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Abstract2

Belitic cements are a greener alternative to Ordinary Portland Cements due to the3

lower CO2 associated to their production. However, their low reactivity with water4

is currently a drawback, resulting in longer setting times. In this study, we utilize a5

combination of evolutionary algorithms and machine learning atomic potentials (MLPs)6

to identify previously unreported belite polymorphs that may exhibit higher hydraulic7

reactivity than the known phases. To address the high computational demand of this8

methodology, we propose a novel transfer learning approach for generating MLPs. First,9

the models are pre-trained on a large set of classical data (ReaxFF) and then re-10

trained with Density Functional Theory (DFT) data. We demonstrate that the transfer11

learning enhanced potentials exhibit higher accuracy, require less training data, and are12

more transferable than those trained exclusively on DFT data. The generated machine13

learning potential enables a fast, exhaustive, and reliable exploration of the dicalcium14

silicate polymorphs. This includes studying their stability through phonon analysis and15

calculating their structural and elastic properties. Overall, we identify ten new belite16
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polymorphs within the energy range of the existing ones, including a layered phase with17

potentially high reactivity.18

1 Introduction19

Cement is the most extensively manufactured product globally in terms of mass. In 2022,20

its global production reached an astounding 4.2 billion tons, well over 500 kg per capita.121

Cement and concrete, characterized by their versatility, cost-effectiveness, abundance, and22

local availability, are indispensable components in modern societies, playing a fundamental23

role in various construction applications. However, despite their ubiquity, the prevalent24

technologies associated with their production contribute significantly to carbon dioxide (CO2)25

emissions, accounting for 8% of total per capita emissions. Most of the emissions, up to 60%,26

are intrinsic to the material.2 The raw minerals, mainly clays and limestone, are melted at27

high temperatures to form the clinker phases: calcium silicate and aluminate phases, which28

mixed with other components such as gypsum and additives, form the cement. During29

melting, the calcination of limestone (CaCO3) releases a considerable amount of CO2, which30

is unavoidable.3 Therefore, the strategies for cement’s environmental impact reduction are31

based on Carbon Capture and Utilization or a reduction of the clinker in cement through32

the use of Supplementary Cementitious Materials. But there is a third alternative that33

researchers have long pursued: the so-called belite cements .434

Belite cements (BCs) are, as the name indicates, cements in which the main component35

is dicalcium silicate (also known as belite or C2S in cement chemistry notation), in contrast36

to Ordinary Portland Cement (OPC) in which tricalcium silicate or alite predominates. Due37

to its lower Ca content, BCs require less limestone, reducing by up to 1/3 the OPC CO238

emissions upon calcination. Furthermore, the sintering temperature is lower, also reducing39

fuel consumption. The resulting cement paste after BC hydration is equal to or even out-40

performs OPC pastes in terms of durability and mechanical properties.5,6 However, BCs are41
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unpractical for most industrial applications due to the low dissolution rate of belite. There-42

fore, a practical transition from OPC to BC requires an acceleration of belite dissolution,43

often called activation.44

Dicalcium silicate, Ca2SiO4, can be found in nature as an orthosilicate called larnite, the45

Ca end member of the olivine mineral group. In cement chemistry, this stable polymorph46

is denoted as γ, and it is not desirable due to its low hydraulic activity. Four additional47

polymorphs are found during clinker production, named β, α, α′
L, and α′

H . The β form is48

predominant in cement, stabilized by the presence of guest ions in the structure, mainly Mg.749

A partial activation of belite has been achieved by chemical and mechanical means, as well50

as by the use of additives.6,8 Besides these strategies, a new polymorph denoted as X has51

been recently obtained by thermal decomposition of a hydrated calcium silicate α-C2SH.952

The X polymorph is obtained together with a considerable amount of amorphous phase, and53

the mixture is reported to hydrate faster than the conventional β and α forms.10 Large-scale54

production of amorphous and X-belite is currently impractical, although laboratory-scale55

synthesis is feasible.56

The discovery of the X polymorph motivates the current work: could other metastable57

and highly reactive polymorphs of belite exist? To answer this question, we have used58

Evolutionary Algorithms (EA) to explore the configurational space of dicalcium silicate and59

search for unreported belite polymorphs. Performing an exhaustive search using EA requires60

thousands of Density Functional Theory (DFT) simulations, which can be prohibitive due61

to their high computational cost. The recent outburst of machine learning atomic poten-62

tials11,12 (MLPs) provides a new alternative, enabling simulations with DFT precision at a63

significantly reduced computational cost. However, training a MLP demands, in turn, a sub-64

stantial number of DFT calculations to build the database. To break the deadlock, we have65

used the transfer learning (TL) methodology,13,14 which involves pre-training the models on66

low-quality data before training on the DFT data to enhance the performance of machine67

learning potentials. In practice, the re-training on the smaller set of high-quality data can be68
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accomplished by either fine-tuning all the parameters or keeping some of the layers frozen.69

Transfer learning is a valuable tool in computational materials science for predicting var-70

ious properties, where models pre-trained on different levels of computational data are used71

to improve performance when only a few data points are available.13–15 In particular, in the72

field of machine learning potentials, a common approach involves fine-tuning Density Func-73

tional Theory models to achieve post-Hartree-Fock accuracy,16,17 mainly by training on the74

difference between the two methods (commonly known as ∆-learning).18 Although transfer75

learning models are typically used to achieve coupled cluster accuracy from DFT,19–21 some76

research has been conducted to reduce the amount of DFT data required by pre-training on77

more primitive DFT approximations.22 Nevertheless, to the best of our knowledge, none of78

the published works demonstrate the feasibility of transferring the physical knowledge from79

classical potentials to ab initio quantum methods. Even low-quality data based on empirical80

potentials contains significant, even if not very accurate, physical information about the sys-81

tems at the atomic scale that can be used to enhance the MLP while minimizing the required82

amount of data. Thus, our approach involves exploiting the speed of empirical potentials83

to thoroughly sample the phase space and pre-train the machine learning models. We then84

select a small subset of those configurations to include in the DFT training database. In this85

work, we choose to pre-train the models using the ReaxFF reactive force field,23,24 which is86

itself fitted to reproduce ab initio calculations. As for the high-level method, we consider87

DFT under the PBE exchange-correlation functional25 sufficient for our purpose.88

2 Methods89

Reference data generation90

For each phase in the data set, the same sampling technique was followed, consisting of91

different cell deformations and molecular dynamics simulations. First, several MD runs92

were performed using the ReaxFF forcefield24 with the Ca/Si/O/H set of parameters from93
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Refs.26,27 in LAMMPS28 under the NVT ensemble. Various simulations were performed at94

different combinations of temperatures (T = 300K, 600K, 900K) and cell volumes (∆V/V =95

0.9, 1, 1.1). A time step of 0.2 fs was used, and snapshots of the trajectory were saved every96

500 steps. Second, all the non-symmetric axes were deformed from 10% compression to 10%97

expansion, including hydrostatic deformations with a maximum of 10% variation in volume,98

and angles were varied from -10º to 10º. The DFT data set was generated by randomly99

selecting structures from the ReaxFF data set, and evaluating their energy and forces.100

Density Functional Theory101

DFT calculations were performed using the quantum ESPRESSO software29,30 using ON-102

CVPSP pseudopotentials31 from pseudodojo,32 under the PBE exchange-correlation func-103

tional,25 and with the empirical dispersion by Grimme.33 The plane wave energy cutoff was104

set to 100 Ry, and calculations were converged to 10−6 eV. Geometry optimizations were105

converged to 10−5 eV and 10−4eVÅ−1 for energy and forces, respectively. Taking into ac-106

count that systems of very different sizes have been studied, the number of k points was107

systematically selected such that the distance between points in the reciprocal space was108

about 0.25Å−1.109

MLP architecture and training110

The machine learning atomic potentials used in this work are based on artificial neural111

networks.11,12 All of them were trained using the ænet-PyTorch software,34,35 using all the112

energies and 50% of the atomic forces. Chebyshev polynomials were used as descriptors for113

the atomic environments,36 with a Nrad = 18 and Nang = 6 order expansion for the radial and114

angular basis respectively. The radial cutoff distance was 6.5Å, while the angular distance115

was 4Å. This leads to a fingerprint with 52 components for each atomic environment. The116

MLP architecture for all models was 52− 10− 10− 1, with hyperbolic tangent as activation117

function. The only exception is the initial toy model of the calcium ion and the silicon118
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dioxide molecule, where the architecture was reduced to 40− 3− 3− 1. Transfer learning is119

performed by fine-tuning all the parameters of the pre-trained models.120

The Supplementary Information contains a detailed analysis of the transferring method-121

ology by freezing all combinations of the layers, and a comparison between different network122

architecture and descriptor sizes, showing that fine-tuning all layers is the optimal choice in123

our case.124

Note that for every training data set of each experiment presented throughout this work,125

several MLPs have been trained, and the results shown correspond to the average of all126

MLPs.127

Evolutionary algorithms128

The exploration of the dicalcium silicate polymorphs was done using evolutionary algorithms129

as implemented in the USPEX code37–39 (version 10.5). For each system size, EA runs were130

performed for enough generations until all experimentally known phases were found. Each131

structure was relaxed using the ænet-LAMMPS interface,40,41 first minimizing the energy132

using ReaxFF to avoid random structures far from the included in the training data, and133

then using MLPs.134

Phonon and elastic properties135

Phonons were computed under the finite difference approximation to build the dynamical136

matrix. The phonopy42,43 software was employed to generate the appropriate atomic dis-137

placements for each crystal structure, to build the dynamical matrix, and to compute the138

force constants and phonon dispersion along the high-symmetry path of the corresponding139

space group. The atomic displacements were set to 0.1Å, and supercells of at least 13Å140

(twice the cutoff distance of the descriptors) along each crystallographic axis were used in141

order to guarantee convergence.142

The elastic tensor of all the structures was computed fitting the stress-strain relationship143
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σi = Cijϵj. Each crystal parameter (cell-vector lengths and angles) was deformed indepen-144

dently 10 times, with a deformation in a range ϵ0 ∈ (−0.01, 0.01). The elastic properties are145

computed under the Hill scheme. The forces and stress tensors for each of the structures146

were evaluated using the LAMMPS interface of ænet.147

Annealing and amorphous dicalcium silicate148

All MLP-based molecular dynamics simulations were performed with the ænet-LAMMPS149

interface.40,41 The annealing to refine the polymorphs was performed under the NPT ensem-150

ble with a time step of 0.5 fs, both heating from 0 K to 400 K and cooling back at a rate of151

2 · 1012 Ks−1.152

The amorphous dicalcium silicate models were generated by heating a 4× 2× 4 supercell153

of γ-C2S up to 2000 K. The three different amorphous models were obtained by cooling the154

heated structure at three rates: 2 · 1012, 2 · 1013, and 2 · 1014 Ks−1. In all three cases, the155

time step was lowered to 0.1 fs to ensure the stability of the high-temperature molecular156

dynamics.157

3 Results and discussion158

Our results are organized as follows: first, the advantages of transfer learning are qualitatively159

introduced with a simple toy model. Second, we consider a more complex and realistic160

dataset to train a MLP for dicalcium silicates, while quantifying the benefits of the transfer161

learning approach. Finally, we use the trained MLP to explore the polymorphism of dicalcium162

silicates.163

A simple transfer learning model164

Let us first consider a simplified scenario to illustrate the capabilities of the transfer learning165

methodology: a system formed by a calcium ion and a silicon dioxide molecule, with the Si166
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and Ca atoms fixed at a distance of 5Å. We will explore the potential energy surface (PES)167

of the system as a function of the distance dSi-O from the silicon atom to a mobile oxygen,168

which breaks its bond to move toward the calcium atom. Sampling that PES using ReaxFF169

and DFT yields two similar landscapes, with two possible bound states for the oxygen and an170

energy barrier for the oxygen transfer. According to DFT, being bonded to the calcium ion171

is the lowest-energy configuration, while ReaxFF predicts the Si-O bond to be more stable,172

as shown in Figure 1 (a).173
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Figure 1: Simple transfer learning model. (a) Potential energy surface of the calcium
ion and the silicon dioxide molecule computed with ReaxFF (grey dashed lines) and DFT
(green dashed lines) as a function of the Si-O distance. The rest of the figure shows machine-
learned potential energy surface for both direct learning (orange lines) and transfer learning
(blue lines), for different distributions of DFT training data (green dots). The mean absolute
error of the energy of both transfer and direct learning is displayed in each case.

We evaluate the advantage of the TL strategy in three scenarios with different distribu-174

tions of the DFT training data. Two independent models are trained for each of them: one175

trained on all the ReaxFF data and subsequently re-trained on the selected DFT data points176

(MLP-transfer), and the second trained exclusively on that DFT data (MLP-direct).177

First, we focus on a scenario where one of the bound states is correctly sampled by DFT178

(i.e. the Si-O bound state) while no DFT training data about the second state is included,179

see Figure 1(b). In this case, the direct training leads to an incorrect representation of the180

Ca-O region, even predicting an unphysical PES. On the contrary, the transferred model181

does predict a bound state resembling that of the ReaxFF data. Second, we explore the case182

where the DFT training points cover both regions of the PES but they are sparse (with only183
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3 points·Å−1). In this case, both the direct and transfer learning protocols give a reasonable184

answer, but the transfer learning results are clearly smoother and the error with respect185

to the DFT data is considerably lower, see Figure 1(c). By increasing the DFT training186

configurations to 30 points·Å−1 [Figure 1(d)], both direct and transfer models yield similar187

results, but the error on the validation set is still lower for TL.188

Overall, this simple model illustrates the ability of TL to reach accurate predictive capa-189

bility with a reduced DFT dataset by employing empirical potentials to pre-train the MLP,190

and even predict energies for unsampled areas of the phase-space.191

Transfer Learning MLP for dicalcium silicates192

We now focus on the construction of a large dataset to train the MLP for dicalcium silicates,193

containing the 12 polymorphs available in Materials Project44 as of December 2022, includ-194

ing experimental and theoretical phases. To pre-train the model, we sample a total of 10000195

configurations using ReaxFF, by performing molecular dynamics simulations for each poly-196

morph under different conditions and deforming the equilibrium cell along all independent197

crystallographic axes, as detailed in the Methods section. The DFT dataset is built from198

this data, by randomly selecting structures to be evaluated by DFT.199

First, we study the impact of the transfer learning protocol on a realistic system like this.200

We consider several subsets of the database with an increasing amount of data and train201

models within both MLP-direct and MLP-transfer approaches. Figures 2(a) and (c) show202

the mean absolute error (MAE) of the energy and force as a function of the amount of DFT203

training data. Very interestingly, the transferred model outperforms its direct counterpart204

for any given amount of training data. The improvement (shown in the lower panels) is205

most significant with only a few hundred DFT data available for training, reaching up to206

a 40% reduction in both energy and force errors. With approximately 2000 DFT training207

data (half the total available set), the transfer learning model already reaches the same level208

of accuracy as the model trained directly on the full data set. Additionally, the model pre-209
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Figure 2: Transfer learning results for dicalcium silicates. (a) Energy error of transfer
(blue) and direct learning (orange), as a function of the amount of DFT data used for training.
The bottom panel shows the decrease of the error due to transfer learning. (b) Energy of
a test set of 700 structures evaluated using transfer and direct learning and ReaxFF (grey),
compared to the DFT value. (c)-(d) Same as the previous figure, in the case for the error
of the forces. (e) Phonon dispersion of γ-belite computed using DFT (black), MLP-direct
(orange) and MLP-transfer (blue). (f) Elastic tensor for the same polymorph. The color
indicates the deviation with respect to the DFT value.

trained on ReaxFF data and trained on the full DFT data set is about 10% more accurate210

than the best-performing MLP-direct model.211

Let us further characterize the performance of the transferred and direct MLPs trained212

on all the DFT data. Figures 2 (b) and (d) display the correlation of energy and forces213

with the actual DFT calculations, for both machine learning approaches and for the ReaxFF214

potential used for pre-training. Both MLP models outperform the ReaxFF potential and215

demonstrate high accuracy, resulting in a nearly perfect correlation with the DFT data.216

However, the MLP-transfer is still more accurate than the MLP-direct, by approximately217

1 meV/atom in energies and 0.05 eVÅ−1 in forces, as quantified in Figure 2 (a) and (c).218

This is a clear indication of the capabilities of the transfer learning enhanced MLPs and219
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their suitability for the exploration of the C2S phase space at a similar computational cost220

to empirical potentials. A simple efficiency check with a supercell of 4 × 2 × 4 of γ-belite221

containing 896 atoms shows that the MLP is as fast as ReaxFF for 4 cores, but it scales222

better and is twice as fast for 32 cores, as shown in the Supplementary Information.223

Finally, we explore the ability of our models to describe magnitudes related to higher-224

order derivatives of the PES, in particular, phonons [Figure 2(e)] and elastic properties225

[Figure 2(f)], which are of paramount importance for the discussion of our main results226

in the subsequent sections. As an illustrative example, we compute those magnitudes for227

the most stable belite polymorph, γ, within both training approaches, and compare the228

results to DFT calculations. The phonon dispersion curves are closer to DFT within the TL229

approach (blue lower panel) than directly training (orange upper panel). This is particularly230

noticeable for the optical modes, but it is also significant for acoustic modes. Moreover, the231

TL model excels at describing the phonon dispersion near the selected high symmetry points.232

Regarding the elastic tensor, direct MLPs are relatively accurate, within a 15% deviation233

from the DFT reference values. Additionally, the TL model further reduces the error in all234

the elastic constants, with a mean absolute error of 8.9 GPa on the elastic tensor, compared235

to the original 13.4 GPa of the direct model.236

Thus, the TL approach improves the prediction of the PES and its first and second-order237

derivatives over directly training on all the available data. The Supplementary Information238

includes results from a similar study where only some phases are undersampled in the train-239

ing data, demonstrating that our transfer learning approach also improves the performance240

in such scenarios. This is also interesting for the exploration of the phase space using evolu-241

tionary algorithms, where many atomic arrangements not included in the database are likely242

to be encountered. Hence, pre-training the MLPs in a ReaxFF dataset as diverse as possible243

will enhance the predictive power of the resulting potentials.244

Therefore, to further improve the flexibility of the MLP on those high-energy regions of245

the energy landscape, we incorporated several new structures into the previous training set:246
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several polymorphs of silicon dioxide (SiO2), calcium oxide (CaO), calcium silicates (CS),247

and tricalcium silicates (C3S), as well as 1000 data points taken from a preliminary DFT-248

EA run to account for pseudorandom and high-energy conformations. Finally, to prevent249

the system from collapsing if the interatomic distances are too small, we included dimers for250

each pair of chemical elements in the system. The distance was reduced until repulsive forces251

exceeded 20 eVÅ−1 and expanded up to 4Å. The final ReaxFF training database comprises252

20000 structures, while the DFT database is a subset of 8000 data points, as detailed in the253

S.I. Given the previous performance analysis, all the subsequent results are computed only254

with the MLP generated by the TL approach.255

Belite polymorph search and computational screening256

Figure 3: Sketch-map of the generated structures. (a) Energy of the found structures
for all the considered numbers of formula units. (b) Sketch-map of the lowest-energy 5000
structures. Each point represents one of the structures, and the distance between them rep-
resents their structural similarity, i.e., the closer the points, the more similar the structures.
(c) - (f) Several structural and mechanical properties represented using the same sketch-
map: density (ρ), average coordination number of calcium (CaCN), percentage of oxygen
atoms bonded to more than one silicon atom (Si-O-Si), and bulk modulus (K).

To discover new metastable polymorphs of belite, we conducted several independent EA257
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searches for different system sizes, ranging from 2 to 12 formula units per cell, at least until258

the experimental phases are found. This led to about 18000 potential structures, as displayed259

in Figure 3(a). Additional information regarding the number of structures for each size can260

be found in the Supplementary Information.261

As shown in Figure 3(a), most of the generated structures have an energy considerably262

above the range of the experimental structures, delimited by the energy of the α polymorph,263

indicated by a red line. Considering the large amount of structures generated, we focus on264

the 5000 with the lowest energy, which are more likely to contain metastable phases. For265

these phases, we calculated their structural dissimilarities as detailed in the Supplementary266

Material. We then reduced their dimensionality using a sketch-map,45,46 leading to the267

representation displayed in Figures 3(b)-(f). Each point of the figure represents one structure,268

and the distance between points indicates the similarity between structures: the closer two269

points are, the more similar the structures are. Over the maps in Figures 3(b)-(f), we270

projected several structural properties and elastic properties obtained from the elastic tensor.271

The low-energy structures generally exhibit high density and high bulk modulus values. In272

particular, all the structures with a density above 2.86 gcm−3, the lowest experimental density273

corresponding to X-C2S, have energies below the higher energy experimental polymorph α-274

belite. The calcium coordination number (CaCN) distribution is centered at 6. Structures275

with CaCN below 5.5 are generally high-energy phases, while higher CaCN are more favorable.276

Finally, most of the low-energy polymorphs are orthosilicates, i.e. they have isolated silicate277

monomers, like the already known experimental phases.278

The number of structures found in our initial search is too large, so we devise a compu-279

tational screening procedure to systematically filter the unique and most stable polymorphs.280

• In the first step, we identified duplicate structures and superstructures, by examining281

the structures with matching energies, densities, and space groups. Furthermore, the282

dissimilarity analysis described in the previous section was used to discard phases with283

a structural distance lower than 0.05. At this step, we identified 3000 unique structures.284
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• A large number of structures were still considerably above the highest energy of the285

known experimental polymorphs. To narrow down the searching space, we discarded all286

the phases with cohesive energy 7.5% over the energy of the highest-energy experimen-287

tal phase, i.e. α, reducing the number of polymorphs to 215. The phonon dispersion288

was computed for each of them along the high-symmetry path corresponding to their289

crystal symmetry, rejecting any phase displaying imaginary modes. Although these290

phases may give rise to lower energy structures after undergoing phase transitions, we291

did not explore such possibilities due to the complexity of the problem. Instead, we as-292

sume that the initial set of 18000 structures already includes any of those lower-energy293

structures. This leaves 70 dynamically stable phases.294

• Finally, an annealing process was performed, which involved increasing the temperature295

up to 400K and then cooling it down to 0K, followed by a geometry optimization.296

Since MD simulations might break the crystal symmetry, a lousy symmetry check was297

performed to identify the symmetry group using the ASE interface of Spglib.47,48 The298

process concludes with one last structure optimization with fixed symmetry. After this299

refinement, the structural dissimilarity analysis was performed again, removing similar300

and identical structures.301

After the computational screening, only 12 possible candidates remain from the initial302

18000 structures. All the candidates are orthosilicates with IV-coordinated silicon, consistent303

with the experimental phases. It is worth noting that two structures (S12 and S5) present304

only translational symmetry (P1 space group) and have large unit cells; therefore, we argue305

that they could be classified as glasses. These structures were generated in the EA stage and306

survived the annealing stage and the stability checks. Furthermore, none of the candidate307

structures were included in the Materials Projects database and therefore were not part308

of the training set. As a matter of fact, all non-experimental phases in the training set309

have energies above the α phase and all of the polymorphs found by EA, except for the S12310

phase. However, this phase has already been discarded. For instance, the energy of the next311
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polymorph with the highest energy (S11) predicted by the MLP is 0.64 eV/f.u. above γ,312

while the remaining non-experimental phases in the database are approximately 0.7 eV/f.u.313

above that reference.314

Reactivity analysis of the C2S candidates315
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Figure 4: Reactivity analysis of the candidates. (a) Several properties computed for
the known polymorphs and the three generated glassy structures: energy per formula unit
(E), density (ρ), averaged coordination number for calcium (CaCN), average Ca-O distance
to fulfill the Ca coordination shell (dCa-O (VI)) , bulk modulus (K), shear modulus (G) and
Young’s modulus (Y). The color ranges from the minimum to the maximum value of each
magnitude, and the polymorphs are ordered from least to most reactive. (b) Energy, average
Ca-O distance of the Ca coordination shell and bulk modulus of all the candidates. (c)
Selected candidates with the potential to display high reactivity.

The final aim of this work is to find potential C2S polymorphs with high dissolution316

rates, and for that, we need an atomic scale reactivity indicator. Unfortunately, a quantita-317

tive prediction of mineral dissolution rates based on atomistic simulations is a complicated318

task. Electronic structure calculations are suitable for surface chemisorption reactions, for319
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example, to predict the catalytic properties of materials.49,50 However, they are less appro-320

priate to predict dissolution, as the individual water chemisorption at the mineral surface do321

not correlate with the dissolution rates. For instance, it has been shown that the water dis-322

sociation reaction in γ-C2S can be barrier-less despite being the polymorph with the lowest323

dissolution rate. In contrast, water dissociation at the fast-dissolving β-C2S surface presents324

energy barriers between 2.5 and 47.2 kJ mol−1. Furthermore, electronic properties are not325

accessible to the MLP, so we need a structure or energy-based descriptor.51
326

A key factor that determines mineral dissolution rates is the ligand-cation exchange abil-327

ity.52–54 There is a clear correlation between the dissolution rates of oxides, orthosilicates,328

and carbonates, with the water exchange rate of the forming cation in solution.52,54 We as-329

sume that the ligand-cation exchange mechanism applies to phases with the same cation,330

and the exchange tendency is related to how strongly bonded is the cation in the structure,331

reflected in factors such as coordination and flexibility. To find correlations we plotted in332

Figure 4 (a) the binding energy and several structural and elastic properties of the experi-333

mental polymorphs in increasing order of hydraulic reactivity. Unfortunately, there are no334

quantitative sample-independent values for the dissolution rate of these polymorphs, but it335

is well-known that they follow the order (from least to most reactive) γ < β < α.6 More-336

over, the high dissolution rate of X-C2S samples has been suggested to correspond actually337

to an amorphous coexisting phase. Therefore, three amorphous dicalcium silicate models338

have been constructed from MD simulations by heating a γ-C2S supercell to 700K and rapid339

cooling at different cooling rates (see Methods for details). These models are denoted as G1,340

G2 and G3, from lowest to highest cooling rate. The final expected order for the dissolution341

rate is γ < β < α < X < G3 < G2 < G1, with uncertainty about the actual ranking of the342

X phase.343

Figure 4 (a) shows that there is a correlation between the cohesive energy and the re-344

activity: the more energetically stable the polymorph is, the less reactive they are. The X345

phase is an exception to the trend, but it has already been discussed that its reactivity may346
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not have been properly quantified. In fact, all three amorphous models have higher energy347

than the rest of the polymorphs. Nevertheless, the X phase correlates with the remaining348

properties, while the γ phase, undoubtedly the least reactive phase, breaks the trends in349

density. For all the other phases a lower density, higher Ca-O distance to fulfill the Ca350

coordination shell dCa(VI), lower CaCN, and lower elastic properties correlate with a higher351

reactivity. It is interesting to note that the amorphous structures ranked as a function of352

the cooling rate follow the correlations, which suggests that amorphous C2S could be indeed353

responsible for the high dissolution rate in samples with X-C2S.354

Considering the previous trends, we propose three magnitudes as potential reactivity355

descriptors of the dicalcium silicates: the cohesive energy, the Ca-O distance (dCa(VI)), and356

the bulk modulus (K). Figure 4 (b) ranks the 12 new polymorphs according to these three357

reactivity indicators. In theory, the phases located at the right end (high energy, high dCa(VI),358

and low K) should be the most reactive polymorphs, and the objective of our search. Despite359

being in the range of interest, we will not consider the S5 and S12 because they are amorphous360

systems as mentioned before, and therefore it is natural that they lie close to the amorphous361

models. Out of the remaining candidates, the S7 structure shows the most promise. It has362

the lowest bulk modulus among the crystalline structures, half the value of γ-C2S, and the363

largest dCa(VI). The S7 is a layered structure, with CaO forming a central sheet and silicate364

groups at both sides with three of their four oxygen atoms coordinated to the CaO central365

sheet. The interlayer space contains a Ca atom that links consecutive layers. The S11 is366

a similar layered structure, without Ca in the interlayer space. Its energy is in the upper367

range, only surpassed by the amorphous structures. However, its overall potential is limited368

due to low values of other indicators. Other possible candidates that may display higher369

reactivity than the known phases include S10, a bulk phase with a monoclinic axis, which370

also exhibits high energy and low bulk modulus.371
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4 Conclusions372

In this work, we have introduced a hitherto unexplored approach to efficiently generating373

accurate MLPs based on transfer learning (TL) from the ReaxFF reactive force field to374

DFT. Previous attempts to reuse a lower-quality training set to reduce the amount of high-375

quality data were limited to using quantum methods as both low- and high-quality data.376

The present study demonstrates that TL from a classical force fields to DFT is both feasible377

and effective. In particular, we find that building the MLPs from models pre-trained on378

ReaxFF data can boost their accuracy from 10% to 40% in both energy and forces. Very379

importantly, the generation of the data for pre-training is virtually free of computational cost,380

and the methodology has no drawback: the TL-enhanced MLPs outperform those trained381

exclusively on DFT data in every tested scenario. In addition, MLPs pre-trained on large382

datasets made by empirical potentials can cover larger regions of the configurational space,383

providing flexibility and generality to the potential.384

The TL methodology has been applied to build a MLP for calcium silicates. First,385

the MLPs were pre-trained on a dataset of 20000 ReaxFF configurations, followed by a386

refinement on 8000 DFT data points. The resulting MLP can successfully reproduce the387

DFT energies and forces with a mean absolute error of 4.8 meV/atom and 0.25 eVÅ−1
388

respectively, as well as phonon spectra and elastic properties of calcium silicate crystals.389

This potential has been used to search for new dicalcium silicate polymorphs, aiming to390

find new (and hopefully highly reactive) belite phases. The combination of the DFT-like391

accuracy with the efficiency of classical potentials permits to examine and sieve thousands392

of polymorphs. In particular, we generated 18000 structures using EA, which were filtered393

using a computational screening protocol to discard duplicates, supercells, and dynamically394

unstable structures according to their phonon spectra and annealing at 400K. From the395

initial 18000, we identified 10 new crystalline C2S polymorphs that are potentially stable.396

Based on our mechanical and structural descriptors of reactivity, a layered structure, denoted397

as S7 in this work, is particularly promising for displaying higher hydraulic activity than the398

18

https://doi.org/10.26434/chemrxiv-2024-jthfk ORCID: https://orcid.org/0000-0002-1156-1829 Content not peer-reviewed by ChemRxiv. License: CC BY-NC 4.0

https://doi.org/10.26434/chemrxiv-2024-jthfk
https://orcid.org/0000-0002-1156-1829
https://creativecommons.org/licenses/by-nc/4.0/


currently known belite phases.399

The next step will be to investigate the hydration of these structures by performing400

molecular dynamics simulations at the crystal/water interfaces. If the proposed polymorphs401

are indeed highly reactive phases, it will be essential to test their thermodynamic stabiliza-402

tion by guest ions, in order to guide the synthesis and eventual production of highly reactive403

belitic cements. To conduct these studies, the computational work should focus on exploiting404

the presented TL methodology to include large and complex systems beyond the DFT ca-405

pabilities. This could include belite/water interfaces,55 complexes and clusters in solution,56
406

an extension of the MLP to new chemical species etc., allowing quantitative studies of the407

C2S reactivity and stability.408
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