have nonnegligible noise, only the “noisy AC” labeled compounds can be used in a 

denoising scheme as the true, clean activity values are unknown. We observe that many of the 

“noisy AC” compounds with the top 10% training error indeed have high added noise and are 

correctly labeled as noisy samples, especially as the amount of noise in the dataset increases. 

Therefore, AC compounds which are more difficult to predict cannot be used to identify mislabeled 

samples.  

Further analysis was conducted by using ensemble variance to quantify the uncertainty in each 

sample. Figures S37 – S40 show that in the low noise cases molecules with high ensemble variance 

tend to have high training error even if added noise is small and are thus mislabeled as noisy at a 

higher frequency. This trend is most apparent in the Papp dataset (Figure S39). Additionally, in the 

original training set without artificial noise, many of the data points with high ensemble variance 

are further from the parity line indicating that high uncertainty samples typically have high training 

error (Figures S37 – S40 a). Because slight correlation between ensemble variance and mislabeled 

samples was observed in the low noise regime, we tested whether preventing high ensemble 

variance molecules in the training set from being filtered out would improve the performance of 

the TE Finetuning method. Yet, we found that this approach generally has no effect or even 

deteriorated the model performance compared to simply denoising based on training error (see 

Figures S41 – S44). In the low noise regime where the correlation of uncertainty with mislabeled 

compounds is most apparent, the performance remains similar to the TE Finetuning denoising 

scheme showing that retaining high uncertainty samples in the training set does not greatly affect 

model performance. In the other noise regimes where this correlation is much less apparent or non-

existent, the model performance remains the same or deteriorates due to noise being reintroduced 

into the training set. 

For our chemical datasets and model architecture, underrepresented or hard to predict sample 

types (e.g. unique atom types, sparse clusters, low Tanimoto similarity) do not appear to cause an 

inflation of training error. The Chemprop model that we use is likely able to generalize better to 

these unique training compounds. Although clean AC compounds inflate training error in specific 

cases within the low noise regime, retaining these compounds is infeasible as it is not possible to 

identify clean AC compounds when the assay values are noisy. Additionally, it is observed that 

compounds with high prediction uncertainty calculated using ensemble variance affects the 

performance of the training error metric in the low noise regime, however, retaining these 

compounds did not improve the model performance. Therefore, for the ADMET predictors based 

on Chemprop architecture, training error itself is likely a sufficient noise detection metric. 
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Figure 7. Effects of underrepresented samples in the form of unique atoms on the training error. 

(a): The atom distribution across all training set molecules. (b): The parity plot on the data set with 

no artificial noise added. (c-k): The correlation between training error and artificial noise added. 

The vertical blue line is the top 10% training error threshold. This figure was formed based on the 

logD public dataset. 

 

4.7 Effects of Dataset Size on Denoising 

 

To determine the effects of dataset size on the TE Finetuning method, we tested the denoising 

method on our internal logD, Papp, and hERG datasets with varying sizes. The datasets were 

prepared using 7 different sizes, ranging from 500 to 600,000 datapoints depending on total dataset 

size, where each smaller dataset is a complete subset of the larger ones. All models are tested on 

an identical cleaner test set with lower experimental uncertainty as mentioned in Section 3.1. The 

results are provided in the Supporting Information Figures S45-S47. In these figures, we observed 

multiple cases where performance improvement increases as the data size decreases. However, the 

relationship is not as clear in some cases compared to the results from the QM9 data in Section 

4.5, likely because the internal data have inherent noise. Furthermore, we examined the effect of 

the dataset size on the model’s robustness against noise as depicted in Figures S48-S50. The results 

show that both un-denoised and TE Finetune models become more robust against the added noise 

as the dataset size increases. This suggests that using more data in model training can help combat 

the loss of performance due to noise. Our finding demonstrates that even if new data exhibit similar 

percentage and magnitude of noise as the existing data, having more data benefits the model. We 

observed the positive impact of having larger data against noise up to the highest dataset size of 

600k, but we anticipate this effect to plateau out as the training data begins to saturate. 

https://doi.org/10.26434/chemrxiv-2024-v4jvc ORCID: https://orcid.org/0000-0003-3645-172X Content not peer-reviewed by ChemRxiv. License: CC BY-NC-ND 4.0

https://doi.org/10.26434/chemrxiv-2024-v4jvc
https://orcid.org/0000-0003-3645-172X
https://creativecommons.org/licenses/by-nc-nd/4.0/


 

 

19 

 

 

4.8 Results on the Internal ADMET Data 

 

Table 4. Summary of performances on each internal dataset on a held-out clean test set evaluated 

in MAE in original assay units. Bolded numbers indicate the model with the best performance, and 

the columns without a bolded number indicate all models have the same performance. Underlined 

numbers indicate the model with the second best performance.  

 Papp    

(10-6
 

cm/s) 

LogD  

(-) 

Rat Fu,p 

(Fraction 

unbound) 

Human 

Fu,p 

(Fraction 

Unbound) 

hERG 

binding 

(µM) 

SOLY 7 

(µM) 

FaSSIF 

Solubility 

(µM) 

Data Size 55807 608053 56572 23369 370148 454288 307341 

No Filter 3.270 ± 

0.006 

0.108 ± 

0.003 

 

0.022 ± 

0.009 

 

0.03 ± 

0.03 

 

9.73 ± 

0.02 

 

26.794 ±            

0.008 

 

32.064 ± 

0.009 

 

TE 

Finetune 

10% 

Filter 

3.246 ± 

0.002 

 

0.0889 ± 

0.0005 

 

0.022 ± 

0.004 

 

0.03 ± 

0.01 

 

8.714 ± 

0.005 

 

21.21 ± 

0.01 

 

24.381 ± 

0.007 

 

TE 

Finetune 

Adapt. 

Thres. 

3.279 ± 

0.005 

 

0.098 ± 

0.005 

 

0.02 ± 

0.03 

 

0.03 ± 

0.03 

 

9.15 ± 

0.01 

 

 

24.035 ± 

0.005 

 

26.78 ± 

0.01 

 

 

We tested the TE Finetune method using both a 10% training error filter and an adaptive 

threshold filter on seven internal ADMET endpoints from Merck & Co., Inc. (Rahway, NJ, USA) 

to determine whether these workflows show utility in an industrial setting. The models were 

trained on the original datasets without artificial noise and tested on the cleaner held-out test sets 

prepared as described in Section S3.1. Since no artificial noise is added, the performance 

improvements from our denoising schemes, shown in Table 4, are only from denoising the 

experimental error in these datasets.  

We report the MAE of the original un-denoised model compared to MAE of the TE Finetune 

model using both 10% and adaptive filters in Table 4. The MAE is compared because chemists 

typically prefer to view model performance using MAE reported in the original units of the assay. 

The TE Finetune method, regardless of filter choice, outperforms the no filter baseline in most 

endpoints tested. Denoising had no effect on two endpoints (rat and human Fu,p), where all model 

performances are equivalent. The TE Finetune method using a 10% training error filter 

consistently outperforms the TE Finetune method using an adaptive filter in assays where 

denoising has an effect on the model performance. More tuning and optimization is likely needed 

for the adaptive filter. The amount of experimental uncertainty in each endpoint is estimated by 

the correlation between repeat measurements in Figure S54. We observe that the improvement 

from denoising is most significant in assays with more experimental uncertainty, namely solubility 

at pH 7 and FaSSIF solubility. The improvements in MAE for the SOLY7 and FaSSIF solubility 

assays are 5.58 µM and 7.683 µM, respectively. This corroborates our findings on the public 

ADMET data that our method has the ability to improve models with medium noise but does not 

degrade the performance of models with noise outside this range. Figure S55 shows similar results 
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using R2
 as the model evaluation metric. We additionally observe that models with lower initial 

performance have a higher increase from denoising, similar to the QM9 data. We recommend the 

use of the TE Finetune method using a 10% training error filter in data pre-processing pipelines to 

improve the performance of ADMET models for drug development, especially for datasets with a 

significant amount of noise and with models that are low performing. 

 

4.9 Effects of Noise on Multitask Learning Models 

 

Multitask learning is a paradigm where a single model is trained to predict multiple related tasks 

simultaneously. It encourages learning between related tasks during training to improve the 

predictions of an assay that is either difficult to predict or has a small amount of data. Multitask 

models have been increasingly used to predict ADMET endpoints.42,44 It is unknown, however, 

how these models react to noise. Namely, (1) if noise from one task propagates to other tasks and 

(2) if multitask learning is more or less robust to noise compared to single-task models.  

To test this, we added noise to a single endpoint and visualized how this affects the performance 

of the other endpoints within the same multitask learning model. For this analysis, we trained the 

models on the data collected before 2023 and tested on the data collected during 01/01/2023 - 

09/19/2023 to evaluate the performance on a temporal split. The multitask model was constructed 

using 29 ADMET assays collected within Merck & Co., Inc., Rahway, NJ, USA.44 Six different 

multitask models were built, each with noise added to logD, human Fu,p, Papp, hERG binding, 

SOLY7, and CYP3A4 inhibition assays, respectively, while keeping remaining 28 assay data 

intact. Figure 8 shows that although the noise deteriorates the performance and increases model 

uncertainty for the task with noise added (green label), it does not affect the other tasks, including 

the tasks that are most correlated with the noisy task (black label). This observation is consistent 

among all internal ADMET assays tested (refer to Supporting Information Figure S51), indicating 

that the noise in one assay does not propagate to other related assays in multitask models. In 

addition, we compared the performances of the single task and multitask models with noise added 

to a single endpoint. While the multitask model has better predictive accuracy, there is no 

significant difference in the robustness against noise between single-task and multitask models 

(see Supporting Information Section S7).  
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Figure 8. Visualizing noise propagation to the 4 properties with highest Spearman r correlation to 

the property with added noise (green label) in multitask models. The property colored with green 

text is the only task with noise added to it. This property is logD on the left figure and human Fu,p 

on the right figure. Noise was added to 50% of the training data. The models were constructed 

using the internal dataset of 29 different ADMET endpoints.   

5. Conclusions 

 

Here, we propose a novel deep-learning based denoising scheme for regression-based ADMET 

datasets. We show that ensemble-based and forgotten events-based noise detection metrics do not 

work across the four public ADMET regression tasks used in this study. In contrast, training error 

is found to be highly correlated with the data noise, and the correlation strengthens as the 

magnitude of the noise and the fraction of noisy data increases. Our proposed TE Finetune 

denoising scheme, in which a model is pre-trained on the original dataset and fine-tuned on the 

denoised dataset with the top 10% training error data filtered out, is deemed most effective across 

multiple ADMET assays. This method provides performance improvement in a similar order of 

magnitude as the ground truth baseline when medium to high magnitude noise is present in 30% 

to 50% of the dataset. In other noise cases where the entire dataset is noisy, the proposed method 

does not decrease performance. Additionally, its positive performance on internal datasets proves 

its utility in industrial data pre-processing pipelines for more efficient drug discovery and 

development. It requires the least computational time and resources compared to the other methods 

investigated, and its simple framework allows easy application to other datasets. To further 

improve the method, we are investigating more tuning and optimization of the adaptive threshold.   

Through an exhaustive analysis of various types of underrepresented samples within chemical 

datasets, we found that underrepresented samples do not affect the ability of the training error 

metric to identify noise. While more uncertain samples with higher ensemble variance affect the 

accuracy of the training error metric, retaining the samples with high ensemble variance in the 

training set does not enhance model performance. We also found that adding more data improves 

the model performance up to a certain degree, even if the new data are noisy. Finally, we show 

that noise in one task does not propagate to other related tasks in multitask models and that 

multitask models have similar robustness to noise compared to their single task counterparts.  
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6. Data and Software Availability 

All public datasets and the noisy datasets generated in this work are provided as Supporting 

Information. The data splits used in this work are also provided in the Supporting Information. All 

models are constructed using the open-source software Chemprop 

(https://github.com/chemprop/chemprop).37,38 This work also leverages proprietary data sets from 

Merck & Co. (Rahway, NJ, USA) to provide higher confidence conclusions. 
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