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Abstract

Heterocycles are important scaffolds in medicinal chemistry that can be used to mod-

ulate the binding mode as well as pharmacokinetic properties of drugs. The importance

of heterocycles has been exemplified by the publication of numerous datasets containing

heterocyclic rings and their properties. However, those datasets lack synthetic routes

towards the published heterocycles. Consequently, novel and uncommon heterocycles are

not easily synthetically accessible. While retrosynthetic prediction models could usually

be used to assist synthetic chemists, their performance is poor for heterocycle formation

reactions due to low data availability. In this work, we compare the use of four different
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transfer learning methods to overcome the low data availability problem and improve

the performance of retrosynthesis prediction models for ring-breaking disconnections.

The mixed fine-tuned model achieves top-1 accuracy of 36.5% and, moreover, 62.1% of

its predictions are chemically valid and ring-breaking. Furthermore, we demonstrate the

applicability of the mixed fine-tuned model in drug discovery by recreating synthetic

routes towards two drug-like targets published last year. Finally, we introduce a method

for further fine-tuning the model as new reaction data becomes available.

Introduction

Retrosynthesis, the iterative process of breaking down a molecule into simpler precursors, has

traditionally been the domain of expert organic chemists.1 However, even for experienced

chemists, this approach presents challenges due to the vast chemical space of potential trans-

formations and the incomplete understanding of reaction mechanisms and their dependence

on reaction conditions. To overcome these challenges, efforts have persisted since the 1970s

to integrate computation into synthetic planning by developing Computer-Aided Synthesis

Planning (CASP) tools, with one of the earliest examples being the Logic and Heuristics

Applied to Synthetic Analysis (LHASA) by Pensak et al.2 Despite numerous attempts, CASP

tools had limited success until recently.3

Significant progress in CASP tools has occurred in the last decade,4 driven by advances in

machine learning (ML) methodologies and the availability of chemical datasets, such as Lowe’s

US Patents Office (USPTO) reaction extracts.5 Following the seminal work by Segler et al.6 on

the use of neural networks and search algorithms in the 3N-MCTS CASP tool, there has been

a proliferation of new ML models for retrosynthesis prediction. These models can be broadly

classified into two categories: template-based6–9 and template-free methods.10–14 Template-

based methods rely on predefined reaction rules extracted from datasets, where algorithms

match a target molecule with predefined templates. CASP tools utilising such models include

ASKCOS,7 AiZynthFinder,8 and Retro*.9 In contrast, template-free methods, such as graph-
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based13,14 or sequence-to-sequence10–12 (seq2seq) approaches, bypass the use of an external

template database by directly training on raw reaction data. While early seq2seq models were

based on long-short term memory networks (LSTMs),12 the breakthrough in seq2seq reaction

prediction came when Schwaller et al. applied the transformer model15 commonly used in

Natural Language Processing (NLP) for forward reaction prediction, creating the Molecular

Transformer.16 In this case, reaction prediction is treated as a translation problem using

Simplified Molecular Input Line Entry System (SMILES)17 strings to represent the chemical

transformation. Since then, seq2seq retrosynthesis prediction models have shown high

accuracies on public benchmarking test sets, with the Augumented Transformer11 achieving

46.2% top-1 reactant accuracy on the USPTO-full dataset.18 The recent developments have

led to transformers emerging as a premier architecture for retrosynthesis planning utilised in

platforms such as IBM RXN.10

Despite the high efficacy of CASP tools on general reaction datasets, predicting ret-

rosynthetic disconnections for specific, less prevalent areas of chemistry remains a significant

challenge due to dataset bias.19,20 Heterocycle formation reactions are an example of under-

represented reaction classes, accounting for only 5% of reported chemical reactions in the

USPTO dataset.19 However, heterocycles are key motifs in drug design, with 85% of the top

200 best-selling small molecule drugs of 2022 featuring heterocyclic rings,21 where they act

as bioisosteric replacements improving pharmacokinetic and toxicological properties of drug

targets.22–24 Although numerous virtual libraries document theoretically synthesisable hetero-

cyclic scaffolds,25 synthetic pathways towards novel heterocycles remain underexplored, with

the focus in medicinal chemistry being on ring derivatisation rather than ring formation.26,27

Enhancing the prediction capacity of CASP tools for reactions forming these crucial chemical

motifs could stimulate the exploration of novel heterocyclic molecules, potentially fuelling

new therapeutic breakthroughs.

This work aims to enhance the performance of CASP tools for heterocycle retrosynthesis

by combining seq2seq models and transfer learning, where knowledge learned from one
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Figure 1: Utilisation of general (i) and domain-specific (ii) data in transfer learning
approaches for sequence-to-sequence retrosynthesis prediction.

task is used to boost the performance on a related task (Figure 1). Two transfer learning

approaches, fine-tuning and multi-task learning, have been previously successfully applied

for the forward reaction prediction of carbohydrate reactions20 and Heck reactions,28 as well

as forward and retrosynthesis prediction of enzymatic reactions29,30 (Figure 2A). However,

both of those approaches come with limitations. For example, in the reported examples,

fine-tuning has shown a quick training time and increased accuracy for reactions of interest

but exhibited a large drop in performance for other, more common reaction types. Conversely,

multi-task learning maintained good performance on all reaction types but required longer

training time, making it less suitable for frequent retraining as new reaction data becomes

available. To address these limitations, here we evaluate mixed fine-tuning31 and ensemble

decoding,32 which have previously proven effective in language translation tasks but have

not been used in retrosynthesis prediction (Figure 2B). We compare those methods to the

template-based approach reported by Thakkar et al. specifically for ring-forming reaction

prediction in the ‘Ring Breaker’.19 We use two datasets to train these models: a large

dataset of all reaction types based on USPTO ("General") and a smaller dataset of just
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heterocycle formations ("Ring"). We show that the mixed fine-tuned model is the best

for use in multi-step retrosynthesis, with 10% increase in accuracy over the baseline for

heterocycle formations and only a marginal decrease in performance for other reactions. We

then further demonstrate its applicability by predicting retrosynthetic routes towards two

recently published heterocycle-containing drug-like targets. Finally, we test the mixed-fine

tuned model on recently developed heterocycle formations and demonstrate how it can be

further fine-tuned to improve its accuracy on this new data.
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Figure 2: Overview of transfer learning methods used in this work for heterocycle ret-
rosynthesis prediction. (a) Methods previously used for forward reaction prediction and
retrosynthesis. Fine-tuning consists of training a baseline model on a large dataset of all
reaction classes, which is then fine-tuned on a smaller dataset of only reactions of interest. In
multi-task learning, the model is trained on both datasets at the same time. (b) Methods only
used in NLP tasks. In mixed fine-tuning, the baseline model is fine-tuned on both datasets.
In ensemble decoding the prediction is made jointly with the baseline and fine-tuned model.
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Methods

Datasets

In this study, we utilised the USPTO dataset pre-processed by Pesciullesi et al.,20 which is

henceforth referred to as the General dataset. Additionally, we curated a dataset of 165,216

ring formation reactions, referred here to as the Ring dataset, comprising about 80k reactions

extracted from academic journals (CJHIF dataset33) and 80k reactions from additional patent

data (Pistachio dataset).34 The creation of the Ring dataset is described in more detail in

SI§S4. A visualisation of the chemical space of the datasets is included in the SI (Figure S1),

showing that ring-breaking reactions occupy distinct areas of the chemical space.

The Ring dataset was split into train, validation, and test sets with 90:5:5 ratio based

on the Tanimoto similarity of reaction products35 using DeepChem.36 The General dataset

splitting was retained from the work of Pesciullesi et al.20 Additionally, we performed a

random split of the Ring dataset and trained the mixed fine-tuned model on the randomly

split dataset to assess the effect of dataset splitting (SI§S8).

Retrosynthesis prediction models

We trained the single-step retrosynthesis prediction models based on the seq2seq Transformer

architecture using the OpenNMT-py package.37 All hyperparameters used here are provided

in the SI§S1 and are based on the work of Pesciullesi et al.20 We trained the baseline model on

only the General dataset. As fine-tuning and multi-task learning have been previously used for

reaction prediction, we adopted the parameters previously reported for these models. For the

multi-task model, we used a dataset weight ratio of 9 (General):1 (Ring). For the fine-tuned

model, the number of fine-tuning steps was set to 6,000. For mixed fine-tuning, a 1:1 dataset

weight ratio and 6,000 fine-tuning steps were chosen after a benchmark (SI§S7). Ensemble

decoding was performed with in-built OpenNMT-py functionality using the fine-tuned model

and the baseline model.
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Furthermore, we trained a single-step template-based retrosynthesis prediction model on

only ring-forming reactions based on the approach used by Thakkar et al. in ‘Ring Breaker’.19

Our dataset comprised reactions from the Ring dataset and ring formations extracted from

the General (USPTO5) dataset. Atom-mapping of reaction data was conducted using

RXNMapper,38 and reaction templates were subsequently extracted using RDKit39 and

RDChiral.40 We used TensorFlow41 to construct the multilabel classification neural network

for prediction. The selected hyperparameters are provided in the SI§S2.

To adapt the trained single-step retrosynthesis prediction models to multi-step route

planning tools, we used a neural-based A* search algorithm based on Retro*.9 Multi-step

route planning tools were constructed for both the baseline and mixed fine-tuned single-step

models. The stock molecule database chosen was eMolecules.

Model evaluation metrics

The single-step retrosynthesis prediction models were evaluated on both the General and

Ring test sets using metrics based on top-N accuracy and round-trip accuracy.10 For the Ring

test set, we calculate reactant-only accuracy, where the prediction is considered accurate if all

the ground truth reactants are present. For the General test set, due to the lack of separation

between reactants and reagents, we calculate top-N accuracy by directly comparing the set

of predicted precursors to the ground truth. We also consider the round-trip accuracy10

of the suggested disconnections, which represent the "chemical validity" of predictions, i.e.

what proportion of predicted reactant sets are expected to produce the desired product.

Additionally, we introduce a new metric: the ring-breaking round-trip accuracy, calculated

only for the "Ring" dataset. A disconnection is considered to be ring-breaking round-trip

accurate when it is round-trip accurate and the number of rings in the product is higher than

in predicted reactants. In this way, we consider not only whether the prediction is chemically

valid but also whether it involves a ring disconnection, i.e. the reaction type we’re aiming to

improve the model’s performance for.
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All metrics reported in the main text are for top-1 predictions. However, metrics for top-3

and top-5 predictions are available in the SI§S9. A more detailed explanation of the metrics

can be found in SI§S6.

Further fine-tuning

We extracted a set of 1,475 heterocycle formations from 47 scientific publications from 2022

reporting new methodologies for heterocycle synthesis(SI§S11). This dataset (referred to as

the Recent dataset) was split randomly into a train, validation and test sets with a ratio of

80:10:10. Further fine-tuning was carried out using the mixed fine-tuning approach, starting

from the mixed fine-tuned model and training it for 6,000 steps on the General , Ring and

Recent datasets with a 4:4:1 dataset weight ratio.

Results

Optimisation of the single-step retrosynthesis model

Comparative analysis of transfer learning approaches

We commenced our study by comparing the performance of different transfer learning

approaches, focusing on methods previously used for chemical reaction prediction (i.e., multi-

task learning and fine-tuning) and methods employed in the NLP domain (mixed fine-tuning

and ensemble decoding) (Figure 2). The comparison is conducted on the Ring test set to

assess their performance in predicting ring-breaking reactions compared to a baseline model

trained only on the General dataset (Figure 3A). In addition to the commonly used reactant-

accuracy, we also consider whether the prediction was chemically valid and corresponded

to a ring-breaking reaction. This identifies predictions that differ from the ground truth

disconnection present in the test set but still disconnect the ring.

Our results show that on the Ring test set, the fine-tuned model outperforms the other
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Figure 3: Comparison of model performance on the (A) Ring and (B) General test set.
Top-1 reactant-accuracy and proportion of valid ring-breaking top-1 predictions are shown
for the Ring test set. Top-1 accuracy and round-trip accuracy are shown for the General
test set. Multi-task, fine-tuned, mixed fine-tuned (Mixed FT) models, ensemble decoding
(Base+FT) and template-based (Template) model are compared to the baseline.

approaches, achieving a top-1 reactant accuracy of 40.5% (Figure 3A). Moreover, 69.5%

of all its top-1 predictions are chemically valid and correspond to ring-breaking reactions.

The three other approaches also show improvement over the baseline model with top-1

reactant-accuracies of around 36% and 62% valid ring-breaking top-1 predictions. While the

observed improvement over baseline isn’t as high as reported in previous studies20,28 (13.6%

increase in accuracy for fine-tuned model here vs 27.0% for carbohydrate reactions and 28.6%

for Heck reactions), there are two key aspects to note. Firstly, the mentioned studies used

transfer learning for forward reaction prediction, not retrosynthesis, which is considered to be

a much easier task, only having one "correct" answer. Moreover, heterocycle formations are

a much larger and more diverse class of reactions than Heck reactions or even carbohydrate

reactions, making it more difficult for the model to learn all the different reactivity.

9

https://doi.org/10.26434/chemrxiv-2024-ngqqg ORCID: https://orcid.org/0000-0002-6062-8209 Content not peer-reviewed by ChemRxiv. License: CC BY 4.0

https://doi.org/10.26434/chemrxiv-2024-ngqqg
https://orcid.org/0000-0002-6062-8209
https://creativecommons.org/licenses/by/4.0/


Figure 4: Example top-1 predictions of the mixed fine-tuned and baseline models for Ring
test set molecules. For all the examples shown, the mixed fine-tuned prediction was accurate,
whilst the baseline prediction was valid but not ring breaking. The disconnections suggested
by the mixed fine-tuned model are highlighted in blue, while the disconnections suggested by
the baseline model are highlighted in grey.
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Interestingly, even though each of our approaches increases the proportion of top-1 valid

ring-breaking predictions by at least 7% when compared to the baseline model, the same

trend is not observed when considering just the top-1 round-trip accuracy of the predictions

(SI§S9). For example, for the mixed fine-tuned model, the ring-breaking round-trip accuracy

increases by over 10%, while the round-trip accuracy decreases by 1%. The same trend can

be observed for all other approaches apart from the multi-task model, where the round-trip

accurcay increases but not as much as the ring-breaking round-trip accuracy (SIS9). This

indicates that the main improvement between the various models trained using transfer

learning and the baseline model is in the type of disconnection suggested, i.e. ring-breaking

versus more common reaction types, and not in turning chemically invalid disconnections into

valid ones. It also suggests that while the molecules in the Ring test set were synthesized

using ring formation reactions, there are other chemically viable disconnections available.

Indeed, comparing the predictions of the baseline and mixed fine-tuned model revealed

that the former often suggested more common reaction types, such as functional group

interconversions (FGIs) or protection/deprotections, instead of the ground-truth heterocycle

formation predicted by the mixed fine-tuned (Figure 4). For instance, in example 4A. the

mixed fine-tuned model correctly identifies a click reaction to generate the triazole from two

fragments of similar complexity. In contrast, the baseline model only suggests a more trivial

N-alkylation reaction. Similarly, for 4B. the mixed fine-tuned model suggests a condensation

reaction to form the central benzimidazole ring, while the baseline model suggests a functional

group interconversion, which would be more suitable earlier in the synthetic route. In 4C. and

4D. the baseline model predicts simple halogenation reactions rather than ring disconnections.

Interestingly, although the mixed fine-tuned model’s prediction is accurate for 4D., it was not

counted as round-trip accurate due to the forward model predicting a condensation reaction

with both the carboxylic acid and the nitro group instead of just a single condensation with

the former. This highlights a limitation of metrics based on round-trip accuracy, where the

model’s prediction is only assessed by another model that is not 100% accurate instead of
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comparing the prediction to those reported in the literature or assessed by skilled organic

chemists. Finally, in 4E. the mixed fine-tuned model correctly predicts the disconnection

of indazole, while the baseline model suggests a Boc protection of the nitrogen without

simplifying the molecule. While the ability of the model to suggest protection reactions is

notable, as they are crucial parts of synthetic routes, this specific protection is unnecessary

and might lead the model to predict a cycle of protection/deprotection reactions, preventing

further disconnections of the molecule.

When tested on the General test set, the models exhibit almost the opposite trend (Figure

3B). Performance of the fine-tuned model drastically decreases compared to the baseline

model, with the top-1 accuracy dropping from 14.5% to 2.7% and top-1 round-trip accuracy

from 87.4% to 52.6%. Meanwhile, the metrics for the mixed fine-tuned and multi-task model

only change marginally, dropping by at most 2%. Ensemble decoding falls in between, with a

top-1 accuracy of 9.3% and round-trip accuracy of 77.9%. The drop in performance observed

with the fine-tuned model can most likely be attributed to catastrophic forgetting,42 the

tendency of NNs to forget previously learned information when trained on new data. This

drop can be disregarded if the model is only intended for one-step ring disconnection. However,

it becomes problematic for multi-step retrosynthesis as the fine-tuned model will not be able

to disconnect the linear intermediates obtained after disconnecting the ring. In that case,

either the mixed fine-tuned or multi-task model would be more suitable.

Considering time and resources, mixed fine-tuning appears preferable due to its 40 times

shorter training time and comparable performance to multi-task learning, especially if planning

to frequently retrain the model as new data becomes available. Ensemble decoding employs

two models to make the prediction, and therefore, it takes longer at inference than the other

three methods.

Overall, both multi-task learning and mixed fine-tuning show improved performance for

ring-breaking disconnections while retaining the ability to predict other reaction classes, with

mixed fine-tuning being preferable due to shorter training time. While the fine-tuned model
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performs best for heterocycle disconnections, it is not suitable for multi-step retrosynthesis

due to catastrophic forgetting. Ensemble decoding ranks in the middle, not being as good at

ring disconnections as the fine-tuned model, but also performing worse for other reaction

classes than the mixed fine-tuned model. Due to this, we perform all further experiments and

comparisons with the mixed fine-tuned model, as the most versatile and best performing one.

Comparison to the template-based model

The mixed fine-tuned model was further benchmarked against ‘Ring Breaker’,19 the template-

based model trained specifically for heterocycle retrosynthesis. To allow for fair comparison,

we re-trained ‘Ring Breaker’ with our additionally extracted ring formation data, using the

whole Ring dataset and ring formation reactions from the General dataset. We compared

the performance of the mixed fine-tuned model to this ring-breaking specific template-based

model.

In terms of reactant-accuracy, both the mixed fine-tuned and the template-based model

have similar top-1 reactant-accuracies (Figure 3A), with the template-based model’s reactant-

accuracy being slightly higher. However, the mixed fine-tuned model has significantly higher

top-1 round-trip accuracy. These trends remain consistent across top-3 and top-5 predictions

(SI§S9). Moreover, the round-trip accuracies for the template-based model decrease rapidly

from top-1 to top-5, from 53.4% to 31.8%, while the mixed fine-tuned model maintains high

round-trip accuracy from top-1 (74.6%) to top-5 (71.8%) (Table 1). The mixed fine-tuned

model also suggests a higher overall proportion of chemically valid ring-breaking disconnections

(defined in Methods), with 59.9% for the mixed fine-tuned model compared to 30.8% for the

template-based model in the first 5 predictions (SI§S9). Additionally, the mixed fine-tuned

model maintains considerable accuracy on the General test set, while the template-based

model achieves a low top-1 accuracy of 0.5%.

Furthermore, we observe that the template-based model generates a larger proportion

of non-admissible predictions of ‘None’, with 48.8% of top-5 predictions being inadmissible,
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Table 1: Comparison of the template-based model to the mixed fine-tuned model. Top-N
Round-trip accuracy refers to the proportion of predictions within the first N predictions for
the test set considered chemically valid. The proportion of inadmissible predictions refers to
the percentage of predictions in the first N predictions for the test set that did not output a
viable SMILES string.

Metric Mixed fine-tuned model Template-based model

top-1 top-3 top-5 top-1 top-3 top-5

Round-trip accuracy 74.6% 73.3% 71.8% 53.4% 38.9% 31.8%

Inadmissible predictions 0.5% 0.7% 0.8% 27.6% 41.0% 48.8%

compared to only 0.8% of the mixed fine-tuned model’s predictions corresponding to invalid

SMILES strings (Table 1). For the template-based model, the increase in proportion of

inadmissible predictions between top-1 and top-5 correlates with the decrease in round-trip

accuracy, indicating that the low round-trip accuracy is due to the model’s inability to apply

multiple templates to one molecule. Hence, it is likely that the mixed fine-tuned model learns

a wider range of chemistry than the template-based model, which is limited in diversity when

it comes to disconnection strategies.

Overall, our results demonstrate that the mixed fine-tuned model significantly outperforms

the template-based model in round-trip accuracy, suggesting more diverse disconnections for

both general and ring-breaking disconnections, making it the preferred choice for multi-step

retrosynthesis as discussed in the following section. However, it is important to note that the

forward reaction prediction model used for calculating round-trip accuracy is of the same

architecture as the mixed fine-tuned model and is trained on the same reaction data (but

with reversed labels). This could be biasing the metric towards the mixed fine-tuned model

and mean that the difference in round-trip accuracy between the mixed fine-tuned model

and the template-based model is not as significant as it seems. A more objective way of

calculating metrics such as round-trip accuracy could be to use a different model to predict

reaction viability instead of the forward reaction prediction model, however we were not able

to train such a model for this work due to lack of negative reaction data.
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Mixed fine-tuned multi-step model

To assess the practical use of the mixed fine-tuned model in synthesis planning for drug-like

targets, we constructed a multi-step retrosynthesis prediction tool using neural-guided A*

Search, based on the algorithm used in Retro*. The two drug-like targets included CZS-035

and ADD (Figure 5), for which syntheses were reported in 2023. The exact reactions

employed in these synthesis are therefore absent in our training set, which contains reactions

from patents and literature up to 2022. For comparison, we also built an analogous multi-step

retrosynthesis tool employing the baseline single-step model, maintaining identical search

settings.

The first case study, CZS-035, is a ligand for polo-like kinase 4 (PLK4) and a warhead

component used to synthesise a therapeutic PROTAC for breast cancer treatment, discovered

by Sun et al.43 (Figure 5A). Both the baseline and mixed fine-tuned multi-step models

successfully identify retrosynthetic routes for CZS-035 from purchasable precursors in our

stock molecule database. Both models accurately reproduce the protection of nitrogen with

Boc (A1) as seen in the literature synthesis.43 Both models also correctly identify the two

SNAr disconnections used in the literature to reproduce B1 and B2. However, the mixed

fine-tuned model uniquely identifies the final ring disconnection of pyrazole in B1 to C1 and

C2, which aligns with the literature approach. In contrast, the baseline model suggests the

more complex and more expensive pyrazolopyrimidine C3 as the final purchasable precursor.

This result showcases the enhanced performance of the mixed fine-tuned model for predicting

key ring disconnections for multi-step routes, overcoming catastrophic forgetting and correctly

identifying all non-ring breaking disconnections of CZS-035. We note that the ability of

seq2seq models over template-based models to simultaneously suggest protections and SNAr

disconnections in different sites as in A1 is a unique advantage.

The second case study was ADD (compound 15d in ref44), a merged human butyryl-

cholinesterase (hBChE) inhibitor/cannabinoid receptor 2 (hCB2R) ligand and a therapeutic

target for preventing learning impairments in Alzheimer’s disease (Figure 5B).44 The baseline
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A. Retrosynthetic disconnections suggested by the mixed fine-tuned and baseline multi-step models for CZS-035

i) Mixed fine-tuned model

ii) Baseline model

B. Retrosynthetic disconnections suggested by the mixed fine-tuned compared to the literature route for ADD

i) Mixed fine-tuned model

ii) Literature route
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Figure 5: Example synthetic routes found by the mixed fine-tuned model for molecules
of clinical interest. (A) Comparison of the retrosynthetic routes for CZS-035 predicted by
(i) mixed fine-tuned and (ii) baseline models. (B) The retrosynthetic route for ADD (i)
predicted by the mixed fine-tuned model compared to (ii) the literature route. The baseline
model failed to predict a complete route for this compound.
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multi-step model failed to identify a synthetic route, while the mixed fine-tuned model pre-

dicts retrosynthetic disconnections similar to the literature route (Figure 5). Reagents were

omitted from the literature route to focus on the core synthons. While the mixed fine-tuned

model deviated by not reproducing the carbamate disconnection of ADD to benzyl-protected

phenol D1, instead using the pre-synthesised phenyl carbamate E2, it proposed subsequent

disconnections featuring the same cyclisation, reduction, and SNAr as the literature route

to mutually predicted reactants E1, F1, G1, and G2. This further reaffirms the improved

ring-breaking performance in multi-step retrosynthesis of the mixed fine-tuned model, where

the baseline model failed for the benzoimidazole scaffold in ADD.

These results demonstrate the capability of the mixed fine-tuned multi-step model in sug-

gesting tractable synthetic routes for newly-discovered, complex drug-like targets containing

heterocycles. This highlights its potential as a tool for synthetic chemists, aiding them in

designing synthetic routes towards novel heterocycle-containing therapeutics.

Recently developed heterocycle formation reactions

To evaluate whether the mixed fine-tuned model could extrapolate to unknown systems, we

extracted 1.5k heterocycle ring-forming reactions from 47 papers published in 2022 (here

referred to as Recent dataset). While the model was, unsurprisingly, unable to predict the

exact reported reactions, it provided chemically valid ring-breaking predictions for 30.4% of

the molecules. This indicates that while the reported reactions are new, potentially more

efficient or greener routes than those reported already, many of the heterocycles formed

were already synthetically accessible (Figure 6A). Interestingly, the routes suggested by our

model often resembled the ground truth (6Ai.-iii.). For example, both the mixed fine-tuned

model and literature suggested the same Friedländer synthesis for quinoline (Figure 6Ai.).

In the literature synthesis, there is an additional oxime intermediate; however, the mixed

fine-tuned model’s prediction follows the direct approach previously taken for trifluoromethane-

substituted quinolines by Jiang et al.45
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A.

B. C.

Figure 6: Recent reaction prediction. (A) Example valid predictions of the mixed fine-tuned
model on the Recent test set. (B) The further fine-tuning approach: the mixed fine-tuned
model is further trained on all three datasets. (C) Top-1 accuracy for the baseline, mixed
fine-tuned and further fine-tuned model on General, Ring and Recent test sets. Reactant-only
accuracy is reported for the Ring and Recent test sets.
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Although the mixed fine-tuned model found valid ring-breaking disconnections for almost

a third of the molecules in the Recent test set, when compared to the Ring test set, this

proportion is lower by 30%. Therefore, this indicates that the Recent test set includes a

higher number of heterocycles unknown to our model and therefore considered synthetically

inaccessible. If the model was trained on those new heterocycle formations, it could potentially

explore a new region of the chemical space. To address this, we further trained the mixed

fine-tuned model using the Recent dataset. This updated 2022 fine-tuned model was trained

on the three datasets: General, Ring and Recent for another 6,000 steps starting from the

mixed fine-tuned model (Figure 6B). The top-1 accuracy of this 2022 fine-tuned model is

shown in Figure 6C. This updated 2022 fine-tuned model exhibited only a slight decrease

in accuracy on the General and Ring test sets while showing an increased top-1 reactant

accuracy on the Recent test set (89.9%). This illustrates that the model can be fine-tuned to

incorporate new reaction data without significantly compromising performance on previously

learned tasks. While we used a small dataset of heterocycle formations here, this approach

could be applied to a larger dataset or reaction data for different reaction classes of interest.

Conclusion

In this work we compared four different transfer learning approaches: fine-tuning, multi-task

learning, mixed fine-tuning and ensemble decoding. Our aim was to improve the performance

of seq2seq retrosynthesis prediction models for ring-breaking disconnections. We have found

that mixed fine-tuning performs best overall, with short training time, top-1 reactant-accuracy

for ring formations increased by 10% compared to the baseline model and a barely decreased

accuracy on other reaction classes. The accuracy for ring formations is comparable to the

template-based model we trained based on Ring Breaker; however, the mixed fine-tuned

model vastly outperforms the template-based model in other reaction classes. While the

fine-tuned model performs best for ring formations, with top-1 reactant-accuracy of 40.5%, its
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performance significantly drops for other reaction classes due to catastrophic forgetting. This

makes it unusable for multi-step retrosynthesis, which requires disconnection of both rings and

linear intermediates. We have also introduced a new metric, the "ring-breaking round-trip

accuracy", to assess the performance of the models for ring-breaking disconnections. By

comparing the round-trip accuracy and ring-breaking round-trip accuracy of the baseline and

mixed fine-tuned models, we have shown that both models suggested viable disconnections

for a similar proportion of molecules. However, the key improvement in the mixed fine-tuned

model was the type of disconnection suggested. While the baseline model suggests common

reactions, such as protections/deprotections or functional group interconversions, which were

either unnecessary or better suitable earlier in the synthetic route, the mixed fine-tuned

model favoured ring formation reactions, with 62.1% of disconnections being ring-breaking

round-trip accurate.

We then showcased the practical utility of the mixed fine-tuned model by using it for

multi-step retrosynthesis of two newly-discovered, complex drug-like compounds containing

heterocycles. This illustrates how the model can be used to assist synthetic and medicinal

chemists, aiding them in designing synthetic routes towards novel heterocycle-containing

therapeutics.

Finally, we have introduced a method for further fine-tuning the model on additional

reaction data. By using this further mixed fine-tuning we have substantially improved the

model’s top-1 reactant-accuracy on ring formation reactions published in 2022 from 0% to

89.9% without significantly compromising performance for older ring formation reactions or

other reaction classes. While this approach has been applied to a small dataset of less than

1.5k heterocycle formations, it has the potential to be scaled up for a larger dataset or a

different reaction class.
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Data availability

The General dataset (based on USPTO), the ring formation reactions derived from CJHIF,

and the Recent dataset are available at: https://github.com/duartegroup/Het-retro
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