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Abstract 

Utilization of biomass to feedstock chemical relies on transforming hydroxyl containing 

molecules, as the hydroxyl group is found on the backbone of bio-molecules. For example, 

glycerol can undergo a hydro-deoxygenation reaction to produce propanediol, a valuable 

chemical precursor. This reaction captures the complexity and challenges of modelling surface-

reactivity of flexible organic molecules in heterogenous catalysis, where surface intermediates 

can have many configurations. High computational costs of Density Functional Theory(DFT) 

restrict exhaustive exploration of the factorial reaction space, leading to having limited insights 

of the hydrodeoxygenation mechanism and hindering rational catalyst design. We deploy a 

Machine-Learned-Force-Field (MLFF) driven approach to elucidate the complex reaction 

network involved in the hydro-deoxygenation of glycerol on Cu(111). We present the bond 

cleavage activity ranking order for glycerol, and other intermediates and identify reaction 

pathways resulting in 1,2-PDO formation while highlighting indications of its higher selectivity 

over 1,3-PDO. This investigation delivers a comprehensive exploration of the transformation 

process from glycerol to propanediol, addressing the existing knowledge deficit through an 

advanced active-learning based MLFF approach. Notably, following a mere four iterations, our 

trained MLFF model accurately discerns 26 transition-states reconfirmed with DFT with root-

mean-squared-error of 0.056 eV (0.74 meV/atom total-energy) embedded within network of 

seven competitive pathways. 

1. Introduction 

Glycerol (propane-1,2,3-triol) is the 

main by-product of transesterification of 

triglycerides from biomass feedstocks to 

form biodiesel[1] and from soap 

production.[2] Due to its abundance and low 

cost, glycerol’s upcycling to other value-

added products such as propane-diol (PDO) 

has increasingly become an incentivized 

reaction for large-scale commercial 

process.[3] For that reason, 

hydrodeoxygenation (HDO) reaction to 

convert glycerol into PDO is  an important 

research topic. The two isomeric products, 

1,2-Propanediol (1,2-PDO) and 1,3-

Propanediol (1,3-PDO) are both 

industrially relevant. 1,2-PDO is used as a 

raw material in polyester resin 

manufacturing.[4] Additionally, it serves as 

a precursor for D-lactic acid, a valuable 

chiral building block utilized in the 

asymmetric synthesis of D-amino acids[5], 

as well as in several other applications. 1,3-

https://doi.org/10.26434/chemrxiv-2024-34mq8 ORCID: https://orcid.org/0000-0001-8434-3497 Content not peer-reviewed by ChemRxiv. License: CC BY-NC 4.0

https://doi.org/10.26434/chemrxiv-2024-34mq8
https://orcid.org/0000-0001-8434-3497
https://creativecommons.org/licenses/by-nc/4.0/


   

 

2 
 

PDO, on the other hand, is a primary 

ingredient in the manufacturing process of 

poly trimethylene terephthalate,[5] a 

polymer exhibiting properties of 

polyethylene terephthalate.[6]   Currently, 

1,2-PDO is synthesized by hydrating 

propylene oxide, whereas 1,3-PDO is 

synthesized either by hydroformylation and 

subsequent hydrogenation of ethylene 

oxide or by fermentation of glucose. The 

former requiring harsh conditions or 

expensive catalysts,[7] the latter requiring 

glucose feed quality tolerated by the 

bacteria. 

Researchers have explored a wide range 

of metallic catalysts, such as Cu,[8] Ru,[9] 

Pd,[10] Rh,[10] and Pt,[11] on various supports 

for glycerol HDO reaction. Among all, Cu-

based catalysts have gained higher interest 

due to their low cost, good performance and 

stability in gas phase reaction condition. In 

2011, Bienholz and Claus,[12] demonstrated 

87% activity of glycerol conversion to 68% 

acetol and 18% 1,2-PDO over Cu/SiO2 

surface. In 2009, Akiyama et. al.,[13] 

improved the efficiency of glycerol HDO 

process to achieve 100% activity and 78% 

selectivity to 1,2-PDO on Cu/Al2O3 by 

altering the H2 flow rate and increasing the 

reaction temperature to 200 ℃. In 2015, 

Harisekhar et. al.,[14] found that reducing Cu 

loading from 20 wt% to 5 wt% on 

Mesoporous silica increased the conversion 

of glycerol to 1-2PDO by 63%. Other 

studies have also focused on altering Cu-

based catalysts, and reaction conditions to 

improve the selectivity of glycerol HDO to 

1,2-PDO.[15] 

Despite many experimental 

investigations delving into the development 

of a highly efficient and selective 

commercial Cu-based catalyst, rational 

design is hampered by the lack of progress 

made in understanding the HDO reaction 

mechanism of glycerol to 1,2-PDO. 

Glycerol with its flexible carbon backbone, 

has many energy-equivalent reactant 

conformers which can initialize the 

deoxygenation process.  

The usual process of expert knowledge 

driven modelling workflows, highly based 

on human-mediated enumeration of various 

reaction and reactant possibilities, is both 

laborious, time-consuming, and has the risk 

of introducing human bias. Consider 

glycerol, which has 11 potential reactive 

bonds that must be accounted for when 

constructing a reaction network: two 

Figure 1: Proposed reaction mechanisms for glycerol deoxygenation to propane-diol (PDO). 
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primary C-O bonds, one secondary C-O 

bond, four primary C-H bonds, one 

secondary C-H bond, two primary O-H 

bonds, and one secondary O-H bond. Each 

of these bonds can initiate the 

deoxygenation process in the glycerol 

molecule (see Figure 1). Systematic high 

throughput exploration, though highly 

desired, has been fundamentally limited 

due to the high cost of ab-initio simulations 

namely Density functional theory (DFT) for 

each step, with number of steps quickly 

increasing due to combinatorial effects.  

Glycerol deoxygenation can occur 

through several pathways, as shown in 

Figure 1: (1) a two-step direct HDO process 

(P1 and P7 pathway),[16] (2) dehydration to 

enol and tautomerization to either 

hydroxyacetone or 3-

hydroxypropionaldehyde, followed by 

hydrogenation to PDO (P2 and P6 

pathway)[17], and (3) dehydrogenation to 

either glyceraldehyde or dihydroxyacetone, 

followed by dehydration and hydrogenation 

(as illustrated in P3, P4 and P5 of Figuer 

1)[18]. These pathways are generally 

accepted in the scientific community, as the 

presence of glyceraldehyde and 

hydroxyacetone has been observed during 

experimental studies of glycerol HDO on 

metal catalysts.[19] 

There have been multiple research 

studies that have used ab-initio calculations 

to delve into the reaction mechanism of 

glycerol HDO, leading to differing 

outcomes. For instance, Jianfeng et al.,[20] 

used DFT simulations and reported the 

direct formation of 1,2-PDO from glycerol 

through primary OH cleavage followed by 

hydrogenation on the Cu(111) surface. 

Conversely, Xi et al.,[17] reported a lower 

energy barrier for primary C-H and O-H 

dissociation, suggesting a pathway 

involving glyceraldehyde for 1,2-PDO 

formation from glycerol on Cu(111)) as 

well. In another study, Weiming et al.,[3] 

reported that acetol formation occurred 

directly through multiple elementary steps 

on a 2D Cu cluster, supported on Mo2C 

(0001).  

These examples highlight a significant 

limitation of traditional approaches, where 

ab-initio calculations are the only workable 

tool: the severe under-sampling of the 

heterogeneously catalyzed reaction 

intermediates. This limitation is primarily 

due to the associated high costs and long 

execution times. Unfortunately, unlike the 

field of homogenous catalysis involving 

only (non-periodic) organic molecules 

where semi empirical methods[21] like 

Extended tight-binding (XTB)[22] can 

perform reasonably well, no generally 

reliable alternatives exist for heterogenous 

catalysis. The absence of studies comparing 

all competing reaction pathways for 

glycerol HDO on a Cu surface limits our 

present understanding of the key reaction 

steps that impact the activity of the catalytic 

surface significantly. This study aims to 

address this challenge by developing a 

Machine Learning Forcefield (MLFF)[23,24] 

with MACE: a higher-order equivariant 

message-passing neural network 

architecture combined with further 

development built on top of previously 

reported active learning protocols that 

iteratively improve the prediction accuracy 

of reaction intermediates and pathways, 

learning from reference DFT based 

calculations. 

In the present work, our objective is to 

address the constraints of conventional 

DFT simulations by harnessing the benefits 

of MACE MLFF to analyze glycerol HDO 

to PDO on the Cu (111) surface. Our 

methodology in this context is to illustrate 

how current technology can be applied in an 

industrial research scenario, where 

achieving the ultimate scientific objective 

within tight timeline boundaries, without 

sacrificing the reliability of predictions is of 

highest concern. Therefore, the aim was not 

to build a minimal training set or spend 

resources to optimize the MLFF to squeeze 

out the last ounce of performance.  

Consequently, we adopt a cautious 
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approach, permitting adequate redundancy 

in the generation of DFT training data and 

opt for frequent explicit DFT validation. 

With the orders of magnitude faster 

MLFF model, we could successfully delve 

into an extensive spectrum of glycerol 

conformers and reaction pathways, 

employing a blend of automated techniques 

(where conformations of molecules and 

intermediary surrogates were initialized 

with rdkit and active sites enumerated using 

catkit python packages)[25,26] and human-

assisted methods for conformational and 

transition state exploration. Our ambition is 

to supplant the traditionally simplistic 

solution to the query of "what is the reaction 

mechanism?" with a more comprehensive, 

unbiased approach.  

2. Methods 

2.1. Active Learning 

A common strategy for fitting MLFF 

involves an iterative approach, where the 

training set is expanded according to the 

application requirements of the force 

field.[27–29] The training set, consisting of 

relevant configurations, is used to train the 

MLFF by comparing properties with a 

reference method like DFT. The fitted 

MLFF is then used to generate new 

configurations and predictions, which are 

validated against the reference method. If 

the predictions are unsatisfactory, in the 

absence of any relevant limitations of the 

ML framework or issues with the reference 

data, the primary assumption is that the 

model prediction is based on unreliable 

extrapolation. To “teach” the model the 

unseen region, those configurations are 

added to the training set and the training 

process is restarted or repeated until 

requirements are met.  

However, applying this strategy in 

heterogeneous catalysis for its complex 

reaction mechanisms is still challenging 

due to the lack of a reliable autonomous 

sampling strategy for reaction 

intermediates and transition states. We 

expand the previously developed method of 

active learning to scale up the traditional 

catalysis workflow,[30] where intermediates 

are proposed, verified by DFT relaxations, 

and transition states are searched based on 

these intermediates. We follow the steps: 

postulate the existence of numerous 

intermediates, compute energy and forces 

with single point DFT calculations- fit a 

MLFF- Optimize the postulated 

configurations or reaction pathways with 

MLFF - verify by DFT.  With limited 

human intervention, mechanistic 

implications are considered to generate new 

relevant configurations that are added to the 

training set. This iterative process continues 

until the emerging pathway converges to 

the desired accuracy threshold. 

2.2. Initial training data generation 

and base model building 

We specifically focused on a simple 

surface (Cu (111)). Starting with the 

previously reported [30] protocol of initial 

training-set design, our approach includes a 

carefully constructed set of relevant 

molecules, surface and bulk atomic 

structures. Additionally, we focus on 

maximizing diversity and ensuring an 

appropriate statistical distribution of force, 

energy, and stress values. Considering 

higher factor of complexity in the present 

reaction schemes, we took additional steps. 

We initiated a large set (~1000) of reaction 

intermediates to account for the intricacy 

involved in these reactions. This was done 

using a combined approach of automation 

and expert knowledge-driven hypothesis 

generation for the entire reaction scheme 

presented in figure 1. While current best 

practices in active learning approaches 

suggest starting with a small number of 

initial training data and prioritizing higher 

number of iterations to reduce the cost of 

reference DFT data generation. In an 

industrial research environment, we 

prioritize having a smaller number of 

iterations, which with present technological 

constraints, means the quickest way to 

reach the desired accuracy of the final 

MLFF model. We computed single-point 
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DFT data for 9906 configurations. This 

initial set should already include sufficient 

information to study the flexible backbone 

with multi-reactive groups of glycerol in a 

highly branched reaction network. The base 

model in iteration 1 was trained on only 

30% of randomly selected configurations 

and validated on the remaining 70%. This 

was sufficient to achieve moderate 

accuracy as noted in Table 1. The objective 

of this iteration was to get a sense of 

expected accuracy, identifying any issues 

with the reference data generation and 

getting ready for the required targeted data 

generation for next iterations. We use this 

model to curate, prune and generate small 

amounts of additional data, especially 

relevant for transition pathway exploration 

to build a training and validation data set 

having 6589 and 1967 entries respectively 

for iteration 2. 

2.3. Density Functional Theory 

simulations 

Single-point periodic DFT calculations 

were performed for selected configurations 

using the Quantum Espresso software 

package,[31] and the Perdew-Burke-

Ernzerhof (PBE)[32] exchange and 

correlation functional. Standard Solid-State 

Pseudopotentials (SSSP) [33] were 

employed to reduce the explicitly 

calculated orbitals to 1s of H; 2s and 2p of 

O and C and 3d, 4s, and 4p of Cu atoms. 

The Self-Consistent Field (SCF) cycle is 

converged when energy differences per 

electronic step are below 10-7 eV. The 

valence monoelectronic states were 

expanded as plain waves with a kinetic 

energy cutoff of 884 eV. Gaussian smearing 

with a width of 0.1 eV was applied. The 

density of k-points in reciprocal space was 

set to 0.25 Å-1 in the xy plane. The Cu 

catalyst was represented by (111) 

terminated slab consisting of 4x4x4 

primitive units with a lattice constant of 

3.61 Å. All slabs were separated by at least 

20 Å of vacuum. Each slab has 4 layers in 

total, from which the bottom 2 were fixed. 

2.4. ML training set-up 

A higher-order equivariant message-

passing neural network architecture, 

referred to as MACE[34,35] implemented in 

PyTorch[36] is employed to train a single 

Machine Learning Force Field (MLFF) that 

can describe all the reaction steps 

reported.[37,38] All models referred to in this 

work use two MACE layers, a spherical 

expansion of up to lmax = 3, and 4-body 

messages in each layer (correlation order 

3). All models use a 64-channel dimension 

for tensor decomposition. We use a radial 

cutoff of 6 Å and expand the interatomic 

distances into 10 Bessel functions 

multiplied by a smooth polynomial cutoff 

function to construct radial features, in turn 

fed into a fully connected feed-forward 

neural network with three hidden layers of 

64 hidden units, a shallow MLP for the 

second layer readout with 64 hidden units 

and SiLU non-linearities. We fit a model 

with the maximal message equivariance, L 

= 2. The irreducible representations of the 

messages have alternating parity (in e3nn 

notation 64x0e + 64x1o + 64x2e).  The final 

model is trained on a single NVIDIA A100 

(80GB) GPU over the last 3 iterations (fresh 

start from iteration number 2 and then 

always restart with new train data for 

additional epochs) for a total 400 epochs 

(~22 GPU hours).  

2.5. Model finetuning over three 

iterations 

Although we counted the base model 

building as iteration 1, the actual active 

learning started from iteration 2 onwards, 

Table 1: MACE MLFF active learning 

summary.  

 epochs  RSME E 

(meV/atom) 

RSME F 

(meV/Å) 

Iteration 1 600 
Training: 2972 2.8 20.4 

Validation: 6934 3.0 55.5 

Iteration 2 250 
Training: 6589 1.8 9.2 

Validation: 1967 0.9 21.0 

Iteration 3 +50 
Training: 9782 2.0 11.6 

Validation :1967 0.9 20.6 

Iteration 4 +100 
Training: 10373 1.7 10.2 

Validation: 1967 0.7 19.7 
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where a new model with the consolidated 

new training and validation set mentioned 

in the last section was used to start a model 

training from scratch for 200 epochs. The 

MLFF model is then applied to explore the 

reaction network and collect new train data 

following the principle described before, 

followed by explicit DFT calculations 

resulting in new training data. Iteration 3 

and 4 resume the training from the last 

checkpoints of the earlier iteration, 

expanding the training sets to 9782 and 

10373 respectively. The validation set was 

kept fixed throughout these 3 iterations. 

The summary of the results is indicated in 

Table 1. 

2.6. Applied Corrections 

2.6.1. Dispersion correction 

Long-range dispersion interactions (van der 

Waals, vdW), are crucial for describing the 

weak, long-range interactions between 

atoms. The additive property of vdW 

interactions is utilized in correction 

schemes such as DFT-D3[39] functioning as 

an interatomic potential which uses 

tabulated values of atomic polarizabilities 

to describe two-body (or three-body) 

dispersion interactions. This correction can 

be applied to DFT-computed 

configurations and to the MLFF, trained to 

PBE energies and forces. The same additive 

D3 dispersion correction (PyTorch[40] 

implementation) with a Becke-Johnson 

damping[41] is hence applied to DFT and 

MLFF calculations in the same manner and 

on the same footing. 

2.6.2. Thermodynamic 

correction 

Thermal effects on the full reaction 

network investigated in this work were 

addressed by performing MLFF vibrational 

calculations on the optimized structures 

(reactant/product and transition-state 

converged structures). Gibbs free energies 

were then calculated by computing the 

zero-point energy corrections, heat 

capacities at constant volume and entropy 

based on the resulted frequencies from the 

vibrational calculations, the harmonic 

approximation at temperatures of 473K 

(details are available in the SI-1). To 

evaluate the importance of such effects on 

adsorption, reaction and activation barriers, 

we first look at the secondary CH-scission 

reaction (Figure 5b, P2 pathway, first 

scission) from surface-bound glycerol 

(Gly*) to C3O3H7*. The energies, 

referenced to the clean slab and gas-phase 

species, of Gly* (before the barrier) change 

from ΔE=-1.55 eV to ΔG=-0.39 eV and 

reactant C3O3H7* (after the barrier) change 

from ΔE=-0.88 eV to ΔG=0.35 eV, yielding 

differences in reaction energies of 

ΔErxn=0.67 eV against ΔGrxn=0.74 eV. The 

intrinsic reaction barrier of the 

aforementioned example changes from ΔE‡ 

=1.24 eV to ΔG‡ =1.16 eV (difference of 

only 0.08 eV). Similarly, the energies of the 

secondary OH-scission reaction (Figure 5c, 

P3 pathway, first scission) are Δ𝐸𝐶3𝑂3𝐻7∗=-

1.72 eV against Δ𝐺𝐶3𝑂3𝐻7∗=-0.4 eV, resulting 

in ΔErxn=-0.17 eV against  ΔGrxn=-0.01 eV, 

whereas the intrinsic reaction barrier 

changes from ΔE‡ =1.07 eV to ΔG‡ =1.00 

eV. By comparing both secondary 

scissions, we observe that accounting for 

thermodynamic corrections has no 

pronounced effects on intrinsic energy 

barriers or reaction energy differences 

between intermediate species. This means 

that conclusions drawn concerning 

preferred reaction pathways or which 

barrier is rate limiting, will not depend on 

discussing ΔE or ΔG. However, accounting 

for such corrections has been proven to be 

important to report more realistic reaction 

energies referenced to the clean slabs and 

gas-phase species, for higher temperatures 

in particular, than reporting energies 

discarding entropic effects altogether. For 

this reason, energy profiles will be reported 

in terms of Gibbs free energies (ΔG) 

throughout this work except for cases 
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where comparison of ΔE is the only valid 

choice. 

2.7. Transition state calculations 

For all the relaxed elementary step 

reactant conformers, Nudged Elastic Band 

(NEB) simulations were set up between the 

reactants and products. Products for bond 

breaking reactions (for e.g., OH scission of 

glycerol (Figure 2)) were created in a way 

that the broken product (OH) is placed on 

the neighboring Cu surface site. The 

neighboring surface sites as position of the 

broken product were selected from sites 

(top, hollow or bridge) at maximum 

distance of 2 Å from the original site. 

  Once the final intermediate was 

relaxed, the NEB pathways were created 

between the reactant and intermediate with 

20 intermediate images using the idpp[42] 

method. For the bond association reactions 

(example hydrogenation of hydroxyacetone 

to 1,2-PDO), the reaction is set-up in the 

reverse order (the O-H scission of 1,2-

PDO), and the reverse activation barriers 

and reaction energies are computed using 

MLFF to find the minimum energy reaction 

pathways. Transition state scans were 

performed using the Dynamic Nudge 

Elastic Band (DyNEB) [43–46] method as 

implemented in the atomic simulation 

environment (ASE)[47] with a maximum 

force threshold (fmax) of 0.05 eV/Å. At 

least 5 refined TS structures with minimum 

activation barriers are further refined to a 

tighter convergence of fmax=0.02 eV/Å 

with Automated Relaxed Potential Energy 

Surface Scans (ARPESS)[48] method. 

Obtained TS structures were confirmed by 

performing vibrational calculations with 

the MLFF, ensuring an imaginary 

frequency at the reaction vibrational mode 

(SI-1). Connection points of a given 

transition state were reconfirmed using the 

Intrinsic Reaction Coordinate (IRC)[49] 

method.  

3. Results and Discussion 

In this study, we extensively 

investigated the isomeric structures of 

glycerol and the minimum energy path for 

glycerol primary C-OH bond scission on 

the Cu (111) surface in section 3.1. By 

comparing the reaction free energies 

(ΔGrxn) and activation free energy barriers 

(ΔGact) of the sampled surface 

intermediates for competing reactions, we 

identify the most likely mechanism for 

glycerol deoxygenation to 1,2-PDO 

(section 3.2). We highlight the crucial steps 

that drive the selectivity of the 

deoxygenation reaction towards 1,2-PDO 

over 1,3-PDO on the Cu (111) surface 

(section 3.3). The fact that the selectivity 

between these two products is determined 

by small changes in the energetic 

landscape, a high-level of prediction 

accuracy of approximately 0.05 eV in 

reaction energy (equivalent to <0.8 

meV/atom total energy accuracy) was 

necessary. To accurately predict these 

complex reactions, we utilized the state-of-

the-art MACE architecture, to train a MLFF 

which underwent iterative refinement. Only 

four iterations, following an active learning 

protocol (where reaction mechanism 

exploration was done in parallel with 

 
Figure 2: Postulated primary C-O scission 

of a glycerol molecule adsorbed on the Cu 

(111) surface. The white shaded circular 

area corresponds to the part of the surface 

that can potentially host the cleaved OH 

group. The dotted white arrows point 

towards potential top, bridge and hollow 

sites. (Colorcode: Cu – orange, C – gray, O 

– red and H - white) 
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dataset engineering, section 2.2) were 

enough to ensure the desired accuracy.  

3.1. Exploration of glycerol 

conformers and transition state  

3.1.1. Adsorption of glycerol 

conformers on the Cu(111) 

surface 

Glycerol, a highly adaptable 3-Carbon 

molecule with a significant level of 

structural flexibility, is known to have 76 

low-energy conformers within 0.4 eV in the 

gas phase. However, in relation to surface-

induced alterations, the structural 

intricacies are considerably more complex, 

making reliable sampling arguably the most 

critical task. We utilized a workflow that 

utilizes a combination of domain 

knowledge, semi-automated adsorption site 

identification, enumeration of theoretical 

interaction possibilities, structural diversity 

ensuring sampling via use of unsupervised 

machine learning, molecular dynamics, 

geometric relaxation, and preliminary 

MLFF runs to derive 264 low-lying yet 

structurally diverse conformers on the 

Cu(111) surface from 330 initial glycerol 

configuration. We optimized these 264 

glycerol conformers on the surface using 

MLFF until the maximum forces on atoms 

were decreased to less than 0.02 eV/Å. The 

distribution of the adsorption free energy is 

depicted in Figure 3c. 

A supervised machine-learning based 

analysis derived representation as shown in 

Figure 3a, further ensured the structural 

diversity of the starting conformer pool. 

This method is based on encoding local 

atomic environments (rcut =3.0 Å) via 

SOAP [50–54] combined with Uniform 

Manifold approximation and Projection 

(UMAP).[55,56] We identified 25 distinct 

groups of conformers, underlining various 

surface and hydrogen bonding motifs and 

encapsulating a substantial spectrum of 

glycerol structures (Figure 3e). Due to the 

flexible nature of H atoms, many 

conformers exhibit similar C3O3 backbone 

motifs with minor alterations in H 

placement relative to the surface and other 

OH groups. These analogous backbone 

structures are visible as clustered groups in 

Figure 3a. Understanding the energetic 

hierarchy of the conformers and 

consequently deducing the most stable 

configurations is challenging (as seen in 

Figure SI-1), but certain trends can be 

inferred from the results. For instance, the 

six configurations within a 0.16 eV range of 

their relative electronic energy to the 

minimum configuration are all closely 

attached to the surface, either by extending 

across the surface or by forming two Cu-O 

bonds. The top five conformers display H-

bonds from the binding OH to a different 

OH-group, and throughout the generated 

set of conformers, H-bonds from the 

binding oxygen to different OH-groups are 

slightly preferred over H-bonds to the 

binding oxygen or excluding it. Overall, the 

energetic ordering is dictated by the balance 

between surface contact and hydrogen 

bonding. As anticipated, more hydrogen 

bonds are advantageous, but surface contact 

competes with this basic principle, leading 

to different conformational motifs being 

closely matched in energy. 

The MLFF-calculated, and verified 

with DFT (Figure 3d), lowest-energy 

conformer of glycerol on the Cu (111) 

surface (Figure 3e) has an adsorption free 

energy ΔGads of -0.40 eV (ΔEads=-0.91 eV). 

The glycerol conformer is adsorbed in a 

horizontal orientation with the secondary 

OH group nearest to the surface, at a 

distance of 2.19 Å from the Cu slab. A 

hydrogen bond is formed from the 

secondary OH to a primary OH group, with 

a second hydrogen bond from the 

remaining primary OH to the surface-
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attached secondary OH. The primary OH 

groups are 3.08 Å and 3.52 Å away from the 

Cu (111) slab respectively. The next most 

stable conformer (with ΔEads = -0.86 eV) 

attaches to the surface via a primary 

hydroxyl group and consists of a hydrogen 

bond from the secondary hydroxyl to a non-

attached primary hydroxyl.  

Our research findings align well with 

previous studies. Specifically, a 2019 study 

by Zhang et al.,[17] found similar initial 

configurations of glycerol on the Cu (111) 

 

 

Figure 3: (a) Adsorption energy of explored 77153 configurations from 330 glycerol relaxation 

paths on the Cu(111) surface represented as a function of their structure similarity. The map 

has been constructed by first selecting 1000 structurally most diverse representative 

configurations using Farthest point sampling algorithm on computed SOAP descriptors 

followed by fitting a Uniform Manifold approximation and Projection (UMAP) model first to 

optimize the base representation  and then projecting rest of the data on the map to arrive at the 

final 2-dimensional representation. The crosses indicate the 264 MACE MLFF relaxed glycerol 

configurations on the Cu(111) surface. The population density of (b) ΔEads and (c) ΔGads 

calculated for 264 relaxed glycerol structures on the surface. (d) The parity plot between 

MACE MLFF calculated (ΔEadsMLFF) vs. DFT calculated (ΔEadsDFT) energies for glycerol 

conformers on the Cu(111) surface. The ΔEads calculated here using reference DFT calculated 

glycerol gas molecule and pristine Cu(111) surface energy. The ΔEMLFF is calculated without 

vdw effects for comparison to DFT energies. (e) Side and top view of diverse glycerol 

conformers relaxed using MACE MLFF on the Cu(111) surface. The number notation 

corresponds to the crossed numbers specified in (a).  

https://doi.org/10.26434/chemrxiv-2024-34mq8 ORCID: https://orcid.org/0000-0001-8434-3497 Content not peer-reviewed by ChemRxiv. License: CC BY-NC 4.0

https://doi.org/10.26434/chemrxiv-2024-34mq8
https://orcid.org/0000-0001-8434-3497
https://creativecommons.org/licenses/by-nc/4.0/


   

 

10 
 

surface and recorded an adsorption energy 

of -0.89 eV, which is comparable to our 

second-best conformer. Additionally, a 

2023 report by Wang et al.,[57] identified the 

lowest-energy configuration of glycerol on 

the Cu (111) surface that closely matches 

our fourth-best conformer. They recorded 

an adsorption energy of ΔEads = -1.12 eV 

and a Cu-O(sec) distance of 2.18 Å. Finally, 

Liu and Greeley's[58] work, which did not 

include any dispersion corrections, found 

results comparable to our third-best 

conformer. As inconsistencies in energetic 

ordering within such close energetic span 

are expected to arise due to the different 

choice of DFT parameters and functionals, 

it further stresses the importance of keeping 

all the conformers for subsequent reaction 

studies. 

3.1.2. Primary C-OH glycerol 

bond scission on Cu(111) 

surface 

Glycerol has two primary C-OH bonds, 

both of which have an equal likelihood of 

undergoing C-O bond cleavage on the Cu 

(111) surface. In this section, we focus on 

the cleavage of the primary C-OH bond in 

glycerol as an example to demonstrate our 

step-by-step exploration of the activation 

barrier landscape using MLFF. This initial 

C-OH bond cleavage is a crucial step in 

glycerol deoxygenation, occurring through 

both the direct hydrogenolysis pathway 

(P1) and the dehydration-hydrogenation 

pathway (P2, see Figure 1). In subsequent 

sections we will only compare the lowest 

activation free energy barrier of the 

pathways for glycerol deoxygenation on Cu 

(111) with PDO.  

The accuracy of the actual activation 

barrier is heavily influenced by the 

selection of glycerol conformers and the 

chosen C-OH scission Nudged Elastic Band 

(NEB) paths, as evidenced by previous 

literature. For example, Jianfeng et al.,[20] 

reported a 1.85 eV barrier for the primary 

C-O cleavage of glycerol on the Cu (111) 

surface, while Weiming et al.,[3] reported a 

1.38 eV barrier for the primary C-O 

cleavage of glycerol on a 2D Cu cluster 

supported on the β-Mo2C(0001) surface. 

Aside from differences in the catalyst 

model, the former study did not stabilize the 

C* from the product state on the surface, 

which could significantly affect the barrier 

and reaction energy. Liu and Greely 

(2013)[58] calculated a 1.46 eV activation 

barrier for primary C-OH scission on the Cu 

(111) surface using scaling relations, but 

their calculations did not consider van der 

Waals (vdW) effects, which influence the 

prediction of adsorption and desorption 

energies of hydrocarbon molecules on 

catalyst surfaces. All these observations 

further motivate us to systematically 

explore potential reaction pathways. 

We employ a high throughput 

approach to identify and optimize transition 

states utilizing the MLFF, as detailed in 

section 2.2. To prioritize a thorough scan 

and minimize the risk of omitting any vital 

information, we included all 264 glycerol 

configurations described in the previous 

section in our transition-state scans, aiming 

to capture the most favorable activation 

barrier. Our focus was on the cleavage of 

either primary C-O bond and the 

displacement of the broken OH 

intermediate to the nearest hollow, top, or 

bridge sites within a radius of 2 Å from the 

original C-OH position (see Figure 2). We 

obtained 2683 product states in which the 

primary C-OH bond was broken on the Cu 

(111) surface. We eliminated product states 

with no C-O bond cleavage and those with 

reaction energies greater than 2 eV from the 

initial glycerol conformer, as a reaction 

energy of 2 eV was considered 

unreasonably high for further progression. 

This left us with 978 product states for 

primary C-OH bond cleavage, which were 

used to construct the NEB pathways. Each 

pathway consisted of 20 intermediate 

images that were optimized to fmax < 0.1 

eV/Å. NEB paths with activation barriers 

exceeding 2.2 eV were discarded. 

Ultimately, we optimized 339 NEB paths 

for primary C-OH bond cleavage to fmax < 
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0.05 eV, as shown in Figure 4a with grey 

dashed lines. The diversity of bond scission 

along 339 NEB paths, also represented in 

Figure 4(b), changes the C-O bond length, 

which ranges between 2.29 – 3.5 Å for 

transition states.  

The five configurations with the lowest 

absolute activation energy barriers 

(ΔETS{abs.}) for primary C-OH bond 

cleavage were further refined using the 

Automated Relaxed Potential Energy 

Surface Scans (ARPESS) method, as 

depicted in figure 4a. The minimum energy 

path (MEP) with the minimum MLFF 

energy barrier begins with a glycerol 

conformer with ΔEconf. = 0.03 eV compared 

to the global minima reference (figure 4e). 

The corresponding ΔETS{rel.} and ΔETS{act.} 

values for this conformer are 1.54 eV and 

1.58 eV, respectively. However, the other 

C-OH bond cleavage for the same glycerol 

conformer exhibits a ΔETS{act.} value of 1.60 

eV (figure 4f). The pathway for C-OH bond 

cleavage also influences the endpoint 

energies (ΔEendp.) resulting from the C-O 

bond cleavage up to 1.5 eV, depending on 

intermolecular hydrogen bonding or the 

orientation of the glycerol intermediate on 

the Cu (111) surface (figure 4a). 

The MLFF model went through 4 

iterations with the first one being a very 

rough starting point and true active learning 

starting from second iteration where a 

model is re-trained from scratch with 

 

Figure 4: (a) MACE MLFF calculated activation barriers for primary C-O scission of 

glycerol optimized using NEB(grey) method till fmax <0.05 eV/Å. The 5 lowest TS are 

optimized using ARPESS(red) method till fmax < 0.02 eV/Å method, and their endpoints 

are recalculated using IRC method. (b) C-O scission NEB path optimized over 4 iterations 

of MLFF. The sub-figures (top to bottom) were relaxed with ML_iteration 1,2,3,4, 

respectively, and the corresponding DFT energies are indicated in red dots. The reference 

for all points was the DFT energy of glycerol conformer relaxed with ML_iteration 4 

(image 0). (c) The C-O bond distance at transition state (TS), one image before (TS-1) and 

after (TS+1) the transition state vs. corresponding MLFF energies. (d) The distribution of 

relative activation barrier and absolute activation barrier for primary C-O scission. The 

glycerol conformer (left) and transition state (right) of minimum energy path (e) and other 

paths (f) and (g).  
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additional data generated in iteration (figure 

4b). Subsequent iterations restart the 

training process from the existing model 

with additional new data as we progress 

towards our desired accuracy, as 

highlighted in the figure. To validate our 

findings based on MLFF simulations, we 

did explicit DFT SCF calculations on key 

steps and considered geometrical 

parameters, specifically the primary C-O 

bond length of glycerol at and near the 

transition state. Figure 4b illustrates this 

chemically relevant quantity in the 

structure. Along the smallest activation 

energy path (figure 4d), the C-O bond 

distance changes from 1.44 Å (glycerol 

configuration) to 2.39 Å at the saddle point.  

Due to the automated nature of our 

workflow, we observed the presence of 

chemically very similar configurations in a 

few cases, resulting from subtle variations 

such as minor translations or rotations of 

the glycerol molecules on the Cu surface or 

within the OH bond. These similarities 

could be easily identified through a 

combination of unsupervised ML and 

expert human inspection at various stages. 

Instead of eliminating them with strict 

similarity checks, we decided to allow for 

some redundancy considering the complex 

reaction network of this molecule. This 

decision was particularly influenced by the 

computationally efficient nature of 

optimizing Nudged Elastic Band (NEB) 

calculations using the MLFF method, with 

each calculation taking approximately 30 

minutes on a single CPU. 

3.2. Reaction HDO mechanisms for 

glycerol to 1,2-PDO 

The conversion of glycerol via 

hydrogenation and deoxygenation (HDO) 

to 1,2-propanediol (1,2-PDO) has been 

proposed based on experimental 

observations, suggesting the involvement 

of P1-P4 reaction mechanisms (Figure 1). 

 

Figure 5: (a) MACE MLFF calculated activation energy barrier. The red circles indicate the 

lowest activation energy barriers. (b) Activation free energy and reaction free energies for 

glycerol primary C-OH, primary C-H, secondary C-H and secondary O-H scission. (c) Top 

and side view of the starting glycerol configuration, transition state and end configuration of 

glycerol intermediate on Cu(111) surface for scission reactions calculated using ARPESS and 

the IRC method.  
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Here, we conducted a comprehensive 

investigation of each reaction pathway to 

determine the most probable route for 

glycerol HDO on a Cu (111) catalyst 

surface. The calculation of reaction free 

energies and activation free energy barriers 

for intermediates and products followed the 

methodology described in section 2.2 and 

discussed in detail in section 3.1. 

Figure 5a presents the calculated 

activation barriers (ΔETS{abs.}) for the 

breaking of primary C-OH, secondary C-H, 

primary O-H, and secondary O-H bonds in 

configurations with the lowest absolute 

energy activation barriers (ΔETS{abs.}) for 

glycerol bond breaking and the calculated 

activation free energy barriers (ΔGact.) and 

reaction free energies (ΔGrxn.) of the 

resulting products are shown in Figure 5b. 

Among these, the breaking of the secondary 

O-H bond exhibited the lowest activation 

free energy barrier (ΔGact. = 1.00 eV), 

closely followed by the primary O-H bond 

breaking (ΔGact. = 1.03 eV), relative to the 

energetically most favorable glycerol 

configuration adsorbed on the Cu (111) 

surface. Regarding the initial steps, the 

activation energy for O-H bond breaking 

was generally lower than that for C-H bond 

breaking, which in turn was lower than that 

for C-OH bond breaking. These trends in 

activation free energy barriers align with 

previous findings in the literature. For 

instance, Zhang et al. (2019)[17] reported an 

activation barrier of 1.12 eV for the 

breaking of the secondary O-H bond on a 

Cu (111) surface, which is reasonably close 

considering the differences in reactant 

conformations. Similarly, Liu and Greeley 

(2013)[58] reported a 0.66 eV difference in 

activation barriers between the breaking of 

primary O-H (0.8 eV) and primary C-OH 

(1.46 eV) bonds using scaling relations. In 

contrast, by explicitly optimizing the 

transition-state structures and thoroughly 

exploring the saddle points for each 

reaction, we report a significantly lower 

difference of 0.16 eV and 0.39 eV between 

O-H:C-H and O-H:C-OH bond scissions, 

respectively (Figure 5b). We determined 

that the breaking of the primary C-OH bond 

(ΔGact. = 1.39 eV) exhibits the highest 

activation free energy among the bond 

breaking reactions. On the other hand, the 

breaking of the secondary C-H bond, which 

represents an alternative pathway for 

glycerol dehydration (P2, figure 1), 

displayed both a high reaction free energy 

(ΔGrxn = 0.74 eV) and a high activation 

barrier (ΔGact. = 1.16 eV), unlike the 

secondary O-H bond scission with a 

reaction free energy of -0.01 eV and a 

barrier of 1.00 eV. Consequently, we 

conclude that the P1 and P2 pathways are 

not viable routes for the conversion of 

glycerol HDO to 1,2-PDO on the Cu (111) 

surface (Figure 6). 

By following the P3 pathway 

(figure 6c), the activation free energy 

barrier for the scission of the secondary C-

H bond and subsequent formation of 

dihydroxyacetone on the Cu(111) surface is 

0.93 eV (with ΔGrxn = -0.19 – (-0.40) = 

+0.21 eV). Dihydroxyacetone is 

determined to be the most likely product of 

glycerol dehydrogenation on the Cu(111) 

surface. Interestingly, while C-OH bond 

cleavage is unlikely for glycerol due to high 

activation free energy barriers, it is found to 

be more likely to occur for carbonylic 

compounds. The activation free energy 

barrier for the primary C-OH cleavage from 

dihydroxyacetone to form the precursor to 

hydroxyacetone is only 0.91 eV (with ΔGrxn 

= -0.32 eV). Subsequent hydrogenation of 

hydroxyacetone and further hydrogenation 

of the intermediate will lead to the 

formation of 1,2-PDO. It is important to 

note that this pathway does not allow for the 

formation of 1,3-PDO (discussed in next 

section) as dihydroxyacetone only contains 

primary hydroxyl groups that cannot be 

cleaved. The initial dehydrogenation step 

protects the secondary oxygen from 

potential cleavage.  

In the P4 pathway, after the primary 

O-H bond scission, the activation free 

energy barrier for the primary C-H bond 

scission to form glyceraldehyde is 0.75 eV. 
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However, the reaction free energy for the 

transformation of glycerol to 

glyceraldehyde is endothermic by 0.48 eV. 

Therefore, we expect a reaction equilibrium 

occurring between glycerol and 

glyceraldehyde, which will limit the 

activation of further pathway after 

formation of glyceraldehyde. 

Investigation into the dehydration 

of glyceraldehyde for PDO conversion 

reveals that there are five possible bond 

scissions for the glyceraldehyde molecule 

on the surface. These include primary O-H 

bond scission, primary C-OH bond 

scission, secondary C-H bond scission, 

secondary C-OH bond scission, and 

secondary O-H bond scission. The 

activation free energy barriers for the 

scission of the secondary C-H and C-OH 

bonds are 0.58 eV and 0.88 eV, 

respectively, relative to the minimum 

energy configuration of glyceraldehyde on 

the Cu(111) surface. The activation free 

energies for the other three bond scissions 

  

Figure 6: The P1(a), P2(b), P3(c) and P4(d) reaction pathway for glycerol HDO on Cu(111) 

surface calculated using MACE MLFF. The black text indicates the relative energy of the 

intermediate with respect to the initial state (glycerol and H2 in gas phase). The red text indicates 

the activation free energy barrier for dehydration and dehydrogenation steps. The inserted 

images represent the minimum free energy intermediate and saddle point configurations.  
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are higher, specifically primary O-H, 

primary C-OH, and secondary O-H being, 

0.99, 1.53, and 0.94, respectively (figure 

7c). A favorable route to 1,2-PDO via 

glyceraldehyde is achieved through the 

low-activation free energy barrier 

secondary C-H split. The scission of the 

primary C-OH bond from the product of 

this elementary step only requires 0.52 eV 

(Figure 6d).  

The hydrogenation steps following the 

dehydration and dehydrogenation steps 

encountered in P1-P4 pathways steps have 

activation barriers of less than 1.00 eV 

(figure SI-4), and hence are not the activity 

or selectivity determining steps.    

3.3. Glycerol deoxygenation to 1,3-

PDO. 

Although the experimental data clearly 

shows that Cu catalyst is selective towards 

1,2-PDO, we also investigated the potential 

pathways for converting glycerol to 1,3-

PDO for the sake of completeness. We 

found that the selectivity of 1,2-PDO or 1,3-

PDO from the glyceraldehyde intermediate 

(in pathway P4 vs P5) is determined by the 

relative activation barrier differences 

between the scission of the secondary C-H 

and secondary C-OH bonds of the 

glyceraldehyde molecule on Cu(111), 

which were identified as the most probable 

elementary steps in section 3.2 and seen in 

Figure 7.  

We observed that the scission of the 

secondary C-OH bond in glyceraldehyde 

requires 0.3 eV higher activation free 

energy compared to the scission of the 

secondary C-H bond, indicating a 

preference for the formation of 1,2-PDO 

from glyceraldehyde. Additionally, 

considering the higher chance of reverse 

reaction for glyceraldehyde to glycerol 

intermediate, we see indications that Cu in 

its reduced form contributes to the observed 

selectivity of 1,2-PDO formation over 1,3-

PDO formation. However, there is 

experimental evidence suggesting that 

 

Figure 7: (a)MACE MLFF calculated free energies of reaction pathways from glycerol 

HDO to 1,2-PDO(P3 and P4) and 1,3-PDO(P5)  on Cu(111) surface. (b) The activation free 

energy barrier of glycerol primary and secondary C-OH and C-H scission affecting the 

selectivity of HDO towards PDO isomer. (c) The activation free energy barrier of 

glyceraldehyde bond scissions which dictate the selectivity towards PDO isomers.  
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other factors, particularly oxidic species 

present, can further explain the high 

selectivity of 1,2-PDO on the Cu(111) 

surface compared to 1,3-PDO through the 

dihydroxyacetone intermediate.[14] 

In the direct PDO formation 

pathways (P1 vs P7), the selectivity of 1,2-

PDO versus 1,3-PDO is dictated by the 

scission of the primary C-OH and 

secondary C-OH bonds of glycerol on the 

Cu(111) surface (Figure 7b). The activation 

free energy barrier for the scission of the 

secondary C-OH glycerol bond (1.50 eV) is 

higher than the activation barrier for the 

scission of the primary C-OH bond (1.36 

eV) of glycerol on Cu(111) surface. 

Therefore, even through direct HDO, 1,2-

PDO is preferred over 1,3-PDO formation 

on Cu(111). Finally, the activation free 

energy barrier for primary C-H scission is 

1.23 eV, an alternative to secondary C-OH 

scission for P6 pathway (Figure 7b). This is 

0.20 eV higher than primary O-H scission. 

Therefore, the P5 is the only likely route to 

form 1,3-PDO from glycerol.   

4. Summary and Conclusion: 

This study presents a comprehensive 

analysis of the glycerol to PDO conversion 

reaction. Despite its significant industrial 

relevance, literature reviews show a 

significant lack in a complete overview of 

mechanistic understanding until now. The 

study utilizes an active learning based 

MLFF approach to explore a complex 

network of 7 competing pathways starting 

from identifying all 264 possible 

conformers of glycerol on the Cu(111) 

surface. Within only 4 iterations, the trained 

single MLFF model could accurately 

explore the 26 transition states of the 

reaction network investigated. The key TS 

structures and energies were identified and 

successfully confirmed by DFT 

calculations (Table SI-1).  

The findings reveal important insights 

into the difference in reactivity trends and 

bond cleavage preferences between 

glycerol and glyceraldehyde. The O-H 

bond cleavage is identified as the initiation 

step in glycerol, leading to glyceraldehyde 

or dihydroxyacetone intermediates before 

further C-O bond cleavage. In contrast, 

glyceraldehyde shows a higher reactivity 

towards C-H bond activation followed by 

adjacent C-OH bond activation. 

The study also highlights the 

dehydrogenation and hydrogenation 

products of glycerol on the Cu(111) 

surface, with dihydroxyacetone identified 

as the most likely dehydrogenation product. 

The other intermediate, glyceraldehyde has 

a lower activation barrier for hydrogenation 

of secondary C as compared to 

dehydrogenation of secondary C-H and is 

hence expected to reverse back to glycerol. 

While arguably the studied model 

involving clean Cu(111) surface with gas 

phase reaction network exploration is not 

sufficient to explain the very high 

selectivity of 1,2 PDO on commercial Cu 

catalysts, we could already qualitatively 

explain the preference of 1,2 PDO over 1,3 

PDO based on the explored pathways. 

Future studies will build on the present 

model to include the effect of oxide surface 

and effect of water solvent with different 

other Cu facets which understandably are 

critical for making quantitative claim of 

selectivity.  

In addition, we conducted tests to 

evaluate the usability of the recently 

published mace-mp0 universal force 

field[59] in this specific application. 

However, it is important to note that this 

constitutes an out-of-domain extrapolation 

for the model, as it was solely trained on 

bulk lattice data from the materials project. 

Although the model technically functions 

and exhibits an overall visual trend that may 

appear promising, it is evident that it is not 

suitable for this particular application 

(Figure SI-2 and Figure SI-3). 

Consequently, we are left with the option of 

relying on active learning approaches for 

now, which have proven to be more 

effective in meeting our requirements. Our 
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approach here has been to show how the 

present technology can find application in 

industrial research environment, where 

reaching the final scientific goal without 

compromising on the reliability of the 

prediction as quickly as possible are of 

paramount interest. Hence the objective of 

keeping a minimal training set was 

secondary and we allowed for sufficient 

redundancy in training data generation and 

opted for frequent explicit validation rather 

than relying merely on model uncertainty 

estimates. A retrospective analysis of the 

training set shows we have at least 20% 

redundant information from structural point 

of view (Figure SI-5), elimination of which 

would likely not affect the model 

performance. The total number of energy 

and force calculations calls in this study are 

of the order of ~421,600 (×500 single point 

steps). It was only necessary to use ~14,000 

for DFT calculations so effectively only 

~0.006% of total endeavor besides the 

significant efficiency gain in terms of time 

or computational cost: that should be 

encouraging enough for the catalyst 

community to embrace these novel 

approaches as integral part of their strategy. 

The final training dataset and ML models 

will be available upon publication, and we 

encourage other researchers to build on this. 
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