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Abstract 

Integrating enzymatic reactions into computer-aided synthesis planning (CASP) should help 

devise more selective, economical, and greener synthetic routes. Herein we report the triple-

transformer loop algorithm with biocatalysis (TTLAB) as a new CASP tool for chemo-

enzymatic multistep retrosynthesis. Single-step retrosyntheses are performed using two 

triple transformer loops (TTL), one trained with chemical reactions from the US Patent 

Office (USPTO-TTL), the second one obtained by multitask transfer learning combining the 

USPTO dataset with preparative biotransformations from the literature (ENZR-TTL). Each 

TTL performs single-step retrosynthesis independently by tagging potential reactive sites in 

the product, predicting for each site possible starting materials (T1) and reagents or enzymes 

(T2), and validating the predictions via a forward transformer (T3). TTLAB combines 

predictions from both TTLs to explore multistep sequences using a heuristic best-first tree 

search and propose short routes from commercial building blocks including enantioselective 

biocatalytic steps. TTLAB can be used to assist chemoenzymatic route design.   
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Introduction 

Computer-aided synthesis planning (CASP), originally proposed by E. J. Corey in the 1960’s, 

uses computational approaches, including rule-based systems as well as various types of 

neural networks, to exploit synthetic methodology as recorded in the scientific literature to 

propose multistep syntheses of target molecules from commercial precursors.1–27 Integrating 

enzyme-catalyzed reactions would enable CASP to participate in the global effort towards 

more selective, economical, and greener chemical manufacturing processes. However, the 

task is challenging due to the sparsity and very different nature of biotransformations 

compared to chemical reactions.28–33 Both template-based and transformer-based CASP tools 

for biocatalysis were recently reported,34–37 which make use of biochemical reaction data 

describing mostly metabolic pathways as collected in databases such as BRENDA, KEGG, 

MetaCyc, Rhea, PathBank, MetaNetX or EzCatDB.38–44 However, these biochemical 

pathway datasets only partly reflect the use of enzymes in organic synthesis, where enzymes 

or enzyme preparations (extracts, whole cells, etc.) are used under non-natural conditions, 

such as in immobilized form and at very high substrate concentrations, and to convert 

molecules often quite different from the natural substrate.31  

We recently showed that CASP tools based on transformer models,17,18 trained on 

SMILES descriptions45,46 of chemical reactions of starting materials (SM) with a set of 

reagents (R) to form a product (P) as collected in the public USPTO dataset,47,48 can be 

adapted to specific reaction subclasses by transfer learning.49 Extending on this opportunity, 

we then showed that literature information on a few ten thousand biotransformations 

extracted from Reaxys,50 for which the reagent set R is substituted with a text description of 

the enzyme or enzyme preparation, can be combined with the USPTO dataset to train a 

transformer model by multi-task transfer learning (MTL).51 The resulting enzymatic 

transformer performed forward predictions of enzymatic reactions as used in typical 
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preparative biotransformations, including enantioselective processes such as kinetic 

resolution with lipases or enantioselective ketone reduction and reductive aminations with 

71% top-2 accuracy, approaching the typical performance of forward transformer models.  

Herein we report the integration of our enzymatic transformer model into our recently 

reported triple transformer loop algorithm (TTLA) for multistep chemical retrosynthesis,52 to 

obtain a triple transformer loop algorithm with biocatalysis (TTLAB, Figure 1). The triple 

transformer loop (TTL) performs single-step retrosynthesis exploring diverse bond 

disconnections by tagging potential reactive sites in P to produce a series of P*,53 and for 

each P* applying a first transformer T1 to predict SM, a second transformer T2 to predict a 

suitable R for the proposed transformation SM→P, and finally a third transformer T3 to 

predict P from the predicted SM and R, thereby potentially validating the retrosynthetic step. 

TTLAB combines the original triple transformer loop trained on USPTO (USPTO-TTL) with 

a second TTL obtained by MTL of USPTO reactions combined with 57,176 

biotransformations collected from the literature (ENZR-TTL), which explores diverse 

enzymatic disconnections via a similar reactive site tagging approach. TTLAB considers 

single-step predictions from both USPTO-TTL and ENZR-TTL to explore multistep 

retrosyntheses using a heuristic best-first tree search. Possible routes are ranked with the 

route penalty score (RPscore),52 combining the simplicity of all SM along the route,54,55 with 

the confidence score of each retrosynthetic step, as well as route length. TTLAB can be used 

to assist chemoenzymatic route design. 
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Figure 1. Concept of the TTLAB multistep search operating organic (USPTO-TTL) and enzymatic 

(ENZR-TTL) catalysis in parallel. 

 

Methods 

Chemical reaction dataset 

The same United States Patent and Trademark Office (USPTO) chemical reaction dataset as 

in our previous report was used.56 It is a version curated by Thakkar et al.53 derived from the 

data mining work of Lowe.47,48 

Triple Transformer Loop models for chemical reactions (USPTO-TTL) 

The models trained on the USPTO dataset are identical as in our previous study and available 

on Zenodo,56,57 and herein named USPTO-TTL. AutoTag is a tagging model predicting 

tagged product P* from the target product P. T1 is a disconnection-aware retrosynthesis 

model predicting starting materials SM from the target tagged product P*. T2 is a reaction 

condition model predicting reagents R, including catalyst and solvent, from the reaction 

SM→P. T3 is a forward validation model predicting P from SM + R.58 
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Enzymatic dataset 

The enzymatic reaction dataset, herein named ENZR, was extracted from Reaxys using the 

API accessible under a commercial license.50 We first isolated reactions labelled as 

“enzymatic reaction” in the “other conditions” field (“RXD.COND”). Next, we compiled a 

list of reagents, catalysts, and solvents typically associated with enzymatic reactions. This 

involved identifying components with the "ase" suffix in the text fields "RXD.RGT," 

"RXD.CAT," and "RXD.SOL,". Additionally, we manually selected keywords corresponding 

to enzymatic transformations, such as "P450," "NADP," "CAL-B," "flavin mononucleotide," 

and others, from the most frequently occurring reagents and catalysts in the initial data 

retrieval. Finally, we queried these enzymatic components individually in the Reaxys 

database and retrieved the associated reactions. This process resulted in a raw dataset 

consisting of 107,865 enzymatic reactions.  

Enzymatic dataset: cleaning 

The process of cleaning the ENZR dataset involved several steps, wherein the RDKit library 

was used across various stages.59 Initially, multistep reactions and those lacking any reactant 

or product were excluded, leaving 95,389 reactions. Next, reactions were mapped using 

RxnMapper,60 for which 1,333 reactions failed and were removed. Reactions with 

unspecified atomic symbols (“*”) were also removed. Unmapped reactant molecules were 

removed for each reaction. A significant number of reactions (32,527) with more than one 

product were removed. The remaining reactions were tagged with reactive atoms as described 

previously,56 and reactions with no tagged atoms, or with more than 10 tagged atoms, were 

removed. This cleaning process results in a final enzymatic dataset of 57,176 unique 

reactions SMILES45,46 associated with textual descriptions of each reagent, including 

cofactors, enzymes, and solvent.  
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Enzymatic AutoTag and Triple Transformer Loop (ENZR-TTL) models 

Enzymatic transformer models for the ENZR-TTL, including the AutoTag to tag reactive 

sites, and T1, T2 and T3 in the TTL itself, were trained using the USPTO and the ENZR 

dataset through MTL, similar to our previous Enzymatic Transformer model with identical 

training hyperparameters.51 The split ratio 90:5:5 was applied as in the USPTO dataset 

resulting in 51,459 : 2,859 : 2,858 reactions in the training, validation, and test set 

respectively. The dataset split was done such that reactions resulting in identical products 

belong to the same splitting set.  

During the MTL processes detailed below for all ENZR models, we incorporated 

instruction tokens. These tokens, "ENZYME" for the ENZR dataset and "USPTO" for the 

USPTO dataset, were inserted at both the start and end of the SMILES inputs. This addition 

aimed to provide additional context to the model and enable it to focus on specific prediction 

types as needed. 

The ENZR-AutoTag model was trained to predict the tagged SMILES of the product 

(P*) from the product SMILES (P), in a similar manner to the USPTO-AutoTag model. The 

ENZR-T1 was trained to predict SM from P* for enzymatic retrosynthesis. In contrast, the 

ENZR-T2 model differs significantly from its USPTO-T2 counterpart by predicting a textual 

description of the enzyme (TDE) rather than reagents (R) in SMILES format from the 

theoretical reaction SMILES (SM→P). The ENZR-T3, previously reported as the Enzymatic 

Transformer,51 serves as forward validation, it was trained from SM+TDE to predict P, now 

retrained using the new ENZR dataset.  

Disconnection-aware automatic tagging strategy 

In our previous study,52 the USPTO-TTL employed a combination of three tagging strategies: 

(1) a systematic tagging procedure, tagging 1 to 3 neighbouring atoms,  
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(2) tagging templates of reactive sites with a conditional structure radius of 2 atoms, and  

(3) the AutoTag Transformer model with a beam size of 50.  

The ENZR-TTL uses a specific tagging strategy combining only an AutoTag model53 

and templates, excluding the systematic tagging approach. The dedicated ENZR-AutoTag 

was trained from the ENZR dataset and USPTO by MTL. ENZR reactive site templates were 

extracted from ENZR exclusively with a radius of 2 atoms. 

Chemoenzymatic multistep tree search algorithm 

In parallel to the existing single-step USPTO-TTL, we added the ENZR-TTL, which the 

multistep algorithm uses systematically and independently. The prediction outcomes of both 

TTLs are provided to the heuristic best-first tree search, elaborating routes mixing the 

predictions of both TTLs. Confidence scores of both TTLs behaving differently, the 

confidence scores of ENZR-T3 were adapted by polynomial fit to the USPTO-T3 distribution 

(Figure S1) to ensure a fair scoring across TTLs. The RPScore, based on molecular 

simplicity54,55 and confidence scores of T3 distinguishes which routes are the best to explore 

further, and functions the same as reported in our previous study.52  

Our previous report of the Enzymatic Transformer model, herein named ENZR-T3, 

demonstrated that a confidence score threshold was required to filter unreasonable enzymatic 

reactions. A similar evaluation using the round-trip evaluation of the ENZR-TTL was 

performed and a threshold of 90% confidence of ENZR-T3 was defined for considering 

ENZR-TTL predictions for multistep retrosynthesis search.  

Building block (BB) set 

We combined MolPort (www.molport.com) and Enamine (www.enamine.net) databases to 

build a database of 534,058 commercially available compounds as the building block (BB) 

set. 
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Results and Discussion 

Realizing the triple transformer loop algorithm with biocatalysis (TTLAB) for 

chemoenzymatic retrosynthesis required first to select a suitable dataset of enzymatic 

reactions, second to adapt our previous chemical reaction TTL to these enzymatic reactions, 

and finally to combine the enzymatic reaction TTL with the chemical reaction TTL in a 

multistep search algorithm. These steps are described in the following subsections.   

Chemical and enzymatic reaction datasets and their comparison 

We used the USPTO reaction dataset, which lists one million chemical reactions taken from 

the patent literature, as a broadly accepted selection of chemical reactions used in organic 

synthesis.47,48 In terms of enzymatic reactions, we selected 57,176 enzymatic reactions from 

the scientific literature using the Reaxys API,50 forming an enlarged version of our earlier 

enzymatic reaction dataset (ENZR, see methods for details).51 The composition of this 

enlarged ENZR dataset is comparable to its smaller version and reflects the practice of 

biocatalysis in preparative organic chemistry as reported in the scientific literature, with 

lipases and dehydrogenases forming the largest class of enzymes (Figure S2).  

In view of training transformer models for a combined chemoenzymatic 

retrosynthesis, we analyzed whether the 57,176 enzyme-catalyzed reactions in our ENZR 

dataset contained starting materials and products comparable to those in USPTO. We also 

analyzed the EREACT data,37 which lists 62,222 enzyme-catalyzed reactions associated with 

their respective enzyme commission (EC) number, aggregated from the biochemical reaction 

pathways datasets Rhea, BRENDA, PathBank, and MetaNetX (Table 1).38,42–44 ENZR listed 

fewer reactions than EREACT but more molecules, indicating a larger diversity of molecules 

tested in preparative biocatalysis compared to biochemical intermediates. Furthermore, 

ENZR shared a larger number of molecules with USPTO than EREACT, and only shared a 
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small number of molecules with EREACT. A similar distribution was observed when 

focusing only on reaction products, with only 2,470 molecules and 816 product molecules 

being shared between all three datasets (Figure 2a/b).  

Table 1. Dataset information. 

 USPTO ENZR ECREACT 

Number of reactions 1,266,734 57,176 62,222 

Number of unique molecules 1,493,418 76,645 45,944 

Number (%) of molecules shared with USPTO  - 12,035 (15.7%) 3,502 (7.6%) 

Number (%) of molecules shared with EREACT 3,502 (0.27%) 4,236 (7.4%) - 

Number of chiral molecules 271,504 45,277 34,177 

 

To compare the three datasets in terms of molecule types, we selected 10,000 molecules 

randomly across starting materials and products in each dataset and constructed a TMAP,61 

employing the MinHashed atom-pair fingerprint MAP4 as similarity measure, which 

considers substructures and their relative position in molecules.62 Areas of the TMAP 

covered by molecules from USPTO (green) also contained molecules from ENZR (orange), 

and to a lesser extent from EREACT (blue), showing a certain level of overlap in structural 

types between the three datasets (Figure 2c). Nevertheless, parts of the map were dominated 

by one of three datasets. Predominantly green areas (USPTO) contained drug-like 

heteroaromatic molecules, while predominantly orange areas (ENZR) featured glycosides and 

peptides. Furthermore, one fourth of the TMAP was standing out because it was entirely blue 

(EREACT) and was populated by phospholipids and triglycerides apparently completely 

absent from the other two datasets, probably reflecting the difficulty to work with such 

molecules in terms of preparative organic synthesis.    

Histograms further highlighted similarities and differences between molecules 

composing the three datasets. A histogram of molecular size as heavy atom count (HAC) 

showed that ENZR and USPTO contained molecules of comparable size (10  HAC  40), 

while more than half of EREACT contained larger molecules (HAC > 40) (Figure 2d). 
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Furthermore, a histogram of the fraction of cyclic bonds showed that USPTO contained 

mostly cyclic molecules, while ENZR contained similarly cyclic molecules but also a sizable 

fraction of entirely acyclic molecules, and EREACT was almost entirely composed of acyclic 

molecules (Figure 2e). The difference in molecule properties between the three datasets was 

also visible in scatter plots using molecular weight, the fraction of carbon atoms and the 

fraction of cyclic bonds as molecular descriptors (Figure S3). Note that 47.9% of ECREACT 

molecules contained a phosphate functional group, compared to 8.2% in ENZR molecules 

and only 0.5% in USPTO molecules, further highlighting the different nature of molecules 

involved in biochemical reaction pathways compared to those in use for synthetic chemistry.  

Taken together, these comparisons showed that molecules in ENZR and USPTO 

datasets showed a significant level of overlap and might be useful for a transformer model 

approach for combined chemoenzymatic retrosynthesis. By contrast, the differences between 

EREACT and USPTO were more pronounced and suggested that these two datasets were 

almost incompatible with each other.  
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Figure 2. Comparative analysis of USPTO, ENRZ and EREACT datasets.  (a) Venn diagram of all 

molecules in the USPTO, ENZR and the ECREACT datasets. (b) Venn diagram for only products (P) 

of reactions. (c) TMAP of 310,000 randomly chosen molecules from USPTO, ENZR and 

ECREACT datasets with similarities computed with the MAP4 fingerprint. The interactive map is 

available at https://tm.gdb.tools/TTLA/EnzymeDB.html. (d) Number of heavy atoms distribution for 

molecules in each dataset. (e) Fraction of cyclic bond distribution for molecules in each dataset.  
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Enzymatic triple transformer loop (ENZR-TTL)  

Our TTL approach for single-step retrosynthesis consists of tagging potential reactive sites in 

the product molecule P to form a series of tagged P*, and for each P* to apply three 

subsequent transformer models predicting SM from P* (T1), reagents R from SM→P (T2), 

and finally product P from SM+R (T3). T3 validates the retrosynthetic step if the predicted P 

is identical to the input P, and the confidence score of the T3 prediction is used to compute 

the route penalty score (RPscore) for the multistep search.52  

In our approach, potential reactive sites in the product molecule are first tagged to 

mark potential reactive sites. Our chemical reaction TTL used a combination of a transformer 

model, templates and systematic tagging. Due to the much higher substrate specificity of 

enzymes compared to chemical reagents, we removed the systematic tagging approach for 

our enzymatic TTL and only considered tagging with a transformer model and with 

templates. Reactive sites in product molecules of the ENZR dataset were identified from 

atom-mapping and labelled as previously described for the USPTO.52 An ENZR-AutoTag 

transformer was then trained by MTL combining the tagged and untagged datasets of ENZR 

and USPTO. Enzymatic templates were extracted from the atom-mapped ENZR dataset 

considering only templates with a radius of two bonds around reacting atoms to take enzyme 

specificity into account, an aspect which was also reflected by the much smaller number of 

ENZR templates (18,083) compared to the number of USPTO templates (281,153).  

To complement the transformer models for the chemical TTL trained with the USPTO 

dataset (here named USPTO-TTL), we used MTL of USPTO with the ENZR dataset using 

the previously described parameters51 to obtain models for the enzymatic TTL (here named 

ENZR-TTL). To help the transformers to learn the differences between chemical and 

enzymatic reactions, all entries for MTL were labelled before and after the SMILES with 

“ENZYME” for ENZR data, and with “USPTO” for USPTO data. These labels helped to 
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avoid task ambiguity between USPTO vs. ENZR caused by the substitution of reagent 

SMILES with enzyme names in text format for T2 (SMILES→SMILES vs. SMILES→text) 

and T3 (SMILES→SMILES vs. SMILES+text→SMILES). The influence of the instruction 

tokens “ENZYME” and “USPTO” added before and after each input was well visible in the 

case of ENZR-T2, for which the fraction of textual enzyme description produced increased 

from 85.3% for an uninstructed model to 99.7% for the instructed model. 

In terms of single-step round-trip accuracy,58 the ENZR-TTL achieved 59.0% top-1 

accuracy on the ENZR test set, somewhat below the 81.3% top-1 accuracy of the USPTO-

TTL on the USPTO test set. In both cases, the top-1 round-trip accuracy measured the 

percentage of cases where P predicted by T3 matched the input P, which also included cases 

with different SM and R compared to the ground truth in the test sets (see details in Table S1 

and S2). In both TTLs, the round-trip accuracy decreased as function of the number of 

tagged atoms. ENZR-TTL Top-3 round-trip accuracies were as high as 76.2% and 76.9% for 

single and double atom tags, compared to 94.1% and 92.8% in the case of USPTO-TTL 

(Figure 3a). The lower performance of ENZR-TTL compared to USPTO-TTL probably 

reflects the smaller training set of enzymatic reactions learned by transfer learning, and a 

more difficult task associated with the prediction of enzyme names in T2. As for the USPTO-

T3, the confidence score of ENZR-T3 was correlated with the round-trip accuracy (Figure 

3b). Analysis of test cases showed that a cut-off value of 90% had to be applied to select 

meaningful validated enzymatic retrosynthetic steps.  
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Figure 3. (a) Round-trip accuracies of ENZR-TTL and USPTO-TTL as function of the number of 

tagged atoms on the target molecules from the ENZR and USPTO test sets respectively. The top-N 

represents the round-trip accuracy considering multiple examples of enzyme textual descriptions 

predicted by ENZR-T2 or reagents predicted by USPTO-T2. The bar plots show the frequency 

fractions as function of the number of tagged atoms for both test sets. (b) Round-trip accuracy of 

ENZR-TTL as function of confidence scores of ENZR-T3. The vertical dashed bar represents the 

chosen confidence score cut-off. Bins were selected to equally distribute predictions.  

 

Reaction examples illustrate the performance of ENZR-TTL in terms of single-step 

retrosynthesis. In many cases, T1 predicts the same SM as recorded in the ENZR dataset, T2 

predicts the identical or almost identical enzyme description (with enzyme name, additive 

and solvents), and T3 predicts the correct P (Figure 4 and S4). These include enantioselective 

reactions with non-biochemical substrates (reaction (1)),63 cofactors (reaction (2))64 and 

cofactor regeneration systems (reaction (3),65 here with a different T2 output), as well as 

lipase-catalyzed reactions such as kinetic resolutions by acylation (reaction (4))66 and 

heterocycle formations exploiting the catalytic promiscuity of lipases (reaction (5)).67  
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Figure 4. Examples of correctly predicted enzymatic single-step retrosynthesis by ENZR-TTL. The 

confidence scores of T3 are >99.5% in all cases. Enzyme names from the T2 output that differ from 

the database entry are highlighted in blue.   

 

Validated retrosyntheses by ENZR-TTL include cases where the SM output by T1 and 

sometimes the enzyme name output by T2 are different from those recorded in ENZR, with 

interesting cases of reactions involving ketones and aldehydes as SM or P (Figure 5 and S5). 

In one case, the T1 output specifies alcohol chirality for a fatty acid alcohol dehydrogenase 

reported to be non-enantioselective (although without providing primary data, reaction (6)),68 

whereby T1 probably infers alcohol chirality from other alcohol dehydrogenases. In another 

case, a chiral cyclobutanol is proposed by ENZR-TTL to be obtained by reduction of the 

parent ketone by a microbial dehydrogenase, while the database case involves baker’s yeast 

and a ketal precursor of the cyclobutanone in aqueous pH 2, under which conditions the ketal 

spontaneously hydrolyzes to give the ketone (reaction (7)).69 Furthermore, a (2-
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chlorophenyl)-ketoacid recorded in ENZR to be formed by enzymatic oxidation of the 

corresponding mandelic acid,70 is predicted by ENZR-TTL to stem from a transaminase 

reaction from the parent phenylglycine, a known type of biotransformation (reaction (8)).71 

 

Figure 5. Examples of ENZR-TTL retrosynthetic steps validated by T3 involving different precursors 

and/or enzymes than those in ENZR. Structural differences between SM database entry and T1 output 

are highlighted in orange and enzyme names from T2 output that differ from the database entry are 

highlighted in blue. 
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Some discrepancies between ENZR data and ENZR-TTL output are caused by database entry 

mistakes and illustrate the self-correcting ability of the transformer model approach. For 

example, N-Acetylneuraminic acid is incorrectly recorded in ENZR as involving a “pyruvate 

lyase” due to an enzyme naming mistake in the corresponding publication (reaction (9)).72 

For this reaction ENZR-TTL correctly predicts that the enzymatic conversion of SM (N-

acetyl-mannosamine and pyruvic acid) is carried out by the enzyme NeuNAc aldolase.73 

Similarly, the oxidative condensation of 2-pyridylmethanol with 2-aminophenol listed in 

Reaxys as an enzymatic process and recorded in ENZR (reaction (10)) actually involves 

TEMPO (2,2,6,6-tetramethylpiperidine-1-oxyl) as a chemical oxidant, which is recycled by 

air oxidation using laccase as enzyme but was not recorded in Reaxys.74 Here, ENZR-TTL 

proposes pincolinaldehyde and 2-aminophenol as SM and a true enzymatic process using 

glucose oxidase and chloroperoxidase. This bi-enzymatic process has been reported for the 

related oxidative condensation of benzaldehyde and several para-substituted benzaldehydes 

with 2-aminophenol to form benzoxazoles.75  

 Finally, some incorrect cases involve a correct SM prediction by T1, but a different 

choice of enzyme by T2, resulting in a valid biotransformation but a different product P 

predicted by T3, and a non-validated reaction in terms of round-trip accuracy of ENZR-TTL 

(Figure 6 and S6). For example, the correct phenolic SM is predicted by T1 for the formation 

of an O-methylated macrolactone (reaction (11)). However, T2 selects a different O-methyl 

transferase enzyme with a different regioselectivity, and therefore T3 predicts a different 

regioselectivity for the methylation. Note however that the proposed product is the correct 

one for the selected enzyme, as recorded in the same original publication focusing on tuning 

O-methylation regioselectivity.76 In a related case of a chiral propargylic alcohol stemming 

from reduction of the corresponding ketone by an alcohol dehydrogenase, T1 predicts the 

correct SM but a change of enzyme choice by T2 results in a T3 prediction of P with the 

opposite enantioselectivity, which is correct for the selected enzyme but incorrect relative to 
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database entry (reaction (12)).77 A similar different enzyme choice by T2 resulting in an 

enantiomeric P correctly predicted by T3 also occurs for the addition of hydrogen cyanide to 

cyclohexane carbaldehyde catalyzed by two different hydroxynitrile lyases (reaction 

(13)).78,79  

In a related case involving tryptophan synthase, T1 predicts the correct SM, T2 the 

correct enzyme, and T3 the correct L-enantiomer, however the database entry lists the D-

enantiomer, which was obtained by coupling tryptophan synthase with a stereoinversion 

cascade involving two enzymes that were not listed in the database entry (reaction (14)).80,81 

In a similar enzymatic cascade yielding 2-(2-naphthyl)propylamine from an epoxide 

precursor, T1 predicts the correct epoxide SM but combines styrene oxide isomerase with a 

different transaminase producing the (R)-enantiomeric P. By contrast, the database entry for P 

has an undefined stereochemistry, probably because the parent publications tested various 

transaminases with different enantioselectivities (reaction (15)).82,83  

Taken together, the above analysis showed that biocatalytic retrosynthesis predictions 

by ENZR-TTL were generally relevant and sometimes even corrected inaccuracies in 

database entries. Encouraged by these data, we moved on to test multi-step chemoenzymatic 

retrosyntheses with our TTL approach.  
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Figure 6. Examples of ENZR-TTL prediction involving a correct SM prediction by T1 but a different 

enzyme choice by T2 and therefore a different product P compared to the database entry. Structural 

differences between P from database entry and T3 output are highlighted in orange and enzyme names 

from T2 output that differ from the database entry are highlighted in blue. 
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Chemoenzymatic multistep retrosynthesis with TTLAB 

Integrating ENZR-TTL alongside the previously reported USPTO-TTL provided the chemo-

enzymatic retrosynthesis prediction system, named TTLAB (Figure 1). To ensure the 

reliability of the enzymatic steps selected by TTLAB, a confidence score filter of 90% was 

applied to ENZR-T3. This filter eliminated chemically incorrect enzymatic retrosynthetic 

steps which would otherwise be selected by the tree-search because they achieved a high 

RPScore due to a high degree of molecular simplification. 

 We challenged TTLAB to propose retrosyntheses for 100 product molecules from the 

USPTO test set and 80 product molecules from the ENZR test set. A retrosynthesis was 

judged successful whenever the reaction sequence went back to a SM molecule available in 

the BB set, which consisted of 534,058 commercially available compounds (see Methods for 

details). TTLAB proposed synthetic routes for 88 of the 100 USPTO test set product 

molecules and 61 of the 80 ENZR test set product molecules, and in almost all cases at least 

one of the proposed routes contained at least an enzymatic step (Table S3). For TTLAB-

predicted syntheses of USPTO molecules, approximately 8% of the proposed steps were 

enzymatic. This percentage ranged from 17% to 50% for TTLAB predicted syntheses of 

ENZR molecules considering either all proposed syntheses or only Top-scoring ones (Table 

S4). The ability of TTLAB to identify short chemo-enzymatic synthetic routes was well 

visible when analyzing the number of steps per route as well as the number of enzymatic 

steps per route among the Top-5, Top-50, Top-500 or all routes for both USPTO and ENZR 

molecules (Figure 7).  
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Figure 7. Analysis of synthetic routes predicted by TTLAB on product molecules from the USPTO 

and ENZR test sets. The route count as function of (a) the number of steps per route or (b) the number 

of enzymatic steps per route is given for the different Top-N categories.   

 

The chemoenzymatic routes predicted by TTLAB are well illustrated by three examples from 

the ENZR test set, for which we show in each case the best RPScoring route including at least 

one enzymatic step (Figure 8). The first example is the predicted synthesis of the chiral 

cyanocarboxylic acid 1, which was reported as the product of the enantioselective mono-

hydrolysis of the prochiral dinitrile 2 by a mutant nitrilase enzyme.84 TTLAB predicts the 

identical biotransformation as the first retrosynthetic operation, and proposes to assemble 

dinitrile 2 by Michael addition of cyanoacetic acid to unsaturated nitrile 3 and 

decarboxylation. Finally, TTLAB proposes to prepare nitrile 3 from the parent aldehyde 4, 

which is a well-known type of transformation however using different reagents.85  

a)

b)
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The second example is the predicted synthesis of the phospha-C-peptide 5, which was 

reported to be formed by coupling L-methionine ethyl ester with ethyl phosphinate 6 

catalyzed by a phosphordiesterase.86 TTLAB proposes the identical last step using the same 

enzyme. Since phosphinate 6 is not present in the commercial BB set, TTLAB further 

proposes a synthesis from vinyl glycine 7 by N-acetylation and esterification, done as a single 

step, followed by addition of ethyl methylphosphinate to the double bond. The latter reaction 

had been reported to prepare L-phosphinothricin, a naturally occurring herbicidal amino acid, 

however TTLAB omits to list the required radical initiator tert-butyl per-2-ethylhexanoate.87  

 

Figure 8. Top RPScoring retrosyntheses predicted by TTLAB including at least one enzymatic step 

for three ENZR test set products. The confidence score of each predicted step is indicated in 

parentheses. Starting materials in the commercial BB set are written in orange.  

 

The third example is chiral sulfone 8, which TTLAB would prepare by deacetylation and 

sulfide oxidation of intermediate 9 using known chemistry.88 Intermediate 9 would be formed 

by diastereoselective enzymatic acetylation of the parent alcohol by porcine pancreatic lipase 

using p-chlorophenylacetate as acylating agent, a biotransformation reaction known from the 
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test set.89 This parent alcohol would be formed by non-stereoselective reduction of ketone 10 

using sodium borohydride. This reduction is predicted with low confidence by TTLAB 

because this reaction can in fact be performed stereoselectively using LiAlH4.
90 Indeed, when 

the condition of an enzymatic step is not imposed, TTLAB readily proposes, as the second 

best RPScoring route, a two-step chemical synthesis of 8 from 10 by stereoselective reduction 

followed by thioether oxidation to the sulfone.   

 We further exemplify TTLAB in the prediction of chemoenzymatic retrosyntheses for 

three drugs with known chemoenzymatic routes (Figure 9). In these cases, TTLAB often 

identifies steps that are part of the training sets. For the first case of the cholesterol-lowering 

drug atorvastatin 11, our algorithm proposes as best RPScoring route the acidic deprotection 

of the corresponding tert-butyl ester, which is a commercial building block. Imposing at least 

one enzymatic step results in a four-step sequence from a linear chiral keto-ester precursor 

12, for which the first step is an enzymatic reduction by an aldo-keto reductase which was 

evolved precisely for this purpose and is present in the TTLAB training set.91 The overall 

TTLAB route design is similar to the chemoenzymatic process developed for this drug 

involving an enzymatic enantioselective reduction of ethyl cyanoacetoacetate as initial step.92 

In the second case of the antidepressant (S)-duloxetine 13, the top-RPScoring route 

with at least one enzymatic step predicted by TTLAB is the single-step demethylation of the 

commercial N,N-dimethyl analog 14 catalyzed by a laccase, and the second best is a three-

step sequence involving Boc protection of the achiral ketone precursor 15a, followed by 

enantioselective reduction with an alcohol dehydrogenase and arylation of the resulting 

alcohol with fluoronaphthalene. This route is similar to the published chemoenzymatic 

synthesis of this drug starting with N,N-dimethylketone 15b,93 also proposed by the chemo-

enzymatic ASKOS CASP tool with the help of manual intervention.94  
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Figure 9. Retrosyntheses of atorvastatin (11), (S)-duloxetine (13) and sitagliptin (16) proposed by 

TTLAB. Reactive bonds and starting materials in the commercial BB set are drawn in orange. The 

confidence scores of individual retrosynthetic steps are indicated in parentheses after the predicted 

reagents. 

 

In the third case of the DDP4 inhibitor sitagliptin (16) used to treat type II diabetes, TTLAB 

identifies a single-step enzymatic enantioselective retrosynthesis from the commercial β-

ketoamide 17 using a transaminase. Although TTLAB only names the PLP cofactor in the 

reagents, this step is present in the ENZR training set using a transaminase that has been 
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engineered for the synthesis of this drug.95 The second best RPScoring route is a similar two 

step sequence from the commercial ketoester 18 involving an enzymatic enantioselective 

reductive amination followed by amide bond formation. Note that the enzymatic step is part 

of the ENZR training set and uses the exact same combination of four enzymes for this 

biotransformation,96 illustrating that transformer model ENZR-T2 memorizes enzyme textual 

description with high accuracy.  

 The above analysis and application examples show that TTLAB is able to propose 

short chemoenzymatic retrosyntheses for various target molecules. It should be noted that 

enzymatic steps are selected by TTLAB only when the reaction is closely related to a training 

set reaction, reflecting the fact that biocatalytic reactions are often highly specific for certain 

types of starting materials and are intrinsically poorly generalizable.   

 

Conclusion 

In summary, our work integrates biocatalysis in a computer-assisted synthesis planning 

(CASP) system, going towards greener and more sustainable chemistry. We achieved this by 

introducing a dual multistep retrosynthesis prediction system, integrating both chemical and 

biocatalytic steps. Trained on experimental enzymatic reactions from Reaxys, the enzymatic 

triple transformer loop operates in parallel to the chemocatalytic loop. The competitive 

framework, driven by the route penalty score (RPScore), drives the selection of optimal steps 

by our best-first tree search, incorporating both catalytic steps to generate mixed synthesis 

routes. Our results not only showcase the tool's capabilities in proposing viable solutions for 

drug-like molecules but also establish it as a valuable resource for synthesis design. 

Furthermore, the continuous enrichment of data in Reaxys promises ongoing enhancements 

in enzymatic capabilities, progressively going towards enzymatic synthesis. 
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Availability of data and materials 

Code and instructions to compute multistep retrosynthesis as well as the code to tag reactive 

sites are available on our GitHub repository: 

https://github.com/reymond-group/MultiStepRetrosynthesisTTL 

The original USPTO dataset can be found at https://doi.org/10.6084/m9.figshare.5104873.v1. 

The derived version of the USPTO dataset of Thakkar et al. can be found in their preprint.53 

The Reaxys enzymatic dataset is a licensed commercial database that cannot be made 

available.  
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Figure S1. Ordered confidence scores of the ENZR-TTL T3 as function of the ordered confidence 

scores of USPTO-TTL T3 on the ENZR test set and USPTO test set respectively.  
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Figure S2. Analysis of the ENZR dataset. (a) Number of reactions depending on how many “-ase” 

words are present in the sentence for a given reaction. (b) Frequency of the top 15 “-ase” words 

depending on the count of enzyme name per reaction. (c) TMAP of reactions similarity color-coded by 

the 10 most frequent "-ase" words as listed in Fig. 2b.  combinations. The “other” category groups 

reactions with “-ase” words other than the top 10 “-ase” words or reaction containing infrequent “-ase” 

word combinations. Insert lower right: TMAP highlighting enantioselective and kinetic resolution 

reactions. 
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Figure S3. Analysis of the USPTO (green), ENZR (orange) and ECREACT (blue) datasets in forms of 

scatter plots. First line: Fraction of C-atoms vs. MW. Second line: Fraction cyclic bonds vs. MW. Third 

line: Fraction cyclic bonds vs. Fraction of C-atoms.  
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Table S1. Details of top-1 round-trip accuracy by ENZR-TTL single step retrosyntheses on the 2858 

molecules of the ENZR test set. 

 Round-trip 

validated by T3 

Not validated 

by T3 

Ground-truth 

predicted SM 
49.41% 23.13% 

Not ground truth 

predicted SM 
9.55% 17.91% 

 

 

 

Table S2. Details of top-1 round-trip accuracy by USPTO-TTL single step retrosyntheses on a sample 

of 3000 molecules from the USPTO test set. 

 Round-trip 

validated by T3 

Not validated 

by T3 

Ground-truth 

predicted SM 
60.57% 6.97% 

Not ground truth 

predicted SM 
20.73% 11.73%  
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Figure S4. Additional examples of correctly predicted enzymatic single step retrosynthesis by ENZR-

TTL. The confidence scores of T3 are >99.5% in all cases. Enzyme names from the T2 output that differ 

from the database entry are highlighted in blue.  
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Figure S5. Additional examples of ENZR-TTL retrosynthetic steps validated by T3 involving 

different precursors and/or enzymes than those in ENZR. Structural differences between SM database 

entry and T1 output are highlighted in orange and enzyme names from T2 output that differ from the 

database entry are highlighted in blue. 
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Figure S6. Additional examples of ENZR-TTL prediction involving a correct SM prediction by T1 but 

a different enzyme choice by T2 and therefore a different product P compared to the database entry.  
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Table S3. Number (percentage) of product molecule from the test set with solved routes for the selection 

of 80 molecules from the ENZR test set, and for the 100 molecules from the USPTO test set. 

 USPTO test set 

(100 molecules)  

ENZR test set 

(80 molecules) 

Molecules with 

Route solved 
88 (88%) 61 (76%) 

Molecules with 

Route solved with 

at least one route 

including an 

enzymatic step 

86 (86%) 60 (75.0%) 

 

 

Table S4. Fraction of enzymatic reaction steps present in the predicted and solved multistep routes 

among the top-X route unique steps, ranked according to the RPScore. Tested on 100 USPTO test set 

and 80 ENZR test set molecules. 

 for USPTO test set 

molecules (%) 

for ENZR test set 

molecules (%) 

Overall 7.88 16.86 

Top-100 RPScoring routes 9.33 21.67 

Top-50 RPScoring routes 9.33 24.79 

Top-10 RPScoring routes 8.65 33.76 

Top-5 RPScoring routes 8.23 38.22 

Top-1 RPScoring routes 7.10 50.00 
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