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Abstract: The beginning and ripening of digital chemistry is analyzed focusing on the role of

artificial intelligence (AI) in an expected leap in chemical sciences to bring this area to the next

evolutionary level. The analytic description selects and highlights the top 20 AI-based technologies

and 7 broader themes that are reshaping the field. It underscores the integration of digital tools

such as machine learning, big data, digital twins, the Internet of Things (IoT), robotic platforms,

smart control of chemical processes, virtual reality and blockchain, among many others, in

enhancing research methods, educational approaches, and industrial practices in chemistry. The

significance of this study lies in its focused overview of how these digital innovations foster a more

efficient, sustainable, and innovative future in chemical sciences. This article not only illustrates

the transformative impact of these technologies but also draws new pathways in chemistry,

offering a broad appeal to researchers, educators, and industry professionals to embrace these

advancements for addressing contemporary challenges in the field.
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1. Introduction

The integration of digital technologies within the field of chemistry is forging unprecedented

pathways in research methodologies, educational paradigms, and industrial practices.1-5 The

transformative impact is actively discussed in digital innovations, including machine learning,

artificial intelligence, the Internet of Things (IoT), and blockchain, among others, in the chemical

sciences.6-9 The integration of machine learning (ML) approaches helps to develop new concepts in

catalysis.10-13 Researchers explore how automated laboratory platforms and high-throughput

experimentation are redefining experimental protocols, enabling precise, reproducible research at

an accelerated speed.14, 15 Progress in the development of synthetic platforms may be further

anticipated with the availability of ML-driven interpretation of analytic data.16, 17 The emergence of

digital twins and integrated data systems is highlighted for their ability to simulate and optimize

chemical processes, enhancing efficiency and sustainability in chemical manufacturing.18-21

Furthermore, ongoing research has examined the role of deep learning in exploring complex

structure–activity relationships, thereby revolutionizing drug discovery and material science by

predicting molecular behaviors with reasonable accuracy. The application of natural language

processing in mining the vast volume of chemical literature illuminates its potential for accelerating

knowledge acquisition and fostering innovation. Additionally, the implementation of blockchain
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technology is addressed for ensuring traceability and integrity within the chemical supply chain,

marking a significant stride toward transparency and safety.

In this article, the top 20 highly influential AI technologies that have already transformed

fundamental research and the industrial sector in chemistry or are expected to have profound

influence in the future are summarized. The convergence of digital technologies and chemistry

promises to address some of the most pressing challenges in the field, from the development of

green chemistry practices to the rapid discovery of novel therapeutics. By offering an overview of

these digital advancements, this article aims to inspire researchers, educators, and industry

professionals to embrace these technologies, opening the way for a more efficient, sustainable,

and innovative future in chemistry.

2. AI-Based Technologies in Chemistry

The influence of digital technologies has profoundly impacted the field of chemistry. Recent trends

are empowered with artificial intelligence (AI), particularly machine learning (ML), deep learning

(DL) and data analysis. Digital “wave” in chemistry is not limited to AI-related innovations and

implements a number of other technologies. The following technologies highlight the key

directions that mark the progress of science in chemistry within the trajectory of digital

development:

1. AI-driven Drug Discovery: AI can be used to accelerate the identification of potential drug

candidates through the prediction of biological activity and optimization of lead compounds.

2. Big Data and Integrated Data: Consolidation and harmonization of diverse chemical data

sources, facilitating cross-disciplinary research and comprehensive data analysis.

3. Automated Laboratory Platforms: Development of automated laboratory systems for

conducting experiments with minimal human intervention, improving precision and

reproducibility.

4. Integration of Laboratory Instruments and IoT: Laboratory instrument connectivity to the

Internet of Things (IoT) for real-time data collection, monitoring, and analysis.
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5. AI in Spectroscopy and Analytical Method Development: AI applications improving complex

spectroscopic data interpretation and developing novel analytical methods.

6. Blockchain in Chemical Supply Chain: Blockchain technology for secure, transparent chemical

and material supply chain tracking.

7. Digital Twins: Creation of virtual replicas of chemical processes or systems for simulation,

monitoring, and optimization purposes.

8. Virtual Laboratories and Augmented Reality: Digital platforms and simulation software

enhancing teaching and providing virtual lab experiences.

9. Natural Language Processing (NLP) in Chemical Space: NLP tools for mining chemical

information from scientific literature, patents, and databases for knowledge extraction.

10. Predictive Toxicology: Computational models predicting chemical toxicity to enhance

environment protection and chemical manufacturing safety.

11. AI in Environmental Chemistry and Sustainability: Digital tools aiding environmental process

analysis, pollution control, and green chemistry development.

12. Machine Learning in Molecular Design: Application of ML algorithms to predict molecular

properties, enabling efficient design of new compounds and materials.

13. Smart Control: Implementation of intelligent control systems in chemical processes and

equipment, enabling adaptive and optimized operations.

14. Deep Learning in Structure-Activity Relationships (SAR): The utilization of deep learning

models to decipher and predict the complex relationships between chemical structures and their

biological activities enhances the efficiency of drug discovery processes.

15. AI-driven High-throughput Experimentation (HTE): Robotics and AI integration for conducting

and analyzing multiple parallel experiments, accelerating the research process.

16. Digital Materials Design and Materials Informatics: Data-driven approaches for discovering

and designing new materials with desired properties and applications.
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17. Data-Driven Chemical Reaction Optimization: Machine intelligence models predicting reaction

outcomes, optimizing conditions, and discovering new reactivity.

18. Automated Synthesis Planning: Assistance from AI tools in planning and optimizing synthetic

routes, reducing experimental trial time and resources.

19. Chemoinformatics and Chemical Data Analysis: Advanced techniques for managing and

interpreting large chemical datasets, enhancing understanding of complex relationships in

chemical structures and processes.

20. AI in Quantum Chemistry and Simulations: AI-enhanced accuracy and efficiency in quantum

chemical calculations and molecular simulations.

These concepts collectively demonstrate the significant role that digital technologies play in

transforming the field of chemistry, enhancing research capabilities, and fostering innovation.

Below, each of the top 20 digital discovery transformative technologies are considered in view of

their possible role in fundamental chemical science, applications and future development.

2.1 Comparative analysis of digital chemistry trajectories
AI-based innovations bring several highly promising opportunities in chemistry. However, for the

considered digital technologies, different levels of development are required before possible

practical implementations can be reached and tested (Table 1). Some of the listed AI-driven

technologies introduce new concepts for the current stage of chemical development or do not

have a strong prior background in chemical applications, thus more efforts and time would be

required for real applications. However, other applications may rely on the existing background, or

rapid integration may be expected due to possible connections with the existing research areas;

therefore, a quicker application of practice may be expected.

Relative amount of research already done may be estimated from the number of currently

published articles: higher amount for the items 1 – 5 (high), with decreased amount for the items 6

– 10 (medium to high), further lowering for the items 11 – 15 (medium) and items 16 – 20

(medium-small) (Table 1). The first-listed areas undergo a more intense development as compared

to the next listed ones (Table 1), which is most likely connected with the number of researchers
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and funding involved in each field as well as with a broad applicability vs. more specialized task

been solved.

Table 1. Summary of the possible influence of AI-based technologies on chemical research,

including their applications, their impact, the amount of research done.a

Item Digital chemistry

trajectory

Application Impact Relative

amount of

publications b

1 AI-driven drug discovery AI to accelerate

drug candidate

identification

Speeds up the

drug discovery

process

High

*****

2 Big Data and Integrated

Data

Consolidation of

diverse data

sources

Facilitates

comprehensiv

e analysis

High

*****

3 Automated laboratory

platforms

Highly

automated

systems for

experiments

Improves

precision and

reproducibility

High

*****

4 Integration of Lab

instruments and IoT

Real-time data

collection and

analysis

Enhances lab

efficiency and

data analysis

High

*****

5 Spectroscopy and

analytical method

development

AI in

spectroscopic

analysis

Improves

analytical

methods

High

*****

6 Blockchain in chemical

supply chain

Secure,

transparent

tracking in

Increases

supply chain

integrity

Medium-High
****
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supply chain

7 Digital twins Virtual replicas

for real-time

simulation and

optimization

Optimizes

chemical

processes and

systems

Medium-High
****

8 Virtual Laboratories and

Augmented Reality

Digital platforms

for education

Enhances

educational

outcomes

Medium-High
****

9 NLP in chemical space Extract

information from

scientific texts

Streamlines

knowledge

extraction

Medium-High
****

10 Predictive toxicology Models

predicting

chemical toxicity

Enhances drug

safety Medium-High
****

11 Environmental

chemistry and

sustainability

Digital tools for

green chemistry

Promotes

sustainable

practices

Medium

***

12 Machine learning in

molecular design

ML for predicting

molecular

properties

Speeds up

compound and

material

design

Medium

***

13 Smart control Intelligent

control systems

for optimized

operations

Improves

process

efficiency and

sustainability

Medium

***

14 Deep learning in SAR Predict complex

relationships

between

New DL-driven

level in drug

discovery

Medium

***

https://doi.org/10.26434/chemrxiv-2024-cdm8w ORCID: https://orcid.org/0000-0002-6447-557X Content not peer-reviewed by ChemRxiv. License: CC BY-NC 4.0

https://doi.org/10.26434/chemrxiv-2024-cdm8w
https://orcid.org/0000-0002-6447-557X
https://creativecommons.org/licenses/by-nc/4.0/


8

chemical

structures and

activities

15 High-throughput

experimentation (HTE)

Automated

devices and AI in

parallel

experiments

Speeds up

research

processes

Medium

***

16 Digital Materials Design

and Materials

Informatics

Data-driven

approaches for

material

discovery

Accelerates

material

discovery and

design

Medium

-Small

**

17 Data-driven chemical

reaction optimization

ML models for

reaction

optimization

Improves

reaction

efficiency

Medium

-Small

**

18 Automated synthesis

planning

AI for synthetic

route

optimization

Streamlines

synthesis

planning

Medium

-Small

**

19 Chemoinformatics and

chemical data analysis

Managing large

chemical

datasets

Supports

chemical

research

Medium

-Small

**

20 Quantum chemistry and

simulations

AI-enhanced

molecular

simulations

Advances

theoretical

understanding

Medium

-Small

**

a A tentative summary is provided, which may change depending on the particular field of

chemistry or problem considered. b Relative amount of peer-reviewed publications concerning the

corresponding item (in % related to the overall amount for all 20 items) according to bibliographic

database search; does not necessarily correlate with impact or importance.
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2.2. Detailed description of digital chemistry trajectories
1. AI-driven Drug Discovery

AI-driven drug discovery represents a cutting-edge approach in pharmaceutical research where

artificial intelligence, particularly machine learning and deep learning techniques, are employed to

enhance the process of finding new drugs 22-30. This approach harnesses the power of AI to sift

through vast datasets drawn from chemical, biological, and medical sources to unearth potential

drug candidates with desirable properties. The core idea is to use AI algorithms to predict how

different chemical structures interact with biological targets, such as proteins or DNA, which are

implicated in diseases. This predictive capability is crucial for identifying compounds that could

modulate these targets in beneficial ways, potentially leading to new treatments.

This research direction is closely related with the direction discussed above (Deep Learning in

Structure-Activity Relationships). However, the overall field of AI-driven drug discovery is more

diverse and in some aspects is less challenging as compared to the ultimate goal of unsupervised

deep learning in revealing general SARs.

AI-driven drug discovery involves the integration of diverse data types, including genomic data that

offer insights into the genetic foundations of diseases, proteomic data that elucidate the structure

and function of proteins, and chemical data that describe the properties and behaviors of millions

of potential drug molecules. By analyzing these datasets, AI models can identify patterns and

relationships that might not be apparent to human researchers. For example, an AI model might

predict that a certain molecular structure is likely to bind effectively to a protein that plays a key

role in a specific type of cancer, suggesting that compounds with this structure could be promising

candidates for new cancer drugs.

One of the significant advantages of AI in this field is its ability to optimize lead compounds. Once a

potential drug candidate is identified, it is rarely perfect; it might need to be more potent, more

selective, or safer. AI algorithms can suggest modifications to the chemical structure of the lead

compound to enhance its properties, guiding chemists in synthesizing new variants that are more

likely to succeed in clinical trials.

This approach is particularly valuable for addressing several problems inherent in traditional drug

discovery processes. The traditional route is rather slow and expensive, often taking over a decade

and costing significant funding to bring a single new drug to market. AI can accelerate this process
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by rapidly identifying promising candidates and optimizing them, potentially saving years of work

and significant financial investment. Moreover, the complexity of biological systems and the

subtleties of drug-receptor interactions make drug discovery a highly challenging field. The ability

of AI to analyze complex, multidimensional data can lead to a deeper understanding of these

systems, revealing new drug targets or highlighting the unforeseen therapeutic potential of

existing molecules.

The potential practical applications and expected results of AI-driven drug discovery are vast and

promising. By accelerating the identification and optimization of drug candidates, AI has the

potential to provide new treatments to patients much faster than traditional methods. This

acceleration is particularly crucial for diseases that currently lack effective treatments, such as

many rare diseases, or for rapidly evolving health threats, such as new viruses. Furthermore, the

optimization of AI can lead to drugs that are not only effective but also have fewer side effects,

improving patient outcomes and safety. In the area of personalized medicine, the ability of AI to

incorporate genetic and other biomarker data into the drug discovery process can lead to the

development of treatments that are tailored to individual patients, enhancing treatment efficacy

and reducing adverse reactions.

It should be noted, that this area strongly benefits from the methodology development made

within the “#14. Deep Learning in Structure-Activity Relationships (SAR)” research direction. The

results achieved within this area may be also used to facilitate development of another related

area – “#10. Predictive Toxicology” as described in the article.

AI-driven drug discovery is a demanding approach that leverages the analytical and predictive

power of artificial intelligence to revolutionize how new medications can be found and developed.

By enabling faster, more efficient identification and optimization of drug candidates, AI has the

potential to significantly accelerate the pace of medical innovation, bringing much-needed

therapies to patients more quickly and safely.

2. Big Data and Integrated Data

Transforming chemistry through Big Data analytics is an ongoing effort,31-36 but desired ambitious

goals are difficult to achieve using single-target/single-objective databases alone. Data

fragmentation is a limiting factor that has to be overcome to improve the performance. Integrated
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chemistry data involve the consolidation and harmonization of data from various sources within

and related to the field, including experimental results, computational simulations, chemical

databases, and literature. This approach aims to create a unified, accessible, and interoperable

data ecosystem that can support more effective and comprehensive analysis, fostering cross-

disciplinary research and innovation.

The process of integrating chemical data involves overcoming significant challenges, such as

disparate data formats, inconsistent data standards, and varying levels of data quality and

completeness. Data integration efforts typically require the development of sophisticated data

management frameworks that can handle the complexity of chemical data, including the

structural, spectral, and property data of chemical compounds, as well as the conditions and

outcomes of chemical reactions. These frameworks often utilize advanced technologies such as

semantic web tools, data ontologies, and machine learning algorithms to map relationships

between datasets, ensuring that data from different sources can be effectively linked, queried, and

analyzed together.

Integrated data can be applied to a wide range of problems in chemistry and related disciplines.

For researchers working on drug discovery, integrated data allow for the aggregation of

information on compound libraries, biological assays, and pharmacokinetic and pharmacodynamic

(PK/PD) data, facilitating the identification of promising drug candidates and understanding their

mechanisms of action. In materials science, the consolidation of data on material properties,

synthesis methods, and application performance can accelerate the discovery of new materials

with desired functionalities. Environmental chemists benefit from integrated data by being able to

correlate pollution data with health outcomes and ecological impacts, supporting the development

of more effective environmental protection strategies.

The practical applications and expected results of implementing integrated data in chemistry are

profound. By breaking down data fragmentation and fostering interoperability among diverse data

sources, integrated data enable a fresh view of research problems, allowing scientists to uncover

insights that might be missed when data sources are considered in isolation. This comprehensive

approach can lead to more robust scientific conclusions, drive innovation by uncovering new

connections between seemingly unrelated pieces of information, and accelerate the speed of

research by making relevant data more readily available to the scientific community.
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Moreover, integrated data support the principles of open science and data sharing, encouraging

collaboration among researchers across different fields and institutions. It can facilitate the

development of predictive models and data-driven hypotheses, enhancing the efficiency of

experimental research by guiding scientists toward the most promising research avenues. In the

long term, integrated data initiatives can contribute to the creation of a more cohesive and

collaborative scientific ecosystem, where data-driven insights lead to breakthroughs in

understanding and technological advancements across the boundaries of traditional scientific

disciplines.

The integration and harmonization of chemical data sources represent critical advancements in the

management and utilization of scientific data. By enabling comprehensive data analysis and

facilitating cross-disciplinary research, integrated data initiatives hold the promise of accelerating

discovery and innovation in chemistry and beyond, driving forward our understanding of complex

scientific phenomena and our ability to address pressing global challenges.

3. Automated Laboratory Platforms

Automated laboratory platforms refer to the integration of advanced robotics, computer systems,

and software to create laboratory environments where experiments can be conducted with

minimal to no direct human intervention.37-42 These platforms may be equipped with robotic arms,

automated pipetting systems, sensors, and other devices that can precisely handle liquids, solids,

and gases; replicate experimental setups; and carry out a wide range of laboratory procedures,

from simple mixing to more complex synthesis and analysis. Robotic process automation (RPA) is of

course easier to implement for repetitive tasks but the ultimate goal is to achieve a universal

laboratory platform.

The core of these automated systems lies in their sophisticated software, which allows researchers

to design and program experiments, control laboratory instruments, and collect and analyze data,

all within a unified interface. It is expected, that this software can be integrated with databases

and computational tools, enabling automated platforms to not only execute experiments but also

make data-driven decisions based on predefined criteria or real-time analysis. Synergy application

with cobots technology (designed to work in a shared workspace alongside humans) may also be

an option.
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Automated laboratory platforms can be applied to a variety of problems across research and

development in chemistry and related fields. They are particularly valuable in high-throughput

screening, where thousands of samples need to be tested under uniform conditions to identify

active compounds in drug discovery or to optimize catalysts in materials science. These platforms

may be also superior in repetitive or time-consuming tasks that require high precision, such as the

synthesis of many complex molecules or the preparation of sample libraries for analysis.

The implementation of automated laboratory platforms may result in numerous practical

applications and benefits. One of the most significant advantages is the improvement in the

precision and reproducibility of the experiments. Automation reduces the variability associated

with manual handling, ensuring that each step of an experiment is performed consistently. This not

only enhances the reliability of the results but also makes the findings more reproducible across

different laboratories.

Moreover, automated systems can operate continuously without the need for breaks or shifts,

significantly increasing the throughput of experiments and reducing the time from hypothesis to

conclusion. This capability is especially critical in fast-paced research areas where speed is

essential, such as in the development of new medications or materials.

Automated platforms also contribute to safer laboratory environments by handling hazardous

materials and carrying out dangerous processes without exposing researchers to risks.

Furthermore, they allow for more efficient use of resources, as precise control over reagents and

conditions minimizes waste and optimizes experimental designs.

Automated laboratory platforms represent a transformative approach to conducting research in

the chemical sciences and beyond. By leveraging robotics, software, and data analytics, these

systems enable more efficient, precise, and safe experimentation, paving the way for accelerated

discoveries and innovations in a wide range of scientific disciplines.

4. Integration of Laboratory Instruments and IoT

The integration of laboratory instruments and the Internet of Things (IoT) is a burgeoning area in

scientific research that involves connecting various laboratory instruments to a network, allowing

automated data collection, real-time monitoring, and efficient data analysis.43-48 This integration

harnesses IoT technology – a system of interrelated computing devices capable of transferring data

across a network without the need of human-to-human or human-to-computer interactions.
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As representative examples, laboratory instruments such as spectrometers, chromatographs, pH

meters, and even temperature and pressure sensors can be equipped with IoT capabilities. These

devices collect data continuously and transmit it to a centralized system or cloud-based platform.

This setup enables researchers to monitor experiments remotely, adjust conditions in real time,

and gather extensive data that can be used for in-depth analysis. The IoT in the laboratory also

allows for the automation of routine tasks, such as reagent refilling or temperature control,

enhancing the efficiency and accuracy of experimental work.

Not limited to already existing IoT devices, nano-/micro-chip integration - miniscule computer

components – can be incorporated into tools and equipment widely used in the laboratories. Tiny

electronic components are designed to speed up daily tasks in the lab, and this technology holds

great promise to link many already existing laboratory devises with AI. Improving precession and

reproducibility in often done operations is one of the expected outcomes.

The integration of laboratory instruments with IoT technology can be applied to a wide range of

problems. In pharmaceutical research, it enables continuous monitoring of drug synthesis

processes, ensuring quality and consistency. In environmental monitoring, IoT-equipped sensors

can track pollutant levels or detect hazardous substances in air or water with high precision and in

real time. In the field of materials science, the IoT can facilitate the detailed study of material

properties under various conditions, accelerating the discovery of new materials.

The practical applications and expected results of integrating laboratory instruments with the IoT

are substantial. This approach can significantly increase the efficiency of research laboratories by

automating data collection and analysis, reducing manual errors, and allowing scientists to conduct

more experiments simultaneously. Remote monitoring capabilities also mean that experiments can

be managed outside of conventional lab hours, increasing productivity.

Furthermore, the vast amounts of data collected by IoT-enabled instruments can be used to

uncover trends and patterns that might not be visible through manual analysis. This big data

approach can lead to new insights and discoveries in various fields of science. In terms of safety,

IoT integration can provide immediate alerts in hazardous conditions, such as chemical leaks or

unsafe temperature fluctuations, thereby enhancing laboratory safety.

The integration of laboratory instruments with the IoT represents a significant improvement in

scientific research methodology. By automating and streamlining data collection, monitoring, and
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analysis processes, IoT technology not only boosts the efficiency and effectiveness of laboratory

work but also opens up new possibilities for innovation and discovery across a range of scientific

disciplines.

5. AI in Spectroscopy and Analytical Method Development

Spectroscopy and analytical method development, when combined with AI applications, represent

a significant advancement in the way complex spectroscopic data are interpreted and how novel

analytical methods are developed.17, 49-53 This interdisciplinary approach demands artificial

intelligence, particularly machine learning algorithms, to analyze and make sense of the vast and

complex datasets generated by various spectroscopic techniques, such as NMR, IR, UV‒Vis, mass

spectrometry and others. The integration of AI helps to automate data analysis processes, enhance

the accuracy of interpretations, and uncover patterns and insights that might be invisible to

traditional analysis methods.

AI algorithms are trained on large datasets of spectroscopic measurements and their

corresponding outcomes or interpretations. These algorithms learn to recognize the complex

relationships between spectroscopic features and the chemical or physical properties they

represent. This learning enables AI systems to predict properties, identify compounds, or elucidate

structures on the basis of new spectroscopic data, significantly reducing the time and expertise

required for data analysis.

The application of AI in spectroscopy and analytical method development spans a broad range of

problems. For example, in pharmaceutical research, AI-enhanced spectroscopy can rapidly identify

and quantify the presence of various compounds in drug formulations, ensuring quality and

consistency. In environmental monitoring, AI can improve the detection and quantification of

pollutants in air, water, and soil samples, even when those contaminants are present in trace

amounts under complex backgrounds. In materials science, AI-driven spectroscopic analysis aids in

characterizing materials and understanding their composition and structure at the molecular level.

The results and practical applications of integrating AI into spectroscopy and analytical method

development are vast and manifold. For instance, in the field of drug discovery and development,

this approach can lead to more efficient identification of potential drug candidates and monitoring

of their stability and degradation products. In forensic science, AI-enhanced spectroscopy can
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provide more rapid and accurate analyses of samples, aiding in criminal investigations. In the field

of food safety, it can be used to detect adulterants and contaminants, ensuring the safety and

integrity of food products.

Moreover, AI-driven spectroscopy opens up new avenues for developing novel analytical methods

that are more sensitive, more selective, and more capable of handling complex mixtures or

samples with minimal preparation. These advancements not only improve the throughput and

reliability of spectroscopic analyses but also expand the scope of their applications, enabling new

scientific discoveries and innovations.

The integration of AI applications in spectroscopy and analytical method development is reshaping

the landscape of analytical chemistry. Achieving enhanced interpretability of complex

spectroscopic data and facilitating the development of novel analytical methods, AI is setting new

standards for efficiency, accuracy, and chemical analysis, with wide-ranging implications for

science, industry, and environmental monitoring.

6. Blockchain in Chemical Supply Chains

Blockchain in the chemical supply chain refers to the application of blockchain technology to create

a secure, immutable, and transparent record-keeping system for tracking the movement of

chemicals and materials from production to end use.54-57 Blockchain, a distributed ledger

technology, enables multiple parties to have access to a common database, where transactions are

recorded in a way that prevents tampering, alteration, or deletion, thereby ensuring data integrity

and trust among participants.

In the context of the chemical industry, the supply chain involves numerous stakeholders, including

retailers, raw material suppliers, distributors, manufacturers, as well as end users. Each of these

transactions and handovers traditionally relies on paperwork and centralized databases, which can

be prone to errors, inefficiencies and even fraud. By implementing blockchain technology, each

transaction in the supply chain can be recorded as a block of data, which is then linked to the

previous transaction, forming a chain. This decentralized and encrypted record ensures that all

parties have real-time access to trustworthy data regarding the origin, movement, and handling of

chemical products.
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Blockchain technology can be applied to various problems within chemical supply chains. It

addresses issues of counterfeiting and adulteration by providing an unforgeable record of product

authenticity and provenance. It also enhances regulatory compliance by maintaining a transparent

record of safety data, handling instructions, and environmental impact assessments, which can be

readily audited by authorities. Moreover, blockchain facilitates more efficient recall processes and

dispute resolutions by providing an indisputable record of transactions and product movements.

The results and practical applications of blockchain in chemical supply chains are manifold.

Enhanced security and transparency lead to increased trust among supply chain participants, from

suppliers to consumers, fostering stronger collaboration and partnerships. The technology's ability

to provide real-time visibility to the supply chain helps companies manage inventory more

effectively, reduce costs, and improve responsiveness to market demands. Additionally,

blockchain's capacity for automating transactions through smart contracts can further optimize

operations and reduce administrative overhead (including such possibilities as self-executing

contracts, agreement terms directly incorporated into the code, etc.).

Furthermore, blockchain technology supports the sustainability goals of the chemical industry by

enabling more effective tracking of materials' environmental footprints. Companies can monitor

and verify sustainable sourcing practices, waste management, and recycling activities, contributing

to more responsible and eco-friendly supply chains.

The integration of blockchain technology into chemical supply chains represents a significant

improvement in ensuring the integrity, efficiency, and sustainability of chemical and material

movements. By providing a secure and transparent mechanism for tracking and verifying

transactions, blockchain technology not only enhances operational efficiency but also builds trust

and collaboration among all stakeholders involved, paving the way for more resilient and

responsible supply chains in the chemical industry.

7. Digital Twins

Digital Twins in the area of chemistry refer to the development of comprehensive virtual models

that accurately replicate chemical reactions, processes or systems.58-64 These digital models are

designed to simulate the physical and chemical behaviors of their real-world counterparts in real

time, integrating data from various sources, including sensors, operational data, and collected
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performance records. The concept is based on the convergence of the physical and digital worlds,

where every aspect of a chemical process or system is mirrored in a virtual model, allowing for in-

depth analysis, prediction, and decision-making.

The creation of a digital twin involves mapping the physical attributes, operational dynamics, and

interdependencies of a chemical process or system into a virtual model. This model is continuously

updated with real-time data, enabling it to reflect the current state of the physical system more

accurately. Advanced simulation techniques, coupled with data analytics and machine learning

algorithms, allow the digital twin to predict future states, identify potential issues, and recommend

optimizations.

Digital twins can be applied to a wide array of problems within the chemical engineering and

processing industries. They are particularly useful in process optimization, where they can simulate

the effects of changes in process parameters on efficiency, yield, and product quality without the

risks and costs associated with physical experimentation. In safety and risk management, digital

twins can predict the outcomes of hazardous scenarios, helping to develop more effective

mitigation strategies. They also play a crucial role in maintenance and reliability, predicting

equipment failures before they occur and suggesting preventative actions, thereby reducing

downtime and extending the lifespan of physical assets. Stress testing is one of the areas where

digital twins can take a leading role as practical stress testing could be undesirable, highly

expensive or even impossible to perform.

The practical applications and expected results of employing digital twins in chemistry are

manifold. First, they enable a more agile and informed decision-making process, as operators and

engineers can visualize the impacts of their decisions in the virtual model before implementing

them in the real world. This leads to more efficient, sustainable, and safe chemical processes, with

optimized resource use and minimized waste production.

Moreover, digital twins facilitate the development of more innovative and complex chemical

processes by allowing for the exploration of scenarios that are too costly, dangerous, or time-

consuming to test physically. They support the transition toward Industry 4.0 in the chemical

sector, promoting the integration of IoT, AI, and other digital technologies into traditional chemical

manufacturing practices.
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Digital twins represent a significant leap forward in the digitalization of the chemical industry,

offering a powerful tool for simulation, monitoring, and optimization. By providing a dynamic,

accurate, and real-time representation of chemical processes and systems, digital twins not only

enhance operational efficiency and safety but also open new avenues for innovation and

improvement in chemical engineering and process management.

8. Virtual Laboratories and Augmented Reality

Virtual reality (VR) and Augmented Reality (AR) represent a modern approach to teaching and

learning in the field of chemistry, utilizing digital platforms and simulation software to enhance

educational experiences and provide students with virtual laboratory opportunities.65-71 This

innovative teaching methodology addresses several challenges in traditional chemical education by

offering interactive, safe, and accessible learning environments.

Already well-addressed opportunities, digital platforms for chemical education, encompass a wide

range of tools, including online courses, interactive textbooks, and educational apps, that provide

comprehensive content on various chemistry topics. These platforms often incorporate multimedia

elements such as interactive surveys, animations, videos, and making the learning process more

engaging and effective for students with diverse learning styles.

Virtual laboratories take this one step further by simulating lab experiments through software

applications, allowing students to conduct experiments in a virtual environment. These simulations

replicate the setup, procedures, and outcomes of real-life experiments without the need for

physical laboratory equipment or materials. Students can change variables, conduct experiments,

and observe outcomes in real time, just as they would in a physical laboratory, but with the added

benefits of safety, cost-effectiveness, and the ability to repeat experiments multiple times with

ease.

The application of digital platforms and virtual laboratories is particularly valuable in situations

where access to physical lab facilities is limited, such as in schools with budget constraints, for

distance learners, or during circumstances that prevent in-person lab work, such as the COVID-19

pandemic. Moreover, they provide an excellent platform for preliminary training and practice

before students engage in real lab experiments, reducing the learning curve and potential safety

risks associated with hands-on lab work.
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The expected results and practical applications of integrating digital platforms and virtual

laboratories into chemical education are manifold. Students gain a deeper understanding of

complex chemical concepts through interactive and immersive learning experiences. The virtual

labs allow for the exploration of a wider range of experiments, including those that might be too

dangerous, expensive, or time-consuming to perform in a traditional laboratory setting. This

approach also fosters critical thinking and problem-solving skills as students navigate through

virtual experiments, analyze data, and make decisions based on their observations.

Furthermore, the use of digital tools in chemical education promotes inclusivity and accessibility,

ensuring that students from diverse backgrounds and geographical locations have equal

opportunities for high-quality education and lab experience. It also prepares students for the

increasingly digital future of scientific research, where computational tools and simulations play a

crucial role.

Augmented reality with artificial components is expected to play an important role. Unlike VR, AR

does not replace the reality but enhances it by adding computer generated elements. For example,

by adding virtual labels to advance learning and help navigation in the laboratory. Interactive

hardware labeling in real time may help measurements and experiments, with the digital

information smoothly aligned with physical reality.

Chemical education within the VR and AR landscape, powered by digital platforms and simulation

software, represent a significant advancement in the way chemistry is taught and learned. Via

providing engaging, safe, and accessible educational experiences, this approach not only enhances

the quality of chemical education but also equips researchers with the skills and knowledge

needed to succeed in the modern scientific world.

9. Natural Language Processing (NLP) in the Chemical Space

Natural language processing (NLP) in chemical space involves the application of computational

techniques designed to understand, interpret, and output results in human language as it pertains

to the field of chemistry.5, 72-76 This technology is employed to mine vast quantities of textual data

within scientific literature, patents, and chemical databases, extracting valuable chemical

information and insights. NLP tools should be capable of recognizing and processing chemical

terminology, structures, and reactions described in text, converting unstructured data into

structured data that can be easily analyzed and utilized.
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NLP techniques in chemistry involve tasks such as entity recognition, where chemical compounds,

reactions, and other relevant entities are identified in text. Possible examples include relationship

extraction, which involves determining the interactions and associations between identified

entities; and text classification, which categorizes text segments according to their content, such as

distinguishing between experimental sections and discussion sections in research papers.

NLP in chemical space can be applied to a range of problems. Researchers and chemists can rapidly

review the existing knowledge, helping to identify previous work related to a specific compound or

reaction, which is invaluable for avoiding redundant research efforts and for sparking new ideas. In

the pharmaceutical industry, NLP can aid in drug discovery and development by extracting

information on bioactive compounds, their targets, and therapeutic effects from a plethora of

research articles and clinical study reports. Additionally, NLP tools can support regulatory

compliance by automatically analyzing patents and regulatory documents to ensure that new

chemical entities or processes do not infringe on existing intellectual property.

The results and practical applications of employing NLP in chemical space are significant. By

automating the extraction of chemical information from text, NLP tools dramatically reduce the

efforts and time needed for literature review and gathering data, allowing researchers to focus

more on experimental work and less on manual information retrieval. This efficiency can

accelerate research and development processes, leading to faster innovation cycles in chemical

synthesis, materials science, and pharmaceuticals.

Moreover, NLP can uncover hidden connections and patterns within the scientific literature that

might not be apparent through conventional reading, offering new perspectives and insights that

can drive forward scientific discovery. For instance, NLP analysis might reveal an underexplored

chemical reaction that could provide a new synthesis pathway for a valuable compound, or it might

identify a potential drug candidate that has been overlooked in traditional reviews.

NLP in chemical space represents a powerful tool for modern chemists, harnessing the capabilities

of artificial intelligence to mine the wealth of knowledge contained in scientific texts. Through

transforming unstructured text into structured, actionable data, NLP opens up new avenues for

research, innovation, and discovery in the chemical sciences, making the vast and ever-growing

body of chemical space more accessible and actionable than ever before.
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10. Predictive Toxicology

Predictive toxicology involves the use of computational models to assess the potential toxicity of

chemical compounds, aiming to predict adverse effects on human health and the environment

before they occur.77-83 This field merges principles from toxicology, chemistry, biology, and

computer science to forecast toxicological outcomes based on the molecular structure and

properties of compounds. The essence of predictive toxicology is to shift the paradigm from

traditional reactive approaches, which rely on experimental testing and observation of adverse

effects, to proactive strategies that can anticipate risks and inform safer chemical design and

usage. These efforts share some common points with “#14. Deep Learning in Structure-Activity

Relationships (SAR)” and “#1. AI-driven Drug Discovery” and sometimes use common tools,

however this topic has its own dedicated focus.

As key examples, the significance of predictive toxicology is particularly pronounced in the context

of agrochemicals development and chemical manufacturing. Predictive toxicology models can also

screen potential drug candidates early in the development process, identifying those that may

pose significant toxicological risks and thus reducing the likelihood of late-stage failures, which are

costly and time-consuming. This early assessment helps in prioritizing compounds with a higher

safety profile for further development, thereby optimizing resource allocation and enhancing the

overall efficiency of the drug discovery pipeline.

In chemical manufacturing, predictive toxicology plays a vital role in evaluating the safety of

chemicals used in various consumer products, industrial processes, and environmental

applications. By predicting the toxicological profile of new and existing chemical substances,

manufacturers can make informed decisions about the handling, usage, and disposal of these

chemicals to minimize occupational and environmental risks. This proactive approach not only

safeguards human health and the environment but also helps companies comply with regulatory

standards and avoid potential legal and financial repercussions associated with the production and

use of hazardous substances.

The methodologies employed in predictive toxicology range from quantitative structure-activity

relationship (QSAR) models, which correlate chemical structure with biological activity, to more

complex systems biology models that simulate the interactions of chemicals with biological

systems at various levels of organization. Advances in machine learning and artificial intelligence
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have further enhanced the capabilities of predictive toxicology, enabling the analysis of large

datasets to uncover subtle patterns and relationships that may indicate toxicological concerns.

The practical applications of predictive toxicology extend beyond safety assessments to include the

design of safer chemicals known as "benign by design." This approach involves using predictive

models to guide the synthesis of new compounds with reduced toxicity profiles, thereby inherently

improving the safety of the design process. Additionally, predictive toxicology contributes to the

reduction of animal testing by providing alternative in silico methods for toxicity assessment,

aligning with ethical considerations and regulatory mandates aimed at minimizing animal use in

research.

For environment/health protection and a number of related areas, predictive toxicology represents

an important approach in chemical safety assessment, offering a powerful toolset for preemptively

identifying potential toxicological risks associated with chemical compounds. Proposed integration

into chemical manufacturing processes promises to enhance safety, efficiency, and sustainability,

ultimately leading to safer pharmaceuticals and consumer products while protecting human health

and the environment.

11. AI in Environmental Chemistry and Sustainability

Environmental chemistry and sustainability, supported by digital tools, encapsulates the innovative

use of technology to analyze environmental processes, enhance pollution control measures, and

foster the development of green chemistry practices.84-89 This approach integrates computational

models, data analytics, remote sensing technologies, and information systems to gain insights into

environmental phenomena, assess the impact of pollutants, and design chemical processes that

are benign to the environment.

Digital tools offer a comprehensive platform for monitoring environmental parameters in real time,

allowing for the detailed tracking of air and water quality, soil composition, and the presence of

hazardous substances. Advanced algorithms and data analytics can process vast amounts of

environmental data collected from various sources, including satellite imagery, sensor networks,

and historical databases, to identify trends, predict future conditions, and assess the effectiveness

of pollution control strategies.

https://doi.org/10.26434/chemrxiv-2024-cdm8w ORCID: https://orcid.org/0000-0002-6447-557X Content not peer-reviewed by ChemRxiv. License: CC BY-NC 4.0

https://doi.org/10.26434/chemrxiv-2024-cdm8w
https://orcid.org/0000-0002-6447-557X
https://creativecommons.org/licenses/by-nc/4.0/


24

In the field of pollution control, digital tools enable the precise modeling of pollutant dispersion,

the identification of pollution sources, and the assessment of potential environmental and health

risks associated with exposure to various contaminants. This capability is crucial for developing

targeted interventions and regulatory policies that can effectively mitigate the impact of pollutants

on ecosystems and human health. For instance, predictive models can simulate the spread of an oil

spill in marine environments, guiding cleanup efforts and minimizing environmental damage.

Furthermore, the principles of green chemistry, which are aimed to create chemical products and

design processes that reduce or eliminate the use and generation of hazardous substances, are

significantly supported by digital technologies. Computational chemistry and simulation tools can

predict the environmental impact and toxicity of chemical compounds before they are synthesized,

encouraging the development of safer alternatives. Life cycle assessment (LCA) software aids in

evaluating the environmental footprint of chemical processes and products, from raw material

extraction to end-of-life disposal, promoting more sustainable practices across the chemical

industry.

The practical applications and expected results of employing digital tools in environmental

chemistry and sustainability are diverse and impactful. Enhanced environmental monitoring and

pollution control can lead to healthier ecosystems and improved public health by ensuring cleaner

air, water, and soil. Digital tools also support the advancement of green chemistry by facilitating

the discovery of environmentally friendly materials, energy-efficient processes, and waste-

minimization techniques. In the broader context of sustainability, these technologies contribute to

the achievement of global environmental goals, such as reducing greenhouse gas emissions,

protecting biodiversity, and conserving natural resources.

The integration of digital tools in environmental chemistry and sustainability represents a forward-

thinking approach that leverages the power of technology to address some of the most pressing

environmental challenges. By providing a deeper understanding of environmental processes,

enhancing pollution control, and driving the development of green chemistry, digital technologies

play a pivotal role in promoting a more sustainable and environmentally conscious future.
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12. Machine Learning in Molecular Design

ML in molecular design is a cutting-edge approach that employs advanced algorithms to predict

the properties of molecules and thereby guide the synthesis of new compounds and materials with

desired characteristics.90-95 This technique leverages the vast amounts of chemical data available,

including known molecular structures, their associated properties, and the outcomes of various

chemical reactions, to train ML models. These models can then be used to analyze the

relationships between molecular structures and their properties, making it possible to predict how

changes in a molecule's structure might influence its behavior and effectiveness.

ML algorithms can digest and learn from the collected earlier data of chemical compounds,

encompassing their successes and failures across various applications. By identifying patterns and

correlations within these data, ML models can predict the properties of novel molecules that have

not yet been synthesized. This capability is particularly beneficial in predicting the biological

activity of new compounds aiming to drastically reduce the time and resources spent on

experimental testing. Similarly, in materials science, ML can predict the physical, chemical, and

mechanical properties of new materials, guiding researchers in creating substances with specific

characteristics, such as high strength, conductivity, or durability.

The application of ML in molecular design addresses several challenges in chemistry and related

fields. First, the traditional approach for discovering new molecules and materials is often slow and

labor intensive and involves many trials and errors. ML can streamline this process, enabling rapid

screening and evaluation of countless potential compounds. This approach is also invaluable in

tackling complex problems where the relationships between molecular structures and their

properties are not fully understood, offering insights that can lead to breakthroughs in

understanding and innovation.

The results and practical applications of ML in molecular design are broad and impactful. In

pharmaceuticals, this approach can lead to the discovery of new drugs with greater efficacy and

fewer side effects, potentially revolutionizing treatments for various diseases. In the area of energy

research, ML-designed materials can lead to more efficient solar cells, batteries, and catalysts,

contributing to the advancement of renewable energy technologies. Moreover, in the field of

electronics, ML can aid in the development of novel semiconductors, leading to faster and more

efficient electronic devices.
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Furthermore, the environmental sector can benefit from ML in molecular design through the

development of materials that are more recyclable or better at capturing pollutants, thus

contributing to sustainability efforts. Overall, the integration of ML in molecular design should

accelerates the discovery and innovation in chemistry and materials science and also holds

promise for addressing some of the most pressing challenges in healthcare, energy, electronics,

and environmental protection, leading to advancements that could have a profound impact on

society and the world at large.

13. Smart Control

In the area of chemical processes and equipment, smart control refers to the use of intelligent

control systems that leverage advanced algorithms, sensors, and automation technologies to

enhance the efficiency, safety, and reliability of chemical operations.96-101 These systems are

designed to monitor process parameters in real time, make data-driven decisions, and adjust

operating conditions dynamically to achieve optimal performance. The concept also incorporates

distance control since direct on-site interaction with human operator is not required.

At the heart of smart control systems are sophisticated algorithms, including the power of machine

learning and artificial intelligence, that can predict process outcomes based on collected historical

and real-time data. By analyzing data from a myriad of sensors installed throughout chemical

reactors, separation units, and other equipment, these algorithms can identify patterns, anticipate

potential issues, and optimize process conditions. For instance, smart control systems can adjust

reaction temperatures, pressures, and feed rates to maintain ideal conditions, even in the face of

fluctuating input qualities or unexpected disturbances.

Smart control can be applied to a broad range of problems in the chemical industry. Process

optimization maximizes the efficiency and yield of chemical reactions, reducing waste and energy

consumption. For safety and environmental compliance, intelligent control systems can detect and

mitigate hazardous conditions, such as leaks or emissions, before they pose significant risks. In

predictive maintenance, smart control systems monitor the health of equipment, predict failures

and schedule maintenance to avoid costly downtime.

The practical applications and expected results of implementing smart control systems in chemical

processes are significant. Enhanced process efficiency leads to cost savings, increased production

https://doi.org/10.26434/chemrxiv-2024-cdm8w ORCID: https://orcid.org/0000-0002-6447-557X Content not peer-reviewed by ChemRxiv. License: CC BY-NC 4.0

https://doi.org/10.26434/chemrxiv-2024-cdm8w
https://orcid.org/0000-0002-6447-557X
https://creativecommons.org/licenses/by-nc/4.0/


27

capacity, and reduced environmental impact. Improved safety measures protect workers and

surrounding communities, while compliance with environmental regulations is ensured through

more effective pollution control. Predictive maintenance capabilities extend the lifespan of

equipment and reduce the likelihood of unexpected operational disruptions.

Furthermore, smart control systems facilitate the implementation of advanced manufacturing

concepts such as process intensification and modular chemical processing. These systems support

the development of more flexible and scalable manufacturing operations by enabling precise

control over smaller, more efficient units. This adaptability is particularly valuable in the

production of specialty chemicals and pharmaceuticals, where demand can be variable and

product specifications stringent.

The implementation of intelligent control systems in chemical processes represents a

transformative shift toward more adaptive, efficient, and safe operations. By harnessing the power

of data and automation, smart control systems not only optimize individual processes but also

contribute to the broader goals of sustainability and resilience in the chemical industry. As these

technologies continue to evolve, they will undoubtedly play a pivotal role in shaping the future of

chemical manufacturing, driving innovation and efficiency across the sector.

14. Deep Learning in Structure-Activity Relationships (SAR)

Deep learning in structure-activity relationships (SAR) involves the application of multilayer neural

networks to understand and predict how the structure of chemical compounds affects their

biological activity.92, 102-105 This approach is particularly revolutionary in the field of drug discovery,

where identifying compounds with desired biological effects is both critical and challenging.

In addition to their known biological activities, deep learning models, such as convolutional neural

networks (CNNs) and recurrent neural networks (RNNs), are trained on vast datasets comprising

chemical structures, represented as molecular graphs or simplified molecular-input line-entry

system (SMILES) strings. These models learn to recognize intricate patterns and features within the

molecular structures that correlate with biological outcomes, going beyond traditional SAR analysis

by considering not only simple molecular descriptors but also the entire structure in a holistic

manner.

https://doi.org/10.26434/chemrxiv-2024-cdm8w ORCID: https://orcid.org/0000-0002-6447-557X Content not peer-reviewed by ChemRxiv. License: CC BY-NC 4.0

https://doi.org/10.26434/chemrxiv-2024-cdm8w
https://orcid.org/0000-0002-6447-557X
https://creativecommons.org/licenses/by-nc/4.0/


28

This deep learning approach can be applied to various problems within drug discovery and

development. For instance, it can predict the efficacy of potential drug candidates against specific

targets, thereby streamlining the initial screening process and focusing efforts on the most

promising molecules. It can also be used to anticipate adverse drug reactions or off-target effects,

enhancing the safety profile of new compounds. Furthermore, deep learning models can assist in

the optimization of lead compounds, suggesting structural modifications that could improve

efficacy, reduce toxicity, or enhance pharmacokinetic properties.

The practical applications and expected results of employing deep learning in SAR analysis are vast.

By providing more accurate predictions of biological activity, deep learning models can significantly

reduce the time and financial investment required to identify viable drug candidates, thereby

accelerating the pace of drug development. This efficiency gain not only benefits pharmaceutical

companies by speeding up the time-to-market for new drugs but also has broader implications for

public health, potentially enabling quicker responses to emerging medical needs.

Moreover, deep learning models can uncover novel insights into the mechanisms of molecular

interactions and biological pathways, contributing to a deeper understanding of disease processes

and pharmacology. These insights can lead to the discovery of new therapeutic targets and the

development of innovative treatment strategies. Methodology developments achieved in these

efforts are very valuable for the “#1. AI-driven Drug Discovery” and “#10. Predictive Toxicology”

discussed below.

The utilization of deep learning in understanding and predicting structure-activity relationships

represents a paradigm shift in drug discovery. By harnessing the power of advanced computational

models to analyze complex chemical and biological data, researchers can enhance the efficiency

and effectiveness of the drug discovery process, paving the way for the development of new

therapeutics and advancing our understanding of human health and disease.

15. AI-driven High-Throughput Experimentation (HTE)

High-throughput experimentation (HTE) is a methodological approach that leverages robotics,

automation, and artificial intelligence (AI) to conduct a large number of chemical experiments

simultaneously and rapidly.106-111 This approach is useful for research processes, enabling scientists

to explore vast chemical spaces and reaction conditions in a fraction of the time required by
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traditional methods. HTE systems are designed to handle and analyze hundreds to thousands of

samples per day, providing a level of efficiency and data generation that was previously

unattainable.

At the core of HTE is the integration of robotic systems capable of performing repetitive laboratory

tasks with precision and consistency. These tasks include pipetting, mixing reagents, controlling

reaction conditions, and even analyzing the outcomes of reactions using various spectroscopic and

chromatographic techniques. The automation of these processes reduces the potential for human

error, increases throughput, and allows researchers to focus on more complex aspects of their

work.

The role of AI in HTE is multifaceted. AI algorithms are employed to design experiments, predict

outcomes, and analyze the outcome generated by high-throughput screens. For instance, machine

learning models can suggest novel combinations of reaction conditions or materials to test based

on patterns identified in previously collected data. After experiments are conducted, AI can also

help in identifying successful outcomes, such as the synthesis of a desired compound or the

discovery of a new catalytic activity, by analyzing complex data that might include spectral

properties, reaction yields, and purity levels.

HTE is particularly valuable in fields where the exploration of a wide range of variables is crucial,

such as in materials science, catalysis research, and drug candidates screening. In materials

science, HTEs can accelerate the discovery of new materials with specific properties, such as high-

strength alloys, superconductors, or photovoltaic materials, by systematically varying the

composition and processing conditions. In catalysis research, HTE enables the rapid screening of

catalyst libraries to identify candidates that facilitate reactions with high efficiency and selectivity

and under milder conditions. In drug discovery, HTE is used to screen vast libraries of compounds

for biological activity against various targets, vastly accelerating the identification of potential drug

candidates.

The practical applications and results of HTEs are profound. By dramatically increasing the speed at

which experiments can be conducted and analyzed, HTE has the potential to significantly shorten

the research and development cycles for new chemicals, materials, and drugs. This not only leads

to faster scientific advancements but also reduces the costs associated with R&D processes.

Furthermore, the ability of HTE to generate large datasets provides a rich resource for further

computational analysis and model building, enhancing the predictive capabilities of AI in science.
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Active utilization of high-throughput experimentation may implement a paradigm shift in how

regular laboratory research is conducted, characterized by a significant increase in efficiency and

productivity. The integration of robotics and AI in HTE has not only accelerated the pace of

discovery but also opened up new avenues for exploration that were previously considered

impractical due to resource and time constraints. As such, the HTE is poised to continue playing a

pivotal role in advancing research across a multitude of scientific disciplines.

16. Digital Materials Design and Materials Informatics

Digital materials design and materials informatics refers to the intersection of materials science

and information technology, employing data-driven methodologies to understand, discover, and

design new materials.11, 112-117 This approach leverages large datasets of material properties,

processing conditions, and performance metrics, along with advanced data analytics, machine

learning algorithms, and computational modeling, to uncover patterns and relationships that can

guide the development of materials with tailored properties. Development of new generation of

high-performance catalytic materials is also included in this direction.

This field involves the collection and analysis of data from experimental studies, computational

simulations, and the literature to construct predictive models. These models can forecast the

properties and performance of materials based on structure, composition, and processing history.

By systematically exploring the vast space of potential material compositions and configurations,

digital materials design can identify promising candidates for specific applications much more

rapidly than traditional trial-and-error methods.

Materials informatics can be applied to a wide array of problems in materials science and

engineering. For instance, it is instrumental in the development of high-performance alloys for

aerospace and automotive applications, where the specific strength, durability, and resistance to

environmental degradation are critical. In the energy sector, materials informatics can accelerate

the discovery of new battery materials with higher energy densities, faster charging rates, and

longer lifespans, addressing the growing demand for efficient energy storage solutions.

Additionally, in the electronics industry, this approach supports the development of novel

semiconductors, dielectrics, and conductive materials essential for next-generation electronic and

photonic devices.
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The results and practical applications of digital materials design are profound and far-reaching. By

enabling a more rational and efficient exploration of the material design space, it significantly

shortens the development cycles for new materials, reducing costs and accelerating the pace of

innovation. This will have a direct impact on various industries, leading to the creation of lighter,

stronger, and more sustainable materials for transportation, more efficient and durable energy

storage and conversion systems, and more advanced electronic devices with improved

functionalities.

Moreover, digital technologies contribute to the sustainability of material development processes

by identifying material compositions and processing routes that minimize the use of toxic or scarce

elements and reduce energy consumption during manufacturing. It also plays an important role in

advancing the fundamental understanding of material behavior, providing insights into the

underlying mechanisms that govern material properties and performance.

Digital materials design and materials informatics contribute to development of a transformative

approach in materials science, harnessing the power of data and computation to drive the

discovery and design of new materials. Its integration into the material development process

promises not only to enhance technological innovation across a broad spectrum of applications

but also to contribute to the development of more sustainable material solutions for the future.

17. Data-Driven Chemical Reaction Optimization

Data-driven chemical reaction optimization, facilitated by machine learning models, represents a

transformative approach in the field of chemistry, where algorithms are trained to predict the

outcomes of chemical reactions, optimize reaction conditions, and uncover novel reactivity

patterns.118-123 This method leverages the vast amounts of reaction data accumulated in the

scientific literature, databases, and experimental results to construct predictive models that can

guide chemists in designing more efficient and effective chemical reactions. Bayesian optimization,

reinforcement learning and a range of other methods are actively involved.

The process involves the collection and analysis of diverse data related to chemical reactions,

including reactants, catalysts, solvents, temperatures, and yields. ML algorithms, such as neural

networks or decision trees, are then trained on these datasets to identify patterns and correlations

that can predict how changes in reaction conditions might affect the outcome. This predictive
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capability enables chemists to simulate reactions in silico before conducting them in the

laboratory, saving time and resources by focusing on the most promising conditions.

Data-driven chemical reaction optimization can be applied to a wide range of problems in synthetic

chemistry, materials science, and pharmaceutical development. For instance, in the synthesis of

complex organic molecules, optimizing reaction conditions is critical for achieving high yields and

selectivities. ML models can predict the best combination of catalysts, solvents, and temperatures

to achieve the desired results. In materials science, these models can help in the development of

new synthesis routes for advanced materials with specific properties. In the pharmaceutical

industry, optimizing reactions can lead to more efficient production processes for active

pharmaceutical ingredients, reducing costs and environmental impact.

The expected results and practical applications of employing ML models for chemical reaction

optimization are significant. With enhancement of the predictability of reaction outcomes,

chemists can avoid costly and time-consuming experimental dead ends, accelerating the discovery

and development of new compounds and materials. This approach also has the potential to reveal

new chemical reactivities and mechanisms that have not been observed before, expanding the

boundaries of chemical knowledge.

Moreover, data-driven chemical reaction optimization can contribute to the principles of green

chemistry by enabling more sustainable chemical processes. Optimized reactions often require less

energy, generate fewer byproducts, and use safer reagents, aligning with the goals of reducing the

environmental footprint of chemical manufacturing.

The integration of ML models into the optimization of chemical reactions represents a significant

advancement in the field, offering a more efficient, predictive, and exploratory approach to

chemical synthesis. Harnessing the power of data and machine learning would help chemists to

improve the efficiency of existing reactions and also discover new pathways and reactivities,

driving innovation in chemistry and related disciplines.

18. Automated Synthesis Planning

Automated synthesis planning harnesses AI tools to revolutionize the way chemists design and

synthesize chemical compounds.124-129 Traditionally, planning synthetic routes has been a complex
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and time-consuming task, requiring chemists to draw upon their extensive knowledge of reaction

mechanisms, reactivity, and functional group transformations. Automated synthesis planning

systems aim to simplify the task by providing computer-generated pathways that predict the most

efficient and practical routes for synthesizing desired molecules.

At the focus of automated synthesis planning is the use of ML algorithms to search through vast

databases of chemical reactions, including both successful syntheses and experimental failures.

These algorithms learn from the accumulated knowledge of chemical reactivity patterns, reaction

conditions, yields, and scalability. By analyzing this information, the systems can propose multiple

synthetic routes for a target molecule, ranking them based on factors such as the number of steps,

the availability of starting materials, the likelihood of success, and the overall cost-effectiveness.

This approach can be particularly valuable in complex organic synthesis, such as the development

of pharmaceuticals, where identifying the most efficient synthetic route can significantly accelerate

drug discovery and development processes. This approach allows chemists to explore a broader

array of synthetic possibilities, including routes that might not be immediately apparent through

traditional methods. Moreover, automated synthesis planning can optimize existing synthetic

pathways, suggesting modifications that reduce the number of steps, minimize hazardous

reactions, or employ more readily available or sustainable reagents.

In practice, the application of automated synthesis planning can lead to substantial reductions in

the time and resources required for experimental trials. By providing a ranked list of synthetic

routes, chemists can prioritize their experimental work, focusing on the most promising

approaches. This not only speeds up the laboratory workflow but also reduces the consumption of

chemicals and energy, contributing to more sustainable research practices.

The practical applications of automated synthesis planning extend beyond academia to the

pharmaceutical, agrochemical, and materials science industries. For instance, in drug

development, it can be used to rapidly synthesize new drug candidates for testing or to find more

efficient pathways for the production of approved drugs, thereby lowering manufacturing costs.

Materials science can assist in the discovery of new materials with desirable properties by

facilitating the synthesis of novel compounds.

As AI and ML technologies continue to advance, the capabilities of automated synthesis planning

systems will expand, further enhancing their utility in chemical research. The integration of these
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systems into the chemist toolkit represents a significant step forward in the digitalization of

chemistry and is promising for accelerating scientific discovery and innovation across a wide range

of chemical disciplines.

19. Chemoinformatics and Chemical Data Analysis

Chemoinformatics and chemical data analysis encompass a suite of advanced techniques focused

on the management, analysis, and interpretation of large datasets in the chemical domain.130-135

These methodologies leverage computational tools and statistical models to extract meaningful

information from data related to chemical structures, properties, reactions, and biological

activities. The essence of chemoinformatics lies in its ability to translate vast amounts of raw

chemical data into actionable insights, thereby enhancing our understanding of chemical

phenomena and facilitating the discovery of new chemical entities and materials.

At the core of chemoinformatics is the development of sophisticated algorithms and software tools

capable of representing and adjusting chemical structures in silico. These representations enable

the systematic analysis of molecular descriptors, which are numerical values that capture various

aspects of a molecule's chemical and physical properties. By analyzing these descriptors,

cheminformatics tools can identify patterns and relationships within chemical datasets that are not

readily apparent through traditional analysis methods. This capability is invaluable in tasks such as

virtual screening, where large libraries of compounds are evaluated for their potential biological

activity based on their structural similarities to known active compounds.

Chemoinformatics techniques are particularly well suited for addressing problems where the

complexity and scale of the data exceed the capacity for manual analysis. For example, in drug

discovery, chemoinformatics can be used to analyze the structure-activity relationships of

compound libraries, helping to identify promising drug candidates by predicting their activity

against specific biological targets. Similarly, in materials science, chemoinformatics can facilitate

the discovery of new materials with desired properties by analyzing the relationships between

molecular structures and material characteristics.

The practical applications of chemoinformatics are wide-ranging and impactful. In the

pharmaceutical industry, the identification of new drug candidates can be accelerated by enabling

high-throughput screening of compound libraries against disease targets. In environmental
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chemistry, cheminformatics tools can predict the toxicity and environmental fate of chemical

pollutants, aiding in risk assessment and regulatory compliance. Additionally, in academia,

cheminformatics supports fundamental research by providing insights into the mechanisms of

chemical reactions and the principles governing molecular interactions.

As chemoinformatics methodologies continue to evolve, they are increasingly integrated with

other computational disciplines, such as machine learning and data science, further enhancing

their analytical capabilities. This integration allows for the development of predictive models that

can forecast chemical properties and activities with high accuracy, opening new avenues for

research and development in chemistry and related fields. The continued advancement of

chemoinformatics promises to deepen our understanding of chemical systems, fasilitate the

discovery process, and contribute to the development of new technologies and solutions across a

broad spectrum of scientific disciplines.

20. AI in Quantum Chemistry and Simulations

Quantum chemistry and simulations involve the use of quantum mechanical principles to predict

the properties and behaviors of atoms and molecules. This field is fundamental for understanding

chemical reactions, material properties, and molecular structures at the most detailed level.

However, quantum chemical calculations are notoriously complex and computationally

demanding, often requiring significant resources and time, especially for large systems or highly

accurate predictions.

The integration of artificial intelligence (AI) into quantum chemistry and molecular simulations

represents a significant advancement, enhancing the accuracy and efficiency of these

calculations.28, 136-140 AI algorithms, particularly machine learning models, are trained on data

generated from quantum chemical computations to predict the outcomes of similar calculations.

This approach can significantly reduce the computational cost by providing accurate estimates of

molecular properties without the need for full-scale quantum mechanical calculations for every

new molecule or configuration.

AI-enhanced quantum chemistry can be applied to a wide range of problems where understanding

the electronic structure and properties of molecules is crucial. This includes the design of new

drugs, where accurate predictions of molecular interactions with biological targets are essential,
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and the development of new materials with specific electronic, optical, or mechanical properties.

In catalysis research, AI-enhanced simulations can predict the efficiency and selectivity of catalysts,

guiding the design of better catalytic systems for chemical manufacturing processes.

The results and practical applications of AI-enhanced quantum chemistry and simulations are

diverse and impactful. In drug discovery, it enables the rapid screening of vast libraries of

compounds, identifying those most likely to bind effectively to disease targets with fewer

experimental tests. Materials science can benefit from accelerating the discovery of novel

materials with desirable properties, such as high-strength lightweight alloys for aerospace

applications or efficient light-absorbing compounds for solar energy devices. The field of catalysis

can facilitate the optimization of reaction conditions and the design of more efficient catalysts,

contributing to more sustainable and cost-effective chemical processes.

Moreover, AI-enhanced quantum chemistry can lead to a deeper understanding of fundamental

chemical phenomena, offering insights into reaction mechanisms and material behaviors that were

previously inaccessible. This can open up new avenues in research, leading to innovations in

various fields of chemistry and materials science.

The integration of AI into quantum chemistry and molecular simulations is changing the landscape

of chemical and material research. By enhancing the accuracy and efficiency of quantum chemical

calculations, AI enables scientists to address more complex systems and problems, accelerating the

rate of discovery and innovation across a broad spectrum of applications.
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Figure 1. Connection of AI-based technologies with broader themes depending on their subject and applications.
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2.3 Broader AI themes in chemistry
The defined 20 influential AI-based technologies in chemistry highlighted in the manuscript can be

categorized into 7 broader themes that reflect their primary focus and application areas (Figure 1).

These themes not only encapsulate the essence and application areas of the technologies but also

offer a structured framework to understand their collective impact on the field of chemistry. Below

is a description of these categories, the rationale for their formation, and their global importance

in steering the evolution of chemistry into its digital era.

I. Chemical Biology and Digital Medicine

This category encompasses technologies focused on drug discovery, predictive toxicology, and

understanding structure-activity relationships through deep learning (Figure 1). The grouping of

these technologies underlines the critical role of AI in accelerating the development of

therapeutics, predicting chemical safety, and elucidating complex biochemical interactions. In the

global context, this theme is paramount for advancing personalized medicine, reducing drug

development costs, and enhancing the safety profiles of chemical compounds, thereby significantly

impacting healthcare outcomes worldwide.

II. Environmental Technologies

Application of AI in environmental chemistry and sustainability, along with predictive toxicology,

constitutes this theme (Figure 1). It underscores the commitment to leveraging digital tools for

environmental protection, green chemistry practices, and assessing chemical impacts on

ecosystems. This thematic category highlights the global imperative to address environmental

challenges, promote sustainability, and ensure chemical safety, reflecting a broader societal shift

towards environmental stewardship.

III. Data Analysis

Integrating diverse data sources, managing large chemical datasets, extracting information through

NLP, and optimizing chemical reactions are grouped here due to their collective focus on

harnessing data for insightful chemical analysis (Figure 1). This theme showcases the

transformative potential of AI in synthesizing knowledge from vast data pools, optimizing chemical

processes, and driving discoveries. Globally, it represents a shift towards data-driven decision-

making and research in chemistry, enhancing efficiency, innovation, and knowledge dissemination.
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IV. Laboratory and Processes Innovations

This category brings together technologies that automate laboratory work, integrate IoT for data

analysis, develop analytical methods, conduct high-throughput experimentation, plan synthesis,

and implement smart control systems (Figure 1). The logic of grouping these technologies is based

on their contribution to innovating laboratory practices and chemical processes, making research

more precise, efficient, and scalable. On a global scale, this theme is critical for the future of

research and manufacturing in chemistry, offering solutions to increase throughput, improve

safety, and reduce costs.

V. Materials Science

Focused on the discovery and design of new materials, this theme encompasses technologies that

apply AI to predict material properties and design compounds (Figure 1). It reflects the

interdisciplinary nature of materials science and its pivotal role in developing next-generation

materials for various applications, from energy storage to nanotechnology. Globally, this theme

addresses urgent needs for aim-specific, high-performance materials, driving advancements in

technology and industry.

VI. Supply Chain Transparency and Quality Assurance

Including technologies like blockchain for supply chain integrity and digital twins for process

optimization, this category emphasizes the importance of transparency, traceability, and quality in

chemical manufacturing (Figure 1). It highlights the role of AI in building trust, ensuring product

quality, and optimizing production processes. Globally, this theme is fundamental for the ethical,

safe, and efficient distribution of chemical products, aligning with demands for sustainability and

consumer safety.

VII. Simulation and Modeling

This theme, encompassing digital twins, virtual laboratories, and quantum chemistry simulations,

illustrates the power of AI-enhanced modeling and simulation in predicting chemical behaviors and

facilitating education (Figure 1). It showcases the shift from traditional experimental methods to

virtual experimentation and theoretical predictions. Globally, this theme advances our

understanding of chemical phenomena, reduces experimental costs, and enables remote learning

and research, democratizing access to chemistry education and innovation.
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3. Conclusions

Transitioning into the modern era, digital chemistry represents a paradigm shift, leveraging

computational power, machine learning algorithms, and vast datasets to accelerate and refine the

discovery process. This digital approach offers unprecedented predictive capabilities, efficiency,

and the ability to tackle complex problems that are beyond the reach of traditional methods alone.

This may indicate a move toward more targeted, hypothesis-driven research, reducing the reliance

on serendipity and making the discovery process more systematic and less resource intensive.

It should be noted that the some of the identified top 20 influential digital research trajectories

have mutual interceptions and sometimes address similar targets using slightly different

approaches. Not unexpectedly for such a new and actively evolving area, sometimes it is difficult

to draw clear borders between the individual digital trajectories or distinguish clearly the particular

segment in the chemistry research. Although some duplications in the methods used and targets

stated may exist, the key trajectories identified upon analysis of current research data were

described here. No attempts were made to manually merge or replace the trends captured.

Further systematization and classification may be applied in the future when more trends and their

impacts will be pronounced in details.

The future of chemical research lies in the integration of these diverse methodologies. The insights

from classical chemistry continue to be invaluable, particularly in education and in areas where

direct material interaction is crucial. Meanwhile, digital chemistry is set to expand, drive

innovation and enable researchers to navigate the vast chemical space more effectively than ever

before.

The categorization into themes (Figure 1) elucidates the multifaceted impact of AI on chemistry,

highlighting areas of significant advancement and global challenges being addressed. These

themes collectively underscore the shift from empirical, labor-intensive research towards a more

predictive, efficient, and rapid approach facilitated by digital technologies. As chemistry transitions

into its digital era, these themes play pivotal roles in shaping research priorities, industry practices,

and educational paradigms, driving innovation, sustainability, and global collaboration. The

integration of AI and digital tools across these themes not only transforms how chemistry is
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conducted but also broadens its application, impact, and accessibility, marking a new frontier in

the quest for scientific discovery and technological progress.

Despite an attempt at detailed analysis made in this study, plausible limitations should also be

mentioned. The analysis within this article, while comprehensive, may have limitations in fully

capturing or accurately predicting all trends within the rapidly evolving field of digital chemistry

and AI applications. The dynamic nature of technological advancements and their interdisciplinary

impacts make it challenging to foresee all future developments and their implications

comprehensively. These constraints highlight the inherent difficulty in predicting the future

trajectory and impact of such a rapidly changing domain, acknowledging that some emerging

trends may be overlooked or misunderstood within the scope of this analysis.

As we move forward, the challenge and opportunity for the chemical research community will be

to balance key approaches—joining the irreplaceable human intuition and expertise of classical

methods—with the computational power of digital techniques. This balanced approach will not

only enhance our understanding and capabilities within the field but also ensure that the journey

of discovery remains as rich and unpredictable as the science of chemistry itself. The integration of

these methodologies will prepare future chemists to navigate an increasingly complex and

interdisciplinary landscape, driving forward innovations that address some of the most pressing

challenges of our time.

Methodology

The present analysis is based on a multidisciplinary approach, incorporating insights from research

articles, reviews, and trend analyses within the chemical sciences. Advanced data collection across

major databases, including Google Scholar, Web of Science, Scopus, eLibrary, and PubChem, were

employed to ensure a thorough representation of current and emerging trends.

AI technologies, including Large Language Models (LLM) and Generative Pre-trained Transformers

(GPT), were utilized in this work. These tools were used to facilitate data processing, analysis,

information clustering, trend distillation, and assessment of influential potential. Additionally, AI

was utilized for text translation and preparation. Multiparametric comparison was used to enhance

the overall efficiency and depth of the analysis. By integrating these methods, this article provides
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a detailed understanding of the current landscape and future directions of AI in chemical sciences,

highlighting the transformative potential and broad applicability of these technologies in the field.

Limitations. Despite the variety of tools employed, this study may still possess several limitations.

The reliance on available literature and databases may not encompass all emerging technologies

and innovations in AI and chemical sciences, potentially overlooking unpublished or proprietary

research. Additionally, the rapid pace of technological advancement means that some findings may

quickly become outdated. The interpretative nature of AI-based analysis also introduces a

subjective element, which might affect the objectivity of trend predictions and significance

assessments. These constraints underscore the need for ongoing research and validation in this

dynamically evolving field.
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