
Analyzing Interfaces, Interactions and

Self-Assembly in Soft Matter Simulations with

PySoftK

Raquel López-Ŕıos de Castro,†,‡ Alejandro Santana-Bonilla,∗,¶ Robert M.

Ziolek,‡ and Christian D. Lorenz∗,‡

†Department of Chemistry, King’s College London, London, SE1 1DB, United Kingdom

‡Biological Physics and Soft Matter Group, Department of Physics, King’s College London,

London, WC2R 2LS, United Kingdom

¶Department of Physics, King’s College London, London, WC2R 2LS, United Kingdom

E-mail: alejandro.santana bonilla@kcl.ac.uk; chris.lorenz@kcl.ac.uk

Abstract

Molecular dynamics simulations have become an essential tool in the study of soft

matter and biological macromolecules. The large amount of high-dimensional data

produced by such simulations does not immediately elucidate the atomistic mechanisms

that underlie complex materials and molecular processes. Analysis of these simulations

is complicated: the dynamics intrinsic to soft matter simulations necessitates careful

application of specific (often complex) algorithms to extract meaningful molecular scale

understanding. There is an ongoing need for high-quality computational workflows to

facilitate this analysis in a reproducible manner with minimal user input. In this work,

we introduce a series of new computational tools for analyzing soft matter interfaces,

molecular interactions (including ring-ring stacking), and self-assembly. In addition,

1

https://doi.org/10.26434/chemrxiv-2024-1lbpg ORCID: https://orcid.org/0000-0003-1028-4804 Content not peer-reviewed by ChemRxiv. License: CC BY 4.0

alejandro.santana_bonilla@kcl.ac.uk
chris.lorenz@kcl.ac.uk
https://doi.org/10.26434/chemrxiv-2024-1lbpg
https://orcid.org/0000-0003-1028-4804
https://creativecommons.org/licenses/by/4.0/

we include a number of auxiliary tools, including a useful function to unwrap molecular

structures that are greater than half the length of their corresponding simulation box.

These tools are contained in the PySoftK software package, making application of these

algorithms straightforward for the user. These new simulation analysis tools within

PySoftK will support high-quality, reproduce analysis of soft matter and biomolecular

simulations to bring about new predictive understanding in nano- and biotechnology.

Introduction

Soft matter spans materials science applications in cosmetics,1–3 pharmaceuticals4–7 and wa-

ter decontamination8 among many others. Advances in synthetic chemistry and formulation

science have lead to the development of complex, bespoke soft matter architectures while

ever-increasing computational power and simulation techniques have opened up the study of

a broad range of such systems in silico. An understanding of the interplay of molecular struc-

ture, conformational dynamics and intermolecular interactions of the constituent molecules

is required to build up generaliazble structure-property relationships to in turn support the

rational design of new functional soft matter materials with PySoftK.

Molecular dynamics (MD) simulations provide the framework to investigate the struc-

ture, dynamics and interactions at a level of detail that cannot be resolved experimentally.

MD simulations have been widely used in the study of soft matter self-assembly.9–16 MD

simulations generate a large amount of data from which it is typically challenging to extract

meaningful predictive understanding. This difficulty arises not only from the high dimen-

sionality of the output data, but also from the fast and complex dynamics that are intrinsic

to soft matter. Interpreting the molecular mechanisms present in MD simulations typically

requires bespoke computational tools to quantify such complex behavior. As a result, it is

often not possible to replicate experimental findings or to reproduce quantifiable results.17

The computational soft matter community has invested significant effort in simplifying

the creation of inputs for soft matter simulations, as exemplified by tools such as PySoftK,18

2

https://doi.org/10.26434/chemrxiv-2024-1lbpg ORCID: https://orcid.org/0000-0003-1028-4804 Content not peer-reviewed by ChemRxiv. License: CC BY 4.0

https://doi.org/10.26434/chemrxiv-2024-1lbpg
https://orcid.org/0000-0003-1028-4804
https://creativecommons.org/licenses/by/4.0/

Polymer Structure Predictor,19 Radonpy20 and MoSDeF.21 However, a comprehensive pack-

age for analyzing soft matter material properties has not yet been developed. To address

this issue, PySoftK (version 1.0) now includes a toolkit designed for analysis of soft matter

simulations, providing a unified computational framework in which modelling and analysis

can be streamlined under modern software development standards. This feature supports

both, data provenance and reproducibility of results. In line with the design commitment

of PySoftK to minimize user inputs and provide highly efficient code, PySoftK v1.0 enables

the analysis of large-scale soft matter systems.

In this work, new computational analysis tools will be introduced, providing illustrated

case studies. The tools are divided into two analysis groups: properties of self-assembled

structures and molecular-scale interaction analysis. The software can be employed to inves-

tigate different kinds of soft matter systems, since the implemented algorithms are entirely

chemically agnostic. With this new release, we aim to support the acceleration computer-

aided development of new materials with .

Results and Discussion

Tracking and Analyzing Nanoparticle Self-Assembly

The algorithms introduced in this section are useful for performing analysis of soft matter

aggregates, including their self-assembly. The algorithms are formulated to be resolution

and chemically agnostic.

Tracking Molecular Self-Assembly. The first tool presented is a method to track

soft matter self-assembly. The Spatial Clustering Protocol (SCP) algorithm provides a fast

way to label molecules based on the cluster or aggregate in which they reside during a

self-assembly process. We make use of simple graph theory to represent molecules as a

graph, where each molecule is a node and if the distance between specified atoms of any two

3

https://doi.org/10.26434/chemrxiv-2024-1lbpg ORCID: https://orcid.org/0000-0003-1028-4804 Content not peer-reviewed by ChemRxiv. License: CC BY 4.0

https://doi.org/10.26434/chemrxiv-2024-1lbpg
https://orcid.org/0000-0003-1028-4804
https://creativecommons.org/licenses/by/4.0/

given molecules is less than the defined cutoff, an edge is added between these two nodes in

the graph. In this representation, clusters are rapidly identifiable as connected subgraphs.

This makes this analysis suitably fast, such that the dynamical self-assembly process can be

quickly rationalized over an entire trajectory. The algorithms returns a pandas dataframe

which contains the molecule resids for each cluster and the cluster size at each time step.

More details about the application of graph theory to investigating self-assembly can be

found in the Electronic Supplementary Information (ESI).

The choice of which atom to use in the identification of molecular contacts is specific to

the molecule of interest and one can select as many atoms as necessary to accurately describe

the self-assembly of the molecules. The SCP algorithm calculates the distances between all

the selected atoms of the chosen molecules. If any of these distances is below the cutoff it will

then add them to the same subgraph. It is important to note that choosing a large number

of atoms will slow down this calculation. Figure 1 shows how different atom selection choices

affect the output of the SCP clustering for an ABA triblock copolymer. Figure 1 (a) shows

the system, two micelles formed by ABA triblock polymers (the A block is hydrophilic; the

B block is hydrophobic). Figure 1 (b) displays the desired clustering output. This result is

achieved by selecting the backbone C atom of the middle monomer of the hydrophobic block.

Since the hydrophobic block tightly interacts with those of other polymers in the micelle,

picking atoms within this domain is a reasonable selection. On the other hand, Figure 1

(c) shows the clustering performed for the same system but picking atoms at the end of the

hydrophilic blocks. The hydrophilic atoms at the end of the polymer chains are not suitable

choices for clustering and as such, the clusters obtained do not reflect the formation of two

micelles.

Apart from selecting atoms, users must also specify a cutoff distance for clustering. This

distance determines whether two molecules belong to the same cluster. The cutoff distance

might be obtained from the radial distribution function (RDF) of the selected atoms (either

the position of the RDF maximum or first minimum). The lack of a single clear choice for the

4

https://doi.org/10.26434/chemrxiv-2024-1lbpg ORCID: https://orcid.org/0000-0003-1028-4804 Content not peer-reviewed by ChemRxiv. License: CC BY 4.0

https://doi.org/10.26434/chemrxiv-2024-1lbpg
https://orcid.org/0000-0003-1028-4804
https://creativecommons.org/licenses/by/4.0/

(a) (b) (c)

Figure 1: Atom selection strongly influences the results of SCP clustering. (a)
Triblock hydrophilic terminated polymer system to cluster. (b) SCP algorithm applied on the
system in (a) picking the middle hydrophobic monomer C atoms for the clustering. Polymers
with the same color belong to the same cluster outputted by the algorithm. Clearly, the
clustering here is done correctly. (c)SCP algorithm applied on the system in (a) picking
the ending hydrophilic atoms. Polymers with the same color belong to the same cluster
outputted by the algorithm. It is evident that the clustering is done badly when these atoms
are used. The ending hydrophilic monomers do not play a key role in the intermolecular
interactions with other polymers during the self-assembly of the micelle, so they are not good
clustering candidates.

cutoff distance is caused by the complex structures of self-assembled structures compared to,

for examples, ions in solutions (i.e., the system is inherently not well-mixed). It is necessary

to consider a range of cutoff distances, in our experience typically investigating a range

of cutoffs between 8 Å and 13 Å is useful. Visual inspection of the resulting clusters

determines the most appropriate cutoff distance straightforwardly in most cases. As well as

soft matter, the SCP algorithm can be readily applied to biological systems, highlighting its

broad applicability. For example, Figure 2 shows the result of applying the SCP algorithm

to a coarse-grained protein simulation to measure the aggregation of the transmembrane

domains of a protein within a lipid bilayer.

Unwrapping Nanoparticles Across PBC. When soft matter self assembles, the

nanoparticle that is formed can often be found to span the more than half the length of the

simulation box in at least one dimension. In order to accurately analyse the nanoparticle and

its environment, it is necessary to accurately represent the location of all of the molecules

that make up the nanoparticle while accounting for periodic boundary conditions. Various

tools have been implemented elsewhere, which can accurately reconstruct the position of

molecules across the periodic boundary conditions (PBC) but fail to do so when structures

5

https://doi.org/10.26434/chemrxiv-2024-1lbpg ORCID: https://orcid.org/0000-0003-1028-4804 Content not peer-reviewed by ChemRxiv. License: CC BY 4.0

https://doi.org/10.26434/chemrxiv-2024-1lbpg
https://orcid.org/0000-0003-1028-4804
https://creativecommons.org/licenses/by/4.0/

Figure 2: SCP applied to a CG protein simulation to measure peptide aggregation.
Since the input needed to run this tool is not exclusive to polymers, it can be applied to
any other type of system to measure molecular clustering. In this case, this is the result of
the SCP being applied on CG transmembrane peptides inserted into a membrane. This is a
top-view of the peptides-membrane system. Proteins colored in the same way belong to the
same cluster. Blue cluster contains two peptides, the pink cluster has 6 peptides and the
orange cluster has 8 peptides. The lipids membrane is colored in silver. Representation is
not to scale.

(or indeed molecules) span more than half of the simulation box size in a given dimension.

The make_micelle_whole tool in PySoftK is able to successfully position the molecules

within a self-assembled aggregate if it spans one or more dimensions of the simulation box

and if the aggregate is larger than a half of the length of the simulation box in one or

more dimensions. Figure 3 (a) shows a polymer micelle that has spanned the simulation

box in at least two dimensions.Figure 3 (b) shows the effectiveness of the PySoftK tool

make_micelle_whole, which is able to successfully reconstruct the micelle in Figure 3 (a) On

the other hand, Figures 3 (c) and (d) demonstrate that MDAnalysis v2.5 and GROMACS

2023, respectively, are not able to reconstruct an accurate structure of the micelle using

the same input as files as PySoftK’s implementation of make_micelle_whole. Our algorithm

6

https://doi.org/10.26434/chemrxiv-2024-1lbpg ORCID: https://orcid.org/0000-0003-1028-4804 Content not peer-reviewed by ChemRxiv. License: CC BY 4.0

https://doi.org/10.26434/chemrxiv-2024-1lbpg
https://orcid.org/0000-0003-1028-4804
https://creativecommons.org/licenses/by/4.0/

(a) (b) (c) (d)

Figure 3: Effect of make_micelle_whole on structure that is greater than half the box
length. Trying to make the micelle in (a) which is broken across the PBC and that is greater
than half the box length in one dimension using (b) make_micelle_whole (c) MDAnalysis
transformation (d) GROMACS 2023 gmx trjconv -pbc mol command. It is clear that only
the PySoftK analysis tool make_micelle_whole is able to properly make the micelle whole
across the PBC even if one of its dimensions is greater than half the box length.

offers a more reliable and robust reconstruction of structures disrupted by periodic boundary

conditions, while streamlining the user’s workflow and minimizing the required input.

Failing to accurately reproduce structures across the PBC can lead to inconsistencies in

the analysis and interpretation of soft matter systems.22 In contrast, the PySoftK make_micelle_whole

tool is able to accurately represent the coordinates of molecular structures which span the

PBC, even if their size is greater than half the box size. More details about this algorithm

are described in the ESI. Therefore, make_micelle_whole provides an accurate representation

of the system, which ensures that any physical properties of the self-assembled structure and

its environment is calculated correctly. For example, certain functions of MDAnalysis, such

as radius_of_gyration() or moment_of_inertia(), may produce erroneous results when applied

to molecules and aggregates that span at least a single dimension, leading to artefacts in

the simulation analysis. For instance, Figure 4 shows the difference between using solely

the MDanalysis radius_of_gyration(pbc=True) function (Figure 4 (b)) and the MDanalysis

radius_of_gyration() function applied on the whole structure created by make_micelle_whole

(Figure 4 (c)) of the micelle depicted in Figure 4 (a). From Figure 4 (b), it is clear that MD-

Analysis with the pbc=True parameter is not able to take the periodic boundary conditions

into account correctly for the micelle, which leads to erroneous radius of gyration values.

7

https://doi.org/10.26434/chemrxiv-2024-1lbpg ORCID: https://orcid.org/0000-0003-1028-4804 Content not peer-reviewed by ChemRxiv. License: CC BY 4.0

https://doi.org/10.26434/chemrxiv-2024-1lbpg
https://orcid.org/0000-0003-1028-4804
https://creativecommons.org/licenses/by/4.0/

(a) (b) (c) (d)

Figure 4: Effect of make_micelle_whole on the calculation of the radius of gyration.
Result from running native MDAnalysis radius_of_gyration() on the system when broken
across the PBC as depicted in (a) with (b) pbc=True MDAnalysis option and (c) on the whole
coordinates obtained with make_micelle_whole. It is clear that the radius_of_gyration(pbc=

True) implementation cannot take PBC effects properly into account during the radius of
gyration calculation. (d) Snapshot of the micelle made whole with the diameter indicated.
Representation is not to scale.

However, Figure 4 (c) shows that when this same function radius_of_gyration() is applied

on the whole coordinates obtained with make_micelle_whole the radius of gyration is properly

calculated.

Auxiliary Functions. We have included a number of smaller functions to perform

simple analysis tasks in a unified way. These are briefly described below.

Radius of Gyration. This function allows the user to easily calculate the radius of gyration

of a structure that is not always formed by the same molecules throughout the simulation.

It utilises the MDAnalysis function radius_of_gyration(pbc=True), but allows users to specify

the atom positions and their corresponding resids on which to perform this calculation at

each time step. Figure 4 shows the comparison between using the MDAnalysis radius of

gyration function alone compared to the PySoftK rgyr, which captures the right radius of

gyration of the micelle when computed on the whole coordinates from make_micelle_whole.

Eccentricity. Eccentricity, a metric quantifying a structure’s deviation from a perfect

sphere, serves as a useful tool for assessing the shape of spherical-like soft matter aggre-

gates. The ecc tool calculates the eccentricity for any molecular structure by leveraging the

MDAnalysis function moment_of_inertia() and employing the following formula:

8

https://doi.org/10.26434/chemrxiv-2024-1lbpg ORCID: https://orcid.org/0000-0003-1028-4804 Content not peer-reviewed by ChemRxiv. License: CC BY 4.0

https://doi.org/10.26434/chemrxiv-2024-1lbpg
https://orcid.org/0000-0003-1028-4804
https://creativecommons.org/licenses/by/4.0/

(a) (b) (c)

Figure 5: Eccentricity calculation of polymer micelle. Calculation of the eccentricity
of a micelle solving Equation 1 over time with (a) only MDAnalysis moment_of_inertia() and
(b) PySoftK ecc function. It is clear that ecc can easily use the correct polymers belonging
to the cluster at each time step and the correct atom positions across the PBC to compute
the eccentricity values, while the MDAnalysis function on its own, even with pbc=True is not
able to compute them properly. (c) Snapshot of the micelle on which the eccentricity is
being calculated, clearly it is slightly spherical, so the values from (b) are the correct ones.
The micelle representation is not to scale.

ϵ = 1 − Imin

Imean

(1)

where ϵ is the eccentricity value, Imin is the minimum moment of inertia across all axis of

the molecule(s), and Imean is the mean moment of inertia over all axis of the molecule(s). A

perfect sphere corresponds to ϵ = 0, while increasing values indicate more oblong structures.

Similar to the rgyr calculation, the ecc tool can account for varying number of molecules

within the structure and by using the coordinates of the micelle having been corrected by

make_micelle_whole as input, it ensures accurate calculations without artefacts from PBC.

Figure 5 illustrates how ecc accurately computes the eccentricity of a micelle over time

compared to the MDAnalysis strategy, since it uses the correct coordinate reconstruction

across the PBC.

Spherical Density. Understanding the internal distribution of components within

self-assembled aggregates is essential for characterizing their structure. For soft-matter ag-

gregates that are approximately spherical, the density of their various components and its

environments can be calculated with reference to the aggregate’s center of mass (‘spherical

9

https://doi.org/10.26434/chemrxiv-2024-1lbpg ORCID: https://orcid.org/0000-0003-1028-4804 Content not peer-reviewed by ChemRxiv. License: CC BY 4.0

https://doi.org/10.26434/chemrxiv-2024-1lbpg
https://orcid.org/0000-0003-1028-4804
https://creativecommons.org/licenses/by/4.0/

density’). There are numerous MD studies that measure the density of components of poly-

mer micelles using this approach,12,23,24 but there are limited open-sourced codes that can be

used to carry out such analysis. The PySoftK spherical_density tool allows users to easily

calculate the spherical density over time, even for structures with varying molecule numbers

throughout the simulation. It computes the average density (over time) with respect to the

distance from the center of mass of the molecular structure. This is achieved by dividing up

the simulation space into spherical bins with reference to the origin at the center of mass of

the aggregate. For each of these bins, the number of particles in them is counted and divided

by the volume of the bin. This calculation is described in Equation 2.

ρspherical bin =
nbeads

4
3
π(R3

out −Rin
3)

(2)

Where ρspherical bin is the spherical density of a particular bin, nbeads is the number of beads

in the same bin, Rout is the outer bin radius (the upper bound of the bin) and Rin is the

inner bin radius (the lower bound of the bin). Therefore, the output of the spherical_density

tool is a Numpy array with the average spherical density values across time for each bin.

Furthermore, it is worth noting that this algorithm can handle the calculation of spherical

density of an aggregates with varying number of molecules for each time step.

Additionally, the spherical_density_water class provides a customized version of this al-

gorithm to investigate only the water density. It is a separate function because to properly

calculate the distances of water with respect to the center of mass of the soft-matter ag-

gregate, the water coordinates need to be wrapped around the coordinates of the aggregate

while correctly making it whole through the periodic boundary conditions. Since this process

is computationally more expensive, a different class was developed which works in exactly

the same way as the spherical_density function, but the atom names of the solvent need to

be inputted by the user. For water density calculations, only the oxygen atoms need to be

selected.

10

https://doi.org/10.26434/chemrxiv-2024-1lbpg ORCID: https://orcid.org/0000-0003-1028-4804 Content not peer-reviewed by ChemRxiv. License: CC BY 4.0

https://doi.org/10.26434/chemrxiv-2024-1lbpg
https://orcid.org/0000-0003-1028-4804
https://creativecommons.org/licenses/by/4.0/

Intrinsic Density. If an aggregate does not have a smooth interface or surface, then

spherical density approaches are not suitable for accurately determining the density of the

molecular constituents of the aggregates and those surrounding it. For these cases, intrinsic

interface techniques have been previously employed to analyse the distribution of components

within such irregular structures.25 A computational method that has been used to study the

intrinsic density of polymer micelles with a distinct core-shell structure, is the intrinsic core-

shell interface method (ICSI).12,26 This approach divides the constituent molecules within a

molecular aggregate into the core and shell region with an intermediate region in between

these. The masses of the core and shell are determined, and the volumes of the core, shell,

and interface are calculated. The total density of the aggregate is then computed by dividing

the total mass by the sum of the volumes of the core, shell, and interface, which accounts for

the varying properties of the core and shell. PySoftK’s intrinsic_density class harnesses the

ICSI method to perform intrinsic density calculations. PySoftK’s implementation enables

seamless processing of the entire reconstructed coordinate set provided by make_micelle_whole

. Also, it can handle varying numbers of molecules constituting the structure of interest at

each time step. The usage of this function closely resembles that of the spherical density

function. Additionally, there is a intrinsic_density_water class for the computation of the

intrinsic density of water.

The intrinsic_density class outputs a NumPy array with the average densities (over time)

with respect to the distance to the core-shell interface, where a distance of 0 represents the

location of this interface. It also outputs another NumPy array with the values of the bins

used in the density calculation. Figure 6 shows density calculations of the same system

using the spherical density tool and intrinsic density tool respectively. It can be seen that

PySoftK spherical density tools output the density as a function of the distance from the

center of mass of the aggregate(Figure 6 (a)), while the intrinsic density outputs the density

as a function of the distance from the core-shell interface (Figure 6 (b)). Therefore, negative

distance values in the intrinsic density represent atoms within the core. Given the spherical

11

https://doi.org/10.26434/chemrxiv-2024-1lbpg ORCID: https://orcid.org/0000-0003-1028-4804 Content not peer-reviewed by ChemRxiv. License: CC BY 4.0

https://doi.org/10.26434/chemrxiv-2024-1lbpg
https://orcid.org/0000-0003-1028-4804
https://creativecommons.org/licenses/by/4.0/

(a) (b)

Figure 6: Density calculation comparison. Density calculation of a spherical micelle
formed by PEO-PMA polymers using: (a) spherical_density (b) intrinsic_density. The
results are very similar, since the micelle is spherical and has a clear core-shell interface.
Therefore, in this case both methods can be used to determine the distribution of components
within the micelle.

shape of the micelle, both density methods yield similar results.

Molecular-scale interaction analysis

This section describes the tools that we have developed to analyze different intermolecular

interactions that play important roles in the self-assembly of soft matter. This includes

calculations of the contacts between molecules, ring stacking interactions, and solvent inter-

actions.

Contact map calculations. Quantifying intermolecular interactions is vital to under-

stand the mechanisms that drive molecular-scale phenomena. By determining which parts of

two different types of molecules are in contact with each other, one can then perform a more

detailed analysis of the specific types of interactions (e.g. hydrogen bonding, ionic interac-

tions, ring-ring stacking) present in the system. The contacts tool calculates the contacts

between molecules by measuring the distance between selected atoms. If the intermolecular

distance between two selected atoms is less than a user-defined cutoff, it is considered a con-

tact. The values of the distance cutoff used to characterise the interactions of different types

of molecules will vary, and can be determined from radial distribution functions between

12

https://doi.org/10.26434/chemrxiv-2024-1lbpg ORCID: https://orcid.org/0000-0003-1028-4804 Content not peer-reviewed by ChemRxiv. License: CC BY 4.0

https://doi.org/10.26434/chemrxiv-2024-1lbpg
https://orcid.org/0000-0003-1028-4804
https://creativecommons.org/licenses/by/4.0/

(a) (b)

Figure 7: Normalized contacts output. (a) Snapshot of two cyclic polymer within a
micelle that are in contact. The inter-molecular distance of atoms in the black rectangular
box is 7 Å. These inter-molecular interactions would be picked up by the contacts algorithm
as contacts. (b) Output of the calculation of the intermolecular contacts of PEO-PMA
polymers forming a micelle. The output matrix is represented as a heatmap. From here it
is clear that the rows and columns represent the contact groups of the calculation.

the specific atoms of the two molecules used in the calculation or through an analysis of the

minimum distance between these atoms on two molecules that are known to have aggregated

during the simulation. Values of the distance cutoff have been found to be between 4 Å and

7 Å as shown elsewhere.16,27,28 A visual representation of intermolecular contacts between

two poly(ethylene oxide) (PEO) - poly(methyl acrylate) (PMA) polymers within a micelle

is shown in Figure 7 (a). The contacts class can utilize the output of the make_micelle_whole

tool as an input. This ensures that the distances between atoms within the molecules are

calculated correctly when accounting for the periodic boundary effects within the system.

Figure 7 (b) shows a heatmap representation of the normalized matrix generated by contacts,

which shows the intermolecular EO-MA interactions of PEO-PMA polymers.

Ring Stacking Analysis . Ring stacking interactions are the driving force behind

many collective phenomena ranging from DNA base pairing,29 protein-drug binding,30 and

through-space charge transfer in conjugated polymers.31 A class to identify ring-ring inter-

actions has been developed for PySoftK v1.0. Note that the software ProLIF32 can also

calculate ring stacking interactions, but it is specific to protein-ligand systems, while the

tool implemented in PySoftK v1.0. can be applied to any soft matter system. PySoftK’s

13

https://doi.org/10.26434/chemrxiv-2024-1lbpg ORCID: https://orcid.org/0000-0003-1028-4804 Content not peer-reviewed by ChemRxiv. License: CC BY 4.0

https://doi.org/10.26434/chemrxiv-2024-1lbpg
https://orcid.org/0000-0003-1028-4804
https://creativecommons.org/licenses/by/4.0/

rin-ring interaction algorithm consists of three stages; firstly, all atoms belonging to aromatic

(conjugated) rings within the chosen molecules (or parts of molecules) are detected. Sec-

ondly, pairs of molecules within the system are screened using a cutoff to define molecules

(or parts of molecules) in close contact. Finally, those molecules (or parts of molecules)

which are found to be in contact are selected to have the necessary geometrical properties

between their aromatic units calculated. The algorithm is explained in detail in the SI. The

RSA class allows users to identify ring stacking patterns within a simulation and calculate

the network formed by the stacking interactions and their evolution over time. This tool

implemented in PySoftK 1.0 enables the user to perform this analysis based on minimal

input parameters. These input parameters are: the maximum distance cutoff between two

rings for which the ring stacking is calculated, the angle cutoff used to determine the range

for which two rings are considered to be stacked, the frames on which to run the analysis and

the output file name. Default values adopted are a distance cutoff of 10 Å and an angular

cutoff of 20◦. This algorithm has been tested on amorphous F8BT (see Figure 8 (a)) and

the protein-potein interaction complex formed between TREM2 and DAP12 (see Figure 8

(b)).

Solvation Analysis. Solvation analysis plays a crucial role in understanding the

structure and dynamics of amphiphilic soft matter. This analysis allows us to quantify the

solvation cells around molecules, and to predict hydrophobic interactions.16,33 Currently,

there is no readily available open-source software that simplifies solvation calculations in

this context, and that can be used in any soft-matter system. MDAnalysis has the class

MDAnalysis.analysis.waterdynamics, but it focuses on the dynamics of water and the interac-

tions of water with other molecules via hydrogen bonds. PySoftK’s solvation class provides

a straightforward method for quantifying solvation by determining the number of solvent

molecules within the first solvation shell of the specified molecules. In doing so, PySoftK will

identify the solvent molecules that are hydrogen-bonded to a particular part of a molecule,

as well as any that might be attracted via other types of interactions (e.g. electrostatic,

14

https://doi.org/10.26434/chemrxiv-2024-1lbpg ORCID: https://orcid.org/0000-0003-1028-4804 Content not peer-reviewed by ChemRxiv. License: CC BY 4.0

https://doi.org/10.26434/chemrxiv-2024-1lbpg
https://orcid.org/0000-0003-1028-4804
https://creativecommons.org/licenses/by/4.0/

(a) (b)

Figure 8: Example of ring-ring stacking calculation using the RSA class on (a) a
polymer melt and (b) on the TREM12 and DAP12 protein. In (a) the RSA is able to
obtain ring stacking in complicated and large system. The purple arrow points to a subset
of polymers interacting in the amorphous phase via ring stacking. This cluster has been
identified with the RSA tool. (b) RSA applied to determine ring stacking events that drive
protein-protein interactions. TREM12 is shown in pink and DAP12 in green. An observed
ring stacking interaction are denoted by the bold representation. Phosphate groups of the
membrane are colored in dark green. Representations are not to scale.

(a) (b)

Figure 9: Solvation calculation of polymer micelle. Average solvation of a diblock
BCP micelle. (a) Average over time of water coordination numbers for all monomers of
hydrophobic block. (b) Snapshot of the diblock polymer being studied. PMA in pink and
PEO in blue. Polymer representation is not to scale.

hydrophobic), and thus is a more general way of identifying the solvation of different parts

of molecules. Figure 9 shows the average solvation number calculated for all hydrophobic

MA monomers of a PEO-PMA polymeric micelle.

The solvation class operates similarly to the contacts class, where distances between

selected atoms of the molecules and specific solvent atoms are computed. If the distance is

15

https://doi.org/10.26434/chemrxiv-2024-1lbpg ORCID: https://orcid.org/0000-0003-1028-4804 Content not peer-reviewed by ChemRxiv. License: CC BY 4.0

https://doi.org/10.26434/chemrxiv-2024-1lbpg
https://orcid.org/0000-0003-1028-4804
https://creativecommons.org/licenses/by/4.0/

shorter than a user-defined cutoff, the selected atom in a molecule of interest is considered

to be solvated. The inputted cut-off distance can be used to represent a given solvation

shell of the molecule (e.g. first or second solvation shell) depending on what is of interest

to the user. When using water as the solvent, it is recommended to select just the oxygen

water atoms to speed up calculations. Consistent with the other tools in PySoftK v2.0, the

solvation code seamlessly handles the varying number of molecules and the correct atomic

coordinates at each time step.

Conclusion

Pysoftk v1.0 adds a complete standalone module for the analysis of soft matter systems. The

new module described in this paper provides a set of interconneced tools that are useful for

determining the physical properties of soft matter self-assembled aggregates as well as the

molecular-scale interactions that underlie such emergent behavior. One of the key features

of PySoftK v1.0 is that it properly accounts for periodic boundary conditions when deter-

mining the positions of atoms within the molecules that make up a soft matter aggregate,

particularly if the aggregate is larger than half the size of the simulation box in one or mul-

tiple dimensions. Other software tools are not designed to account for molecular assemblies

of such size. A thorough set of tests have been created to cover all code to ensure its correct

functionality. Furthermore, PySoftK v1.0 is designed to provide maximum flexibility to the

user, so most functions output the data per outputted configuration of the trajectory, so

that the user can decide how to represent or further process the data. Although the initial

version of PySoftK has a particular focus on polymers, the analysis module has been created

such that it is fully chemically agnostic. The goal of this module is to create an open-source

platform that allows users to analyse complex structures, dynamics and interactions in their

simulations with minimal user input. PySoftK v1.0 contributes to the standardisation of

molecular-scale simulation analysis, which will promote accurate comparisons across differ-

16

https://doi.org/10.26434/chemrxiv-2024-1lbpg ORCID: https://orcid.org/0000-0003-1028-4804 Content not peer-reviewed by ChemRxiv. License: CC BY 4.0

https://doi.org/10.26434/chemrxiv-2024-1lbpg
https://orcid.org/0000-0003-1028-4804
https://creativecommons.org/licenses/by/4.0/

ent simulations to support the rational in silico design of new soft materials.

Acknowledgement

The authors thank the e-Research department at King’s College London for computational

resources.34 We are grateful to the UK Materials and Molecular Modelling Hub for com-

putational resources, which is partially funded by EPSRC (EP/T022213/1, EP/W032260/1

and EP/P020194/1). R. L.-R. D. C. acknowledges the support by the Biotechnology and

Biological Sciences Research Council (BB/T008709/1) via the London Interdisciplinary Doc-

toral Programme (LIDo). R. M. Z. and C. D. L. acknowledge the Engineering and Physical

Sciences Research Council (EPSRC) for funding (EP/V049771/1). For the purpose of open

access, the author has applied a Creative Commons Attribution (CC BY) licence (where

permitted by UKRI, ‘Open Government Licence’ or ‘Creative Commons Attribution No-

derivatives (CC BY-ND) public copyright licence’ may be stated instead) to any Author

Accepted Manuscript version arising.

Supporting Information Available

Theoretical explanations of Graph Theory in our implementation, concrete examples, and

PySoftK code snippets for hands-on practice are included in the ESI.

References

(1) Mitura, S.; Sionkowska, A.; Jaiswal, A. Biopolymers for hydrogels in cosmetics: review.

J. Mater. Sci.: Mater. Med. 2020, 31, 50.

(2) Ahmadi, D.; Ledder, R.; Mahmoudi, N.; Li, P.; Tellam, J.; Robinson, D.; Heenan, R. K.;

Smith, P.; Lorenz, C. D.; Barlow, D. J.; Lawrence, M. J. Supramolecular architecture

17

https://doi.org/10.26434/chemrxiv-2024-1lbpg ORCID: https://orcid.org/0000-0003-1028-4804 Content not peer-reviewed by ChemRxiv. License: CC BY 4.0

https://doi.org/10.26434/chemrxiv-2024-1lbpg
https://orcid.org/0000-0003-1028-4804
https://creativecommons.org/licenses/by/4.0/

of a multi-component biomimetic lipid barrier formulation. J. Colloid Interface Sci.

2021, 587, 597–612.

(3) Gupta, S.; Sharma, S.; Kumar Naada, A.; Saad Bala Husain, M.; Gupta, A. Biopoly-

mers from waste biomass and its applications in the cosmetic industry: A review. Mater.

Today: Proc. 2022, 68, 873–879.

(4) Kohli, A. G.; Kierstead, P. H.; Venditto, V. J.; Walsh, C. L.; Szoka, F. C. Designer

lipids for drug delivery: From heads to tails. J. Control. Release 2014, 190, 274–287.

(5) Chen, C. H.; Liu, Y.-H.; Eskandari, A.; Ghimire, J.; Lin, L. C.-W.; Fang, Z.-S.; Wim-

ley, W. C.; Ulmschneider, J. P.; Suntharalingam, K.; Hu, C.-M. J., et al. Integrated

Design of a Membrane-Lytic Peptide-Based Intravenous Nanotherapeutic Suppresses

Triple-Negative Breast Cancer. Advanced Science 2022, 9, 2105506.

(6) Ishkhanyan, H.; Rhys, N. H.; Barlow, D. J.; Lawrence, M. J.; Lorenz, C. D. Impact of

drug aggregation on the structural and dynamic properties of Triton X-100 micelles. J.

Mol. Liq. 2023, 385, 122376.

(7) Saaka, Y.; Allen, D.; Terry, A. E.; Lorenz, C. D.; Barlow, D. J.; Lawrence, M. J. Char-

acterisation of the apparent aqueous solubility enhancement of testosterone analogues

in micelles of dodecyl-chained surfactants with different headgroups. J. Mol. Liq. 2023,

385, 122376.

(8) Shah, A.; Shahzad, S.; Munir, A.; Nadagouda, M. N.; Khan, G. S.; Shams, D. F.;

Dionysiou, D. D.; Rana, U. A. Micelles as Soil and Water Decontamination Agents.

Chemical Reviews 2016, 116, 6042–6074.

(9) Srinivas, G.; Discher, D. E.; Klein, M. L. Self-assembly and properties of diblock copoly-

mers by coarse-grain molecular dynamics. Nature materials 2004, 3, 638–644.

18

https://doi.org/10.26434/chemrxiv-2024-1lbpg ORCID: https://orcid.org/0000-0003-1028-4804 Content not peer-reviewed by ChemRxiv. License: CC BY 4.0

https://doi.org/10.26434/chemrxiv-2024-1lbpg
https://orcid.org/0000-0003-1028-4804
https://creativecommons.org/licenses/by/4.0/

(10) Jorge, M. Molecular Dynamics Simulation of Self-Assembly of n-

Decyltrimethylammonium Bromide Micelles. Langmuir 2008, 24, 5714–5725.

(11) Wang, H.; Zhang, H.; Liu, C.; Yuan, S. Coarse-grained molecular dynamics simulation

of self-assembly of polyacrylamide and sodium dodecylsulfate in aqueous solution. J.

Colloid Interface Sci. 2012, 386, 205–211.

(12) Ziolek, R. M.; Omar, J.; Hu, W.; Porcar, L.; Gonzalez-Gaitano, G.; Dreiss, C. A.;

Lorenz, C. D. Understanding the pH-directed self-assembly of a four-arm block copoly-

mer. Macromolecules 2020, 53, 11065–11076.

(13) Pink, D. L.; Foglia, F.; Barlow, D. J.; Lawrence, M. J.; Lorenz, C. D. The Impact of

Lipid Digestion on the Dynamic and Structural Properties of Micelles. Small 2021, 27,

2004761.

(14) Pink, D. L.; Loruthai, O.; Ziolek, R. M.; Terry, A. E.; Barlow, D. J.; Lawrence, M. J.;

Lorenz, C. D. Interplay of lipid and surfactant: Impact on nanoparticle structure. J.

Colloid Interface Sci. 2021, 597, 278–288.

(15) Bhendale, M.; Singh, J. K. Molecular Insights on Morphology, Composition, and Sta-

bility of Mixed Micelles Formed by Ionic Surfactant and Nonionic Block Copolymer

in Water Using Coarse-Grained Molecular Dynamics Simulations. Langmuir 2023, 39,

5031–5040.

(16) De Castro, R. L.-R.; Ziolek, R.; Lorenz, C. Topology-Controlled Self-Assembly of Am-

phiphilic Block Copolymers. 2023,

(17) Gartner III, T. E.; Jayaraman, A. Modeling and simulations of polymers: a roadmap.

Macromolecules 2019, 52, 755–786.

(18) Santana-Bonilla, A.; Lopez-Rios de Castro, R.; Sun, P.; Ziolek, R. M.; Lorenz, C. D.

19

https://doi.org/10.26434/chemrxiv-2024-1lbpg ORCID: https://orcid.org/0000-0003-1028-4804 Content not peer-reviewed by ChemRxiv. License: CC BY 4.0

https://doi.org/10.26434/chemrxiv-2024-1lbpg
https://orcid.org/0000-0003-1028-4804
https://creativecommons.org/licenses/by/4.0/

Modular Software for Generating and Modeling Diverse Polymer Databases. Journal

of Chemical Information and Modeling 2023,

(19) Sahu, H.; Shen, K.-H.; Montoya, J. H.; Tran, H.; Ramprasad, R. Polymer structure

predictor (psp): a python toolkit for predicting atomic-level structural models for a

range of polymer geometries. Journal of Chemical Theory and Computation 2022, 18,

2737–2748.

(20) Hayashi, Y.; Shiomi, J.; Morikawa, J.; Yoshida, R. RadonPy: automated physical prop-

erty calculation using all-atom classical molecular dynamics simulations for polymer

informatics. npj Computational Materials 2022, 8, 222.

(21) Summers, A. Z.; Gilmer, J. B.; Iacovella, C. R.; Cummings, P. T.; McCabe, C. MoSDeF,

a Python Framework Enabling Large-Scale Computational Screening of Soft Matter:

Application to Chemistry-Property Relationships in Lubricating Monolayer Films. J.

Chem. Theory Comput. 2020, 16, 1779–1793.

(22) Smith, P.; Lorenz, C. D. LiPyphilic: A Python toolkit for the analysis of lipid membrane

simulations. bioRxiv 2021,

(23) Kovacevic, M.; Balaz, I.; Marson, D.; Laurini, E.; Jovic, B. Mixed-monolayer functional-

ized gold nanoparticles for cancer treatment: Atomistic molecular dynamics simulations

study. Biosystems 2021, 202, 104354.

(24) Wilkosz, N.; Lazarski, G.; Kovacik, L.; Gargas, P.; Nowakowska, M.; Jamroz, D.;

Kepczynski, M. Molecular insight into drug-loading capacity of PEG–PLGA nanopar-

ticles for itraconazole. The Journal of Physical Chemistry B 2018, 122, 7080–7090.

(25) Sega, M.; Kantorovich, S. S.; Jedlovszky, P.; Jorge, M. The generalized identification

of truly interfacial molecules (ITIM) algorithm for nonplanar interfaces. The Journal

of chemical physics 2013, 138 .

20

https://doi.org/10.26434/chemrxiv-2024-1lbpg ORCID: https://orcid.org/0000-0003-1028-4804 Content not peer-reviewed by ChemRxiv. License: CC BY 4.0

https://doi.org/10.26434/chemrxiv-2024-1lbpg
https://orcid.org/0000-0003-1028-4804
https://creativecommons.org/licenses/by/4.0/

(26) Ziolek, R. M.; Smith, P.; Pink, D. L.; Dreiss, C. A.; Lorenz, C. D. Unsupervised learning

unravels the structure of four-arm and linear block copolymer micelles. Macromolecules

2021, 54, 3755–3768.

(27) Ulmschneider, M. B.; Doux, J. P.; Killian, J. A.; Smith, J. C.; Ulmschneider, J. P.

Mechanism and kinetics of peptide partitioning into membranes from all-atom simula-

tions of thermostable peptides. Journal of the American Chemical Society 2010, 132,

3452–3460.

(28) Sun, X.; Feng, Z.; Hou, T.; Li, Y. Mechanism of graphene oxide as an enzyme inhibitor

from molecular dynamics simulations. ACS applied materials & interfaces 2014, 6,

7153–7163.

(29) Kool, E. T. Hydrogen bonding, base stacking, and steric effects in DNA replication.

Annual review of biophysics and biomolecular structure 2001, 30, 1–22.

(30) Liu, Y.; Liu, B.-Y.; Hao, P.; Li, X.; Li, Y.-X.; Wang, J.-F. π–π Stacking mediated

drug–drug interactions in human CYP2E1. Proteins: Structure, Function, and Bioin-

formatics 2013, 81, 945–954.

(31) Schwartz, B. J. Conjugated polymers as molecular materials: How chain conforma-

tion and film morphology influence energy transfer and interchain interactions. Annual

review of physical chemistry 2003, 54, 141–172.

(32) Bouysset, C.; Fiorucci, S. ProLIF: a library to encode molecular interactions as finger-

prints. Journal of Cheminformatics 2021, 13, 72.

(33) Jafari, M.; Doustdar, F.; Mehrnejad, F. Molecular self-assembly strategy for encapsu-

lation of an amphipathic α-helical antimicrobial peptide into the different polymeric

and copolymeric nanoparticles. Journal of chemical information and modeling 2018,

59, 550–563.

21

https://doi.org/10.26434/chemrxiv-2024-1lbpg ORCID: https://orcid.org/0000-0003-1028-4804 Content not peer-reviewed by ChemRxiv. License: CC BY 4.0

https://doi.org/10.26434/chemrxiv-2024-1lbpg
https://orcid.org/0000-0003-1028-4804
https://creativecommons.org/licenses/by/4.0/

(34) King’s College London (2022). King’s Computational Research, Engineering and Tech-

nology Environment (CREATE). https://doi.org/10.18742/rnvf-m076.

22

https://doi.org/10.26434/chemrxiv-2024-1lbpg ORCID: https://orcid.org/0000-0003-1028-4804 Content not peer-reviewed by ChemRxiv. License: CC BY 4.0

https://doi.org/10.18742/rnvf-m076
https://doi.org/10.26434/chemrxiv-2024-1lbpg
https://orcid.org/0000-0003-1028-4804
https://creativecommons.org/licenses/by/4.0/

TOC Graphic

23

https://doi.org/10.26434/chemrxiv-2024-1lbpg ORCID: https://orcid.org/0000-0003-1028-4804 Content not peer-reviewed by ChemRxiv. License: CC BY 4.0

https://doi.org/10.26434/chemrxiv-2024-1lbpg
https://orcid.org/0000-0003-1028-4804
https://creativecommons.org/licenses/by/4.0/

