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Abstract

Molecular polaritons, the hybridization of electronic

states in molecules with photonic excitation inside a

cavity, play an important role in fundamental quan-

tum science and technology. Understanding the de-

coherence mechanism of molecular polaritons is among

the most significant fundamental questions. We theo-

retically demonstrate that hybridizing many molecular

excitons in a cavity protects the overall quantum coher-

ence of phonon-induced decoherence originating from

the collective light-matter couplings. The polariton co-

herence time can be prolonged up to 100 fs with a re-

alistic Rabi splitting and quality factor at room tem-

perature, compared to the typical electronic coherence

time which is around 15 fs. Our numerically exact sim-

ulations and analytic theory suggest that the dominant

decoherence mechanism is the population transfer from

the upper polariton state to the dark state manifold.

Increasing the collective coupling strength will increase

the energy gap between these two sets of states, and

thus prolong the coherence lifetime. We further derived

valuable scaling relations of how polariton coherence de-

pends on the number of molecules, Rabi splittings, and

light-matter detunings.

Polariton Coherence 
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Novel quantum systems are an emerging tech-
nology that promises significant advancement and
understanding in the fields of quantum comput-
ing, quantum information science, and fundamen-
tal quantum optics research. A quantum system
of significant interest is the optical cavity polari-
ton,1–3 which are formed from interactions between
electronic states in matter systems and the quan-
tized radiation field in a cavity. Properties of such
optical cavity polaritons have been exploited to re-
alize phenomena such as polariton lasing,4–6 Bose-
Einstein condensation,7–11 making integrated cir-
cuit elements that can be optically switched,12–14

and achieving long-range polariton transport.15–18

In particular, forming polaritons with molecules
or nanoparticles has garnered much attention re-
cently, and the resulting hybridized states are
known as molecular polaritons.19–22 Like polari-
tons formed from an atom’s electronic states, these
molecular polaritons exhibit properties that are de-
rived from both the matter excitations and the
photonic components inside a cavity. However,
these molecular polaritons possess additional vi-
brational states from their matter excitations that
affect transduction between the matter and pho-
tonic degrees of freedom (DOF). These additional
states offer new opportunities in the fields of quan-
tum chemistry and quantum materials, as the
physical properties of the constituent molecules can
be tuned via strong light-matter interactions. For
instance, the potential energy surfaces of molecules
coupled to a cavity photon can be modified by
changing its light-matter coupling strength or the
frequency of the cavity mode,23–25 hence, providing
new pathways for chemical reactions to occur.
To exploit the desired properties of molecular po-

laritons, we need to preserve the hybridized state
for the duration of the relevant quantum process.
The key measure is therefore the degree of quan-
tum coherence, which characterizes how long the
quantum states involved can interfere with each
other.26 It has been shown that interactions of the
molecules with the environment, such as cavity loss
or phonon-induced decoherence,27,28 occur rapidly
on a timescale of several femtoseconds and this con-
strains the ability of the molecular polariton to last
throughout the desired quantum processes.29 How-
ever, previous work has shown that coupling a sin-
gle molecule to a cavity significantly enhances the
coherence lifetime of the hybrid light-matter sys-
tem.30,31 Furthermore, recent work has established
that coupling many molecules into a cavity reduces

the effective reorganization energy of the polariton
states.32–34 This collective coupling effect reduces
the coupling strength between the molecular elec-
tronic states and their respective phonon modes,35

and thus impacts their coherence lifetimes.
In this letter, we address the effect of coupling

many molecules into a cavity on the coherence life-
times of the polaritonic states. The coherences
of a model light-matter Hamiltonian with many
molecules were examined and exact quantum dy-
namics, based on the hierarchical equation of mo-
tion (HEOM) formalism,36–38 is performed on this
model Hamiltonian. We demonstrate through nu-
merical results from HEOM that the coherence life-
times increase with the collective light-matter cou-
pling strength. Moreover, we explain the enhance-
ment in the polariton’s coherence lifetime using
Fermi’s golden rule (FGR) argument in the fre-
quency domain, and this accounts for the scaling of
the coherence lifetimes with respect to the number
of molecules and the single molecule light-matter
coupling strength.
To model the collective light-matter coupling

between N molecules and a quantized cavity
mode, we use the Holstein-Tavis-Cummings (HTC)
Hamiltonian39–42

ĤHTC = ĤM + Ĥph + ĤLM, (1)

where ĤM is the matter Hamiltonian that describes
N identical and non-interacting molecules, Ĥph de-

scribes the photon field Hamiltonian, and ĤLM de-
scribes the light-matter interactions.
For the matter Hamiltonian, we consider N

identical molecules, each containing two electronic
states {|g⟩, |e⟩}, where |g⟩ and |e⟩ are the ground
and excited states of the molecule respectively. We
further denote the exciton raising and lowering op-
erators

σ̂†
n = |en⟩⟨gn|; σ̂n = |gn⟩⟨en| (2)

which create and annihilate an exciton on the nth

molecule. The matter Hamiltonian is expressed as

ĤM =

N−1∑
n=0

[
(ωx + λ)σ̂†

nσ̂n +
∑
α

ωα(b̂
†
α,nb̂α,n +

1

2
)

+ σ̂†
nσ̂n

∑
α

cα

(
b̂†α,n + b̂α,n

) ]
(3)

Further, λ is the reorganization energy, due to the
exciton-phonon coupling, where the diabatic exci-
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tation energy between the two states is h̄ωx = Ee−
Eg (and throughout the work, we will set h̄ = 1) for
all n ∈ [0, N−1] molecules. Each molecule contains
a set of phonon vibrations. The phonon DOFs of
the molecules are considered as the bath Hamil-
tonian, which couple to the system through the
system-bath (exciton-phonon) coupling, expressed
as follows (c.f. Eq. 2)

Ĥb =

N−1∑
n=0

∑
α

ωα(b̂
†
α,nb̂α,n +

1

2
) (4a)

Ĥsb =

N−1∑
n=0

σ̂†
nσ̂n

∑
α

cα(b̂
†
α,n + b̂α,n), (4b)

where ωα are the frequencies for the αth phonon
mode, b̂†α,n and b̂α,n are the bath phonon creation
and annihilation operators that satisfy the bosonic
commutation relations. Ĥsb describes the system-
bath interaction, where cα denotes the coupling
strength between the molecules and the α-th bath
phonon mode. The system-bath interactions are
determined by the spectral density43,44

Jν(ω) = π
∑
α

c2αδ (ω − ωα) =
2λγω

γ2 + ω2
(5)

where in this work we use the Drude-Lorentz
model, γ is the bath characteristic frequency,
and the reorganization energy (inside ĤM) is
λ =

∑
α c

2
α/ωα = (1/π)

∫ +∞
0 dω J(ω)/ω for all

molecules. In this work, we use the following pa-
rameters: excitation energy ωx = 2.0 eV, the bath
reorganization energy λ = 30 meV, and the bath
characteristic frequency γ = 24.8 meV, which are
the typical parameters for CdSe Nanoplatelets (see
schematic illustration in Fig. 1a) which has been
shown to couple strongly to a dielectric optical cav-
ity.41,45

Further, Ĥc describes a single quantized radia-
tion mode inside the cavity

Ĥc = ωc(â
†â+

1

2
), (6)

where ωc is the photon frequency of the cavity
mode, and â† and â are the creation and annihila-
tion operators for a photon in the cavity mode. For
the light-matter interaction term ĤLM, we assume
that each molecule is coupled to the quantized ra-
diation field with the same light-matter coupling
strength gc. Under the rotating wave approxima-

tion, ĤLM is expressed as

ĤLM = gc

N−1∑
n=0

(
â†σ̂n + âσ̂†

n

)
. (7)

Note that when entering into the ultra-strong cou-
pling regime

√
Ngc/ωc > 0.1, one needs to incor-

porate the counter-rotating wave terms (â†σ̂†
n and

âσ̂n) and dipole-self energies to accurately describe
the light-matter interaction.42,46 In this work, we
restrict our parameters away from the ultra-strong
coupling regime.
In this work, we consider the single excitation

subspace

|G, 1⟩ = |g0⟩ ⊗ ...|gn⟩...⊗ |gN−1⟩ ⊗ |1⟩ (8a)

|En, 0⟩ = |g0⟩ ⊗ ...|en⟩...⊗ |gN−1⟩ ⊗ |0⟩, (8b)

where |G, 1⟩ represent the 1-photon-dressed ground
state, and |En, 0⟩ represent the single excited state
for the nth molecule. In the above single excitation
manifold, the collective “bright” excitonic state is

|B⟩ = 1√
N

N−1∑
n=0

|En, 0⟩ , (9)

which couples to the |G, 1⟩ state through the light-
matter interaction term ĤLM, resulting in the light-
matter hybridized states that are known as polari-
tons.
We further define the following diabatic Polari-

ton Hamiltonian, which refers to the “system”
Hamiltonian

Ĥs =

N−1∑
n=0

(ωx + λ)σ̂†
nσ̂n + Ĥph + ĤLM, (10)

which contains the excitonic DOF, the cavity
mode, and the light-matter coupling terms. There
are a total of N + 1 eigenstate of ĤS in the first
excitation subspace (because there are N + 1 ba-
sis states, see Eq. 8), among which there are two
bright polariton states,47 commonly referred to as
the Upper polariton (UP) state |+⟩ and the Lower
polariton (LP) state |−⟩, expressed as

|+⟩ = cosΘN |B⟩+ sinΘN |G, 1⟩, (11a)

|−⟩ = − sinΘN |B⟩+ cosΘN |G, 1⟩, (11b)

where ΘN is the mixing angle between light and

3
https://doi.org/10.26434/chemrxiv-2024-w70hr ORCID: https://orcid.org/0000-0002-8639-9299 Content not peer-reviewed by ChemRxiv. License: CC BY 4.0

https://doi.org/10.26434/chemrxiv-2024-w70hr
https://orcid.org/0000-0002-8639-9299
https://creativecommons.org/licenses/by/4.0/


(a)

|+⟩

|G, 1⟩

|−⟩

|E!, 0⟩
𝑁

𝜔! 𝜔"

|D!⟩

𝑁𝑔!

𝑁𝑔!

|G, 0⟩

𝑘"→$

𝑘"→%

(c)

Off-Diagonal Beating2DES Polariton (b)

Figure 1: (a) Schematic illustrations of many emit-
ters coupled to the quantized radiation field inside
an optical cavity. (b) Schematic illustrations of
2DES spectroscopy with the off-diagonal beating
signal corresponding to the polaritonic coherence
ρ+−(t). (c) Energy level of the HTC model depict-
ing the hybridization of matter and photonic states
to form polariton states.

matter

ΘN =
1

2
tan−1

(
2
√
Ngc

−∆

)
. (12)

where the angle is defined in the range of ΘN ∈
[0, π/2], and the light-matter detuning is defined
as41

∆ = ωc − (ωx + λ). (13)

When ∆ = 0, the mixing angle becomes ΘN = π/4,
the polariton states become

|±⟩ = 1√
2

[
|G, 1⟩ ± |B⟩

]
, (14)

and the Rabi splitting (energy gap) between the

|+⟩ and |−⟩ is

ΩR = 2
√
Ngc. (15)

The remaining N − 1 eigenstates are referred to
as the “Dark states”, expressed as

|Dk⟩ =
1√
N

N−1∑
n=0

exp

(
−2πi

nk

N

)
|En, 0⟩, (16)

where the coefficients
∑N−1

n=0 exp
(
−2πinkN

)
= 0.

These Dark states also satisfy ⟨G, 0|µ̂|Dk⟩ = 0
due to the zero-sum property of the expansion
coefficients, and as such, direct optical transition
is not allowed and they are thus dark in spec-
tra. Note that the |±⟩ polariton states and the
dark states manifold {|Dk⟩} are “diabatic” states
in their nature because they are the eigenstates of
Ĥs (Eq. 10), and their character do not change as

a function of nuclear configuration R̂α,n = (b̂†α,n +

b̂α,n)/
√
2. On the other hand, one can also define

polariton states as the eigenvector of the adiabatic
polariton Hamiltonian41,45 Ĥpl = Ĥ − T̂R, where

T̂R is the nuclear kinetic energy operator (for all
phonons). The eigenstates of Ĥpl can be viewed
as the adiabatic version of the polariton and dark
states because the state character explicitly de-
pends on nuclear configuration {R̂α,n}, and it has
been used to interpret the photoluminescence spec-
tra41,45,48,49 or investigate coherences in polariton
transport.17,50,51

Our focus is the coherence between |+⟩ and |−⟩
states, which is directly related to the off-diagonal
beating in 2DES spectra and has been experimen-
tally explored (see Fig. 1b).35 To probe the polari-
ton coherences, we compute the off-diagonal ma-
trix elements of the system-reduced density matrix
(RDM), defined as

ρ+−(t) = ⟨+| ρ̂s(t) |−⟩ = ⟨+|Trb[ρ̂(t)] |−⟩ (17)

where ρ̂ denotes the full density operator and ρ̂s is
the RDM operator for the system by tracing out
the bath DOF. Note that the coherence in this def-
inition is basis-dependent and can lead to qualita-
tively different results with a change of basis when
analyzing decoherence dynamics. Purity, Trs[ρ̂

2
s (t)]

on the other hand, is representation-independent.
Here, we investigate ρ+−(t) because it is closely
connected with the 2DES spectra measured exper-
imentally (off-diagonal beating signals which cor-
respond to the cross peak of |+⟩ and |−⟩ states).
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We also present the results of purity in Sec. IV
of the Supporting Information. The population
and coherence are obtained by performing exact
quantum dynamics simulation using the HEOM
method.36–38 The system Hamiltonian Ĥs is rep-
resented in the single excitation subspace (Eq. 8),
and the bath and system-bath part Ĥb + Ĥsb are
described by the spectral density (Eq. 5). The de-
tails of the simulations are provided in Sec. III of
the Supporting Information.
For all simulations (except in Fig. 7), we con-

sider a resonant condition of light-matter interac-
tion ∆ = 0 (see expression in Eq. 13). The initial
condition is assumed to be separable as

ρ̂(0) = ρ̂s(0)⊗ ρ̂b(0) = |Ψ(0)⟩ ⟨Ψ(0)| ⊗ 1

Zb
e−βĤb ,

(18)
where the system is initially prepared in a pure
state

|Ψ(0)⟩ = |B⟩ = 1√
2
(|+⟩ − |−⟩) . (19)

The bath is assumed to be in thermal equilib-

rium, where Zb = Tr[e−βĤb ] is the partition func-
tion, with β = 1/kBT and we consider T = 300
K throughout this work. To compare the de-
coherence dynamics outside the cavity, we take
the gc = 0+ limit, such that the mixing angle
limgc→0+ ΘN = π/4 under the resonant condition
(see Eq. 12). Thus, the initial condition |Ψ(0)⟩
for the outside cavity case can still be interpreted
in Eq. 19, and under the gc = 0+ limit one still
have well-defined states |±⟩ = 1√

2
[|G, 1⟩ ± |B⟩] to

probe their coherence. The meaning of the gc → 0+

limit is actually the decoherence among |En, 0⟩ in
the |B⟩ = 1√

N
|En, 0⟩ state, due to the coupling of

|En, 0⟩ with its own individual bath. We return to
detailed discussions of the above in Sec. VII of the
Supporting Information.
Fig. 2 presents Re[ρ+−(t)], the real part of the co-

herence between the |+⟩ and |−⟩ states, in a lossless
cavity (no photon decay). Here, we fix the number
of molecules N = 10, and the collective coupling
strength

√
Ngc varies from 100 meV to 200 meV by

changing gc. The black solid line corresponds to the
coherence under the limit of gc = 0+ (outside the
cavity), where ρ+−(t) decays with a Gaussian pro-
file which is consistent with the established result
of Gaussian coherence decay.52 Panel (a)-(c) preset
the decoherence process with ρ+−(t) by gradually
increasing the light-matter coupling strength gc.

−0.5

0.0

0.5 (a)

−0.5

0.0

0.5 (b)

0 20 40 60 80 100 120 140
t (fs)

−0.5

0.0

0.5 (c)

Re
 [ρ

+
−
(t)

]

Figure 2: Real part of ρ+−(t) in a lossless cavity. The
number of molecules is N = 10. The collective coupling
strengths between the matter state and the cavity mode
are (a)

√
Ngc = 100 meV (red), (b)

√
Ngc = 150 meV

(green), (c)
√
Ngc = 200 meV (blue). For comparison,

limgc→0+ Re[ρ+−(t)] is depicted with black solid lines.
The real components of [ρ̂S]+−(t) are fitted to the prod-
uct of a cosine and a single exponential decay (crossed
markers).

One can see that an increase in
√
Ngc can signifi-

cantly prolong the coherence time. An interesting
feature we observed is that ρ+−(t) switches from
a Gaussian decay to an exponential decay (Marko-
vian limit). To extract the coherence lifetimes τ ,
we fit Re[ρ+−(t)] to the product of a cosine func-
tion and a single exponential decay function

Re[ρ+−(t)] =
1

2
cos(ΩR · t) · e−t/T2 , (20)

where the coherence oscillates with a frequency of
the Rabi splitting ΩR = 2

√
Ngc (for an isolated

two-level system), the coherence decay follows an
exponential behavior with the characteristic time
T2 (due to coupling to phonons), and the coher-
ence beatings last until ∼ 150 fs. Eq. 20 fits the
HEOM data exceptionally well, which are plotted
as colored cross markers in each panel, and give
the decoherence time T2 as 61.2 fs (panel a), 100.9
fs (panel b), and 146.5 fs (panel c). For compari-
son, the coherence lifetime for limgc→0+ Re[ρ+−(t)]
is T2 = 15.7 fs when fitted to a Gaussian decay pro-
file, which is the typical electronic coherence time
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Figure 3: Re[ρ+−(t)] for a fixed gc while varying N .
The single molecule coupling strength is gc = 44.7 meV.
The number of molecules used is (a) N = 5 (red), (b)
N = 10 (green), and (c) N = 20 (blue). The results are
obtained from the HEOM simulations (solid curve) as
well as the fitting with Eq. 20 (crossed markers).

under room temperature. Coupling to a cavity can
significantly prolong T2 to ∼ 60 fs with a realis-
tic collective coupling parameter53,54

√
Ngc = 100

meV. In the 2DES experiments of molecular po-
lariton,35 the largest Rabi splitting achieved was
ΩR = 380 meV (or

√
Ngc ≈ 190 meV). The record-

high Rabi splitting that we are aware of is the
squaraine dye molecules coupled to the cavity,35,55

generating ΩR = 420 meV (or
√
Ngc ≈ 210 meV).

Results in Fig. 2 suggest that under the collective
coupling of a few molecules with the cavity when N
is fixed and increasing gc, the coherence ρ+−(t) will
be increased. This is also the case whenN = 1, and
with an increasing gc one can significantly prolong
the coherence ρ+−(t), as shown in Fig. S3 in the
Supporting Information. We note that the deco-
herence mechanism when N = 1 is fundamentally
different than when N > 1 because the former case
does not contain any dark state.
Fig. 3 presents the decoherence dynamics with

a fixed light-matter coupling strength gc = 44.7
meV and only increases the number of molecules
N . As such, the coupling strength between the cav-
ity and a single molecule is fixed, but the collective
coupling strength

√
Ngc is increased, due to more

molecules being collectively coupled to the cavity

mode. The number of molecules is varied from
N = 5 (panel a) to N = 10 (panel b) and N = 20
(panel c), such that the collective coupling strength
is (a)

√
Ngc = 100 meV, (b)

√
Ngc = 141.4 meV

and (c)
√
Ngc = 200 meV, identical or similar to

those presented in Fig. 2. Most of the experimen-
tal setups in molecular polaritons are similar to
this case, where the individual coupling to each
molecule is fixed and the collective Rabi splitting
ΩR = 2

√
Ngc is increased due to an increase in N .

The decoherence dynamics can also be fitted very
well using Eq. 20, with extracted coherence life-
time as (a) T2 = 67.2 fs, (b) T2 = 94.2 fs, and (c)
T2 = 141.4 fs. For comparison, we also extract the
coherence lifetime for limgc→0+ Re[ρ+−(t)] (with a
Gaussian fitting), resulting in (a) T2 = 16.7 fs, (b)
T2 = 15.7 fs, and (c) T2 = 15.2 fs. Thus, under the
collective coupling regime and with an increasing
N , Re[ρ+−(t)] decay at a slower rate and the co-
herence lifetimes for the coupled states are about
4 to 9.3 times greater than the coherence lifetime
for the uncoupled system. Further, comparing to
Fig. 2, one observes that the decoherence dynam-
ics are nearly identical with each other, as long as
the collective coupling strength

√
Ngc is the same.

To be clear, the Hamiltonian in Fig. 2 is different
compared to Fig. 3. The former is fixing N and
varying gc, and the latter one is fixing gc and vary-
ing N . Nevertheless, it seems that the decoherence
dynamics is only sensitive to

√
Ngc, agreeing with

the empirical rule in the early numerical simula-
tions with Lindblad dynamics.56

To understand the decoherence mechanism un-
der the collective coupling regime and make sense
of the exact numerical results presented in Figs. 2-
3, we focus on the population dynamics presented
in Fig. 4. One can see that there is a significant
population transfer from the |+⟩ state to the dark
state manifold {|Dk}, such that the decoherence
mechanism is not pure-dephasing (which does not
have any population transfer). This also makes the
decoherence mechanism for the collective coupling
case (N ̸= 1) fundamentally different from the sin-
gle molecule case (N = 1), because the latter does
not have any dark state. For the collective cou-
pling regime, the main contribution for the ρ+−(t)
decoherence, as shown in Fig. 4, is the population
transfer from |+⟩ state to the dark states mani-
fold {|Dk⟩}. In Fig. 4c (where N = 20), we can
see that ρ++(t) population gradually decay from
1/2 and the dark state population ρDD(t) gradually
increase, whereas the ρ−−(t) population oscillates

6
https://doi.org/10.26434/chemrxiv-2024-w70hr ORCID: https://orcid.org/0000-0002-8639-9299 Content not peer-reviewed by ChemRxiv. License: CC BY 4.0

https://doi.org/10.26434/chemrxiv-2024-w70hr
https://orcid.org/0000-0002-8639-9299
https://creativecommons.org/licenses/by/4.0/


0.00

0.25

0.50

0.75 (a)

0.0

0.2

0.4

0.6 (b)

0 20 40 60 80 100 120 140
t (fs)

0.0

0.2

0.4

0.6 (c)

Po
pu

la
tio

ns
LP UP DS

Figure 4: Population of UP (|+⟩ state), LP (|−⟩ state)
and dark states (DS) that sums all {|Dk} states pop-
ulation for a fixed single molecule coupling strength
gc = 44.7 meV, with the number of molecules (a) N = 1
(no dark states), (b) N = 5, and (c) N = 20.

around a certain value but do not increase signif-
icantly. This means that the main mechanism of
ρ+−(t) = c∗+(t) · c−(t) decay is due to the decrease
of c∗+(t) (because of ρ++(t) = c∗+(t) · c+(t) decay),
and c−(t) does not have a significant change (due
to the fact that ρ−−(t) = c∗−(t) · c−(t) does not
significantly increase).
To obtain an insight into the decoherence mech-

anism, we derive an analytic expression of the co-
herence time. We begin by transforming the to-
tal Hamiltonian in Eq. 1 into the polariton state
and Dark state basis {|±⟩,Dk}. Because these
states are the eigenstates of Ĥs (Eq. 10), they
will make Ĥs purely diagonal. Transitions among
these states are induced by the phonon couplings,
specifically from Ĥsb (Eq. 4b). The full Hamilto-
nian expression in this polariton basis is provided
in Sec. I of the Supporting Information. Here,
we focus on Ĥsb (Eq. 4b) in the polaritonic basis
Ĥsb = Ĥ± + Ĥ{±,D} + ĤD, where Ĥ± provides the
phonon-mediated transitions between |+⟩ and |−⟩
states, Ĥ{±,D} provides the phonon-mediated tran-
sitions between the |±⟩ states to the dark state
manifolds {|Dk⟩}, and ĤD provides the phonon-
mediated transitions among dark states. In partic-
ular, under the resonance condition ∆ = 0 (Eq. 13),

the mixing angle is ΘN = π/4, Ĥ± and Ĥ{±,D} are
expressed as follows

Ĥ± =
1

2

(
|+⟩⟨+|+ |−⟩⟨−|

)
⊗
∑
α

cα√
N

(b̂α,0 + b̂†α,0)

− 1

2

(
|+⟩⟨−|+ |−⟩⟨+|

)
⊗
∑
α

cα√
N

(b̂α,0 + b̂†α,0),

(21a)

Ĥ{±,D} =
N−1∑
k=1

|Dk, 0⟩⟨+| ⊗
∑
α

cα√
2N

(b̂α,k + b̂†α,−k)

−
N−1∑
k=1

|Dk, 0⟩⟨−| ⊗
∑
α

cα√
2N

(b̂α,−k + b̂†α,k) + h.c.,

(21b)

where h.c. stands for the Hermitian Conju-
gate, and the general expression with an ar-
bitrary ΘN is provided in Sec. I of the Sup-
porting Information. In the above expres-
sions, b̂α,k = 1√

N

∑N−1
n=0 exp

(
−2πinkN

)
b̂α,n and

b̂†α,k = 1√
N

∑N−1
n=0 exp

(
−2πinkN

)
b̂†α,n are the cre-

ation and annihilation operators of the αth bath
phonon mode for the kth eigenstates of Ĥs. The
special symmetrical phonon modes are b̂α,0 =
1√
N

∑N
n=1 b̂α,n and b̂†α,0 = 1√

N

∑N
n=1 b̂

†
α,n, which

only couple to the |±⟩ states (see Eq. 21a).
From Eq. 21a, one can see that both |+⟩ state and

|−⟩ state are coupled to the phonon modes R̂α,0 =

(b̂α,0+b̂†α,0)/
√
2ωα, for both the diagonal term (Hol-

stein coupling) and off-diagonal term (Peierls cou-
pling), with a re-scaled coupling strength cα/

√
N .

Note that the displacement between the |G, 0⟩ and
the |±⟩ states is given by39 Rα,0 = Rα,0/2

√
N ,

where Rα,0 =
√

2c2α/ω
3
α is the displacement be-

tween the |En, 0⟩ and |G, 0⟩ states. Thus, the ef-
fective reorganization energy λN = 1

2

∑
α ω

2
αR2

α,0

between the |G, 0⟩ state and the |±⟩ states is

λN =
λ

4N
. (22)

This means that under the N → ∞ limit (in
real experiments, N ∼ 106 − 1012), the direct
phonon couplings are completely decoupled from
the |±⟩ states.39 As such, the optical lineshape
(such as polariton absorption) that corresponds to
|G, 0⟩ → |±⟩ optical transition will become much
narrower than systems outside the cavities,39 and
this will also present itself in the diagonal peaks of
the 2DES spectra.35 However, polaron decoupling
(Eq. 22) is not responsible for a longer ρ+−(t) co-
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herence time when increasing
√
Ngc as we have ob-

served in Figs. 2-3. This is because although both
|+⟩ and |−⟩ have a relative shift Rα,0 with respect
to |G, 0⟩ (polaron decoupling), there is no absolute
shift amongst |+⟩ and |−⟩ states on the diagonal
term as can be seen from the first line of Eq. 21a.
Instead, what could contribute to the pure deco-
herence is the off-diagonal Peierls term that will
be discussed later (see Eq. 24), although this is not
the main contribution.
The main contribution of the decoherence of ρ+−,

on the other hand, originates from the population
transfer from the |+⟩ state to the dark states man-
ifold {|Dk⟩}. This population transfer process hap-
pens within the same timescale of the ρ+−(t) de-
coherence process, as shown in Fig. 3c and Fig. 4c.
This transition is caused by the phonon coupling
term Ĥ{±,D} in Eq. 21b. One can estimate the
transition rate constant for the process |+⟩ →
{|Dk⟩} using Fermi’s Golden Rule (FGR), which
gives

k+→D =
N − 1

N
·Jν(

√
Ngc) ·

[
n̄(
√
Ngc) + 1

]
, (23)

where Jν(ω) is the phonon spectral density ex-
pressed in Eq. 5, and n̄(ω) = 1/(eβh̄ω − 1) is the
Bose-Einstein distribution function of the phonon.
Note that the energy gap between |+⟩ and |Dk⟩
is ω+ − ωD = ΩR/2 =

√
Ngc, which appears in

Jν(ω) and n̄(ω) of the FGR expression. For an ar-
bitrary detuning case, there will be an additional
factor [1 + cos(2ΘN )] in the FGR expression, see
Eq. S21c in the Supporting Information. The scal-
ing (N−1)/N in Eq. 23 is well known,57–59 because
there are N − 1 dark state to transfer to, and the
1/N is originated from the re-scaled phonon cou-
pling cα/

√
N . Further, k+→D can already explain

the similarity of the decoherence dynamics we ob-
served in Figs. 2-3. This is because when N is suf-
ficiently large, (N − 1/N) ∼ 1, and the relaxation
rate for the |+⟩ → {|Dk⟩} process is completely dic-
tated by

√
Ngc as this is the only quantity shown

in k+→D (Eq. 23). As such, even though the Hamil-
tonians used in Fig. 2 and Fig. 3 are different (es-
pecially for the number of the dark states), the re-
duced system dynamics in the {|±⟩, |Dk⟩} are iso-
morphic to each other as long as

√
Ngc is identical

and N is sufficiently large, and if the dynamics is
largely dictated by |+⟩ → {|Dk⟩} transition.
The off-diagonal Peierls coupling in Eq. 21a, on

the other hand, is the main cause of pure decoher-
ence when one does not consider population trans-

(a)

(b)

(c)

(meV)

Figure 5: Fundamental scaling relation of the coher-
ence lifetime T2 with respect to N and gc for various
systems. The results are obtained from HEOM exact
simulation (red dots), and compared to the fitting line
(blue solid lines) and from FGR estimations (green dot-
line). (a) T2 as a function of N when

√
Ngc = 180 meV

is fixed (such that when N increase, gc decreases ac-
cordingly). (b) T2 as a function of N for fixed gc = 44.7
meV. (c) T2 as a function of gc for fixed N .

fer between |+⟩ and |−⟩ or population transfer to
the dark states. This term is also the main cause
of decoherence when N = 1 (as there is no dark
state in this case). One can also estimate the rate
constant for the process of |+⟩ → |−⟩ using FGR,
and this rate constant is

k+→− =
1

2N
·Jν(2

√
Ngc) ·

[
n̄(2

√
Ngc) + 1

]
. (24)

Note that the energy gap is ω+ − ω− = ΩR =
2
√
Ngc, which shows up in the Jν(ω) and n̄(ω) ex-

pressions of the FGR. Further, compared to k+→D,
the overall scaling is just 1/N .
With the above two population transfer rate con-

stants (Eq. 23 and Eq. 24), we approximate the
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total coherence lifetime T2 as

1

T2
=

1

2T1
+

1

T ∗
2

=
1

2
k+→D +

1

2
k+→− (25)

where 1/T1 = k+→D, and we assume that for the
pure decoherence rate it is half of the population
transfer rate between |+⟩ and |−⟩ states (which
is indeed valid under the Markovian approxima-
tion and this can be seen from the Lindblad mas-
ter equations58,59). Under the large N limit (or
collective strong coupling limit),

√
Ngc ≫ γ, the

spectral density Jν(
√
Ngc) ∼ 1/

√
Ngc (c.f. Eq. 5),

and we find the following fundamental scalings

T1 ∼ N3/2gc/(N − 1), T ∗
2 ∼ N3/2gc. (26)

Note that in the above scaling law, we explicitly
assumed that β

√
Ngc ≫ 1, such that 1 + n̄ ≈ 1.

This is indeed the case for exciton-polaritons un-
der room temperature conditions kBT ≈ 26 meV
and

√
Ngc > 50 meV. For lower temperature or

vibrational strong coupling cases (where usually√
Ngc < 10 meV) one also needs to explicitly

consider the scaling coming from n̄(
√
Ngc) and

n̄(2
√
Ngc). Further, the scaling in Eq. 26 will de-

pend upon the detailed form of the spectral density
Jν(ω), but one is guaranteed to figure out this scal-
ing once the detailed form of Jν(ω) is known. Thus,
for large N , T ∗

2 ≫ 2T1, and we see that the con-
tribution of the coherence decay rate between |+⟩
and |−⟩ state to T2 is negligible; the decoherence
time for the collective coupling case is

1

T2
≈ 1

2T1
∼ N − 1

N3/2gc
, (27)

which is the first key result of this letter. On the
other hand, when N = 1 (single molecule case),
T1 ∼ ∞ (c.f. Eq. 26) because there is no dark
state at all, and the decoherence mechanism is
dominated by population transfer between |+⟩ and
|−⟩ as shown in Fig. 4a. As such, for the single
molecule case

1

T2
≈ 1

T ∗
2

=
1

2

λγgc
γ2 + 4g2c

[n̄(2gc) + 1] ∼ 1

gc
, (28)

which reflects a simple fact that as ω+− = ω+ −
ω− = 2gc gets larger, the phonon in Jν cannot
efficiently mediate the transition |+⟩ → |−⟩ un-
less there is a high frequency phonon that matches
ω+−. Note that the simple scaling at the end of
Eq. 28 only works when gc ≫ γ, otherwise 1/T ∗

2

will exhibit a turnover, dictated by the form of
Jν(2gc) (c.f. Eq. 5). Nevertheless, we have ob-
served this from direct theoretical simulations of
2DES spectra of a single molecule strongly cou-
pled to the cavity,31 and indeed find that the
longer coherence time can be achieved by increas-
ing gc. Further, earlier theoretical work also sug-
gests that one can prolong the ρ+− coherence by
increasing gc from the potential energy surface hy-
bridization perspective.30 Additional numerical re-
sults are provided in Sec. VI of the Supporting In-
formation to characterize the ρ+− decoherence for
N = 1 with increasing gc. However, we emphasize
that the fundamental mechanism for decoherence
in the N = 1 case (Eq. 28) is different compared
to the collective coupling case (Eq. 27).
Fig. 5 presents a numerical check of the scal-

ing predicted by Eq. 27, where we have simu-
lated three cases: (a) fixing the collective cou-
pling

√
Ngc = 180 meV while increasing N (and

thus decrease gc accordingly, (b) fixing gc = 44.7
meV while increasing N , and (c) fixing N = 10
while increasing gc. The results are obtained from
HEOM simulations and extracted using Eq. 20 (red
dots), the least square fitting using the correspond-
ing scaling (blue curve), as well as from FGR using
Eq. 25 (green).
According to the scaling predicted by FGR, 2T1

scales as N/(N − 1) when
√
Ngc is fixed, scales as

N3/2/(N − 1) when gc is fixed, and scales as gc
when N is fixed. As one can see, the least square
fittings match the HEOM data for all three panels
in Fig. 5 and show that our scaling arguments are
correct. Furthermore, we see that the FGR expres-
sion overestimates the T2 value by only 40 fs, likely
due to ignoring the other contribution of decoher-
ence (that further reduces T2.) Thus, we note that
Eqs. (23) and (24) not only reproduce the scal-
ing of T2 with respect to the system parameters,
but they also provide a reasonable estimate for the
actual coherence lifetimes predicted by exact quan-
tum dynamics. We expect these equations to be of
use in interpreting experimental results that cou-
ple many molecules strongly to a cavity, such as
polariton spectral linewidth.31,35

Further, we demonstrate the robustness of the
prolonged coherence ρ+−(t) when explicitly con-
sidering cavity loss. To incorporate the cavity loss
effect, we couple the cavity mode with a lossy en-
vironmental DOF corresponding to the photonic
modes outside the cavity (far field modes).60,61
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Figure 6: Same parameters as in Fig. 3 but with
cavity loss rate τ−1

c = 8.83 meV.

This part of the Hamiltonian is expressed as

Ĥloss =
∑
α

P̂ 2
α

2
+

1

2
ω̃2
α

[
Q̂α +

Cα

ω̃2
α

(
â† + â

)]2
,

where ω̃α is the frequency of the modes, and Cα

is the coupling strength between the cavity mode
and the photon loss bath. The photon loss bath is
modeled with a Drude-Lorentz spectral density

Jloss(ω) =
π

2

∑
α

C2
α

ω̃α
δ(ω − ω̃α) =

2λcωγc
ω2 + γ2c

Using the expression for the cavity loss rate60,61

(see derivation in Ref. 61, Appendix D)

τ−1
c = Jloss(ωc)/[ωc(1− e−βωc)], (29)

and the cavity quality factor is defined asQ = ωcτc.
Here, we choose the parameters λc = 5.15 meV
and γc = 800 meV for the cavity loss bath, cor-
responding to a cavity loss rate τ−1

c = 8.83 meV
(c.f. Eq. 29) or a quality factor of Q ≈ 266 (when
ωc = 2 eV), which is a typical experimental loss
rate in a distributed Bragg reflector (DBR) cav-
ity.41 This loss spectral density Jloss(ω) in Eq. 29
is included in the HEOM exact quantum dynam-
ics simulations. Of course, cavity loss also signif-
icantly contributes to the population decay of the
|+⟩ state, and one can estimate the decoherence

rate as 1
T2

≈ 1
2k+→D + 1

2τ
−1
c , where 1/2 of the

character of |+⟩ is the photonic character |G, 1⟩,
and the decoherence rate due to cavity loss is 1/2
of the photonic population decay rate τ−1

c .
Fig. 6 presents the ρ+−(t) in a lossy cavity for

fixed gc, same as those in Fig. 3, except with the
inclusion of cavity loss in the HEOM simulation.
The extracted coherence lifetimes (using Eq. 20)
are: (a) T2 = 46.6 fs for

√
Ngc = 100 meV , (b)

T2 = 58.9 fs for
√
Ngc = 141.4 meV, and c) T2

= 77.6 fs for
√
Ngc = 200 meV. One can see that

Re[ρ+−(t)] indeed decays faster in a lossy cavity
compared to a perfect cavity, but coherence be-
tween |+⟩ and |−⟩ still lasts much longer compared
to the typical value of electronic decoherence rate.
For example, when

√
Ngc = 200 meV (Fig. 6c)

the decoherence time is 77.6 fs when having a cav-
ity loss rate of τ−1

c = 8.83 meV, which is about 3
times longer than the outside cavity case. Thus,
the presence of strong collective light-matter cou-
pling still enhances the quantum coherence of the
bright polaritonic states even in the presence of
cavity loss.
Fig. 7 shows the coherence lifetimes T2 for a fi-

nite light-matter detuning ∆ = ωc − (ωx + λ).
We consider the coherences in both lossless and
lossy cavities, and for lossy cavities we have qual-
ity factors from Q = 167 to Q = 1500 that are
representative of experimentally realizable optical
cavities.18,41 For positive ∆, T2 increases with in-
creasing ∆ until it reaches a turnover point where
T2 decreases with further increases in ∆. From
our FGR analysis, this turnover is caused by the
competition between the population transfer from
|+⟩ → {|Dk⟩} given by the rate k+→D, and the
population transfer from |−⟩ → {|Dk⟩} given by
the rate k−→D. We also include the photonic loss
to the |G, 1⟩ state from the |±⟩ states. Combining
all contributions to the decoherence rate, we have
the second key result of this letter

1

T2
≈ 2(N − 1)

N

[
− ∂∆E−

∂∆
· Jν(∆E+) · (n̄(∆E+) + 1)

+
∂∆E+

∂∆
· Jν(∆E−) · n̄(∆E−)

]
+

1

2
τ−1
c (30)

where the energy gap between |+⟩ and dark state
as well as between dark state to |−⟩ is

∆E± = ±∆

2
+

1

2

√
∆2 + 4Ng2c , (31)
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Figure 7: T2 for fixed collective coupling strength√
Ngc = 150 meV, while varying light-matter detun-

ing ∆. The coherence lifetimes for lossy cavities with
quality factors of Q = 167 (magenta), Q = 500 (blue)
and Q = 1500 (green) are plotted with the lifetimes in
a lossless cavity (red).

and

±∂∆E±
∂∆

=
1

2

(
1± ∆√

∆2 + 4Ng2c

)
, (32)

are the Hopfield coefficients.8,41 In Eq. 30, we
have explicitly ignored the 1/T ∗

2 contribution (c.f.
Eq. 23 and Eq. 25). With a larger light-matter de-
tuning ∆, the first term in Eq. 31 decreases due
to a reduced Jν(∆E+) originated from a larger en-
ergy gap between |+⟩ state and the dark states
manifold. On the other hand, the second term
in Eq. 31 increases because of increased Jν(∆E−)
with a smaller energy gap between |−⟩ state and
the dark states manifold. As such, there will be a
turnover of 1/T2 as one increases the light-matter
detuning ∆ = ωc−(ωx+λ) from zero value to posi-
tive values. The impact of cavity loss, which affects
both |±⟩ states, is to cause additional decoher-
ence from population transfer to the |G, 1⟩ state.
Fig. 7 verify such a turnover of T2 as a function
of the detuning obtained from HEOM simulations,
at various cavity quality factors from Q = 167 to
Q = 1500. Further analysis of the turnover using
the formalism of Eq. 30 is provided in Sec. VIII of
the Supporting Information.
In this letter, we theoretically demonstrate that

the coherence lifetime between the upper and lower

polariton states in the collective coupling regime
increases with an increasing collective Rabi split-
ting 2

√
Ngc. This is confirmed by computing

ρ+−(t) using exact quantum dynamics simulation
through the HEOM approach, as well as through
analytic rate theory using Fermi’s Golden Rule.
We found that the main mechanism for decoher-
ence under this collective coupling regime at res-
onance condition largely comes from population
transfer from the upper polariton state to the
dark states manifold, a departure from the pure
dephasing limit that does not involve any popu-
lation transfer. Using analytic theory based on
FGR expression, we showed that polariton de-
coherence can be mitigated by reducing exciton-
phonon couplings. An enlarged energy gap be-
tween the polariton states and the dark states fur-
ther reduces the population relaxation rate from
|+⟩ to the dark state manifold, as well as the de-
coherence rate. Further, we showed that this en-
hancement in coherence is robust even in the pres-
ence of cavity loss, with a range of quality fac-
tors that can be achieved using the state-of-the-
art FP cavities.41,45 By investigating the coher-
ence enhancements with varying light-matter de-
tunings, we further demonstrated the importance
of the dark states in mediating the coherences be-
tween the polaritonic states and theoretically pre-
dicted and explained the turnover in T2 for pos-
itive ∆ as a consequence of competition between
transitions from |+⟩ → {|Dk⟩} and |−⟩ → {|Dk⟩}.
The results in this letter use parameters that are
representative of those used in recent polariton ex-
periments using CdSe NPL coupled to DBR FP
cavities.41,45 We thus expect that these theoretical
predictions can be directly verified experimentally
and will provide crucial insights into understanding
polariton 2D spectroscopy data.35

Supporting Information. The Supporting Infor-

mation is available free of charge at [url]. Details of the

HTC system in the polaritonic basis; FGR rates for po-

lariton transitions; details of HEOM simulations; purity

results for a fixed number of molecules; coherence data

for a fixed number of molecules in a lossy cavity; coher-

ence data for single molecule case (N = 1); discussion of

Gaussian to Markovian transition in the collective cou-

pling regime; FGR analysis of the decoherence turnover

with increasing positive detunings.
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(9) Keeling, J.; Kéna-Cohen, S. Bose–Einstein con-
densation of exciton-polaritons in organic micro-
cavities. Annual Review of Physical Chemistry
2020, 71, 435–459.

(10) Ghosh, S.; Liew, T. C. Quantum computing with
exciton-polariton condensates. npj Quantum In-
formation 2020, 6, 16.

(11) Kavokin, A.; Liew, T. C.; Schneider, C.;
Lagoudakis, P. G.; Klembt, S.; Hoefling, S. Polari-
ton condensates for classical and quantum com-
puting. Nature Reviews Physics 2022, 4, 435–451.

(12) Ballarini, D.; De Giorgi, M.; Cancellieri, E.;
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