
 

3D-Pharma, A Ligand-based Virtual Screening tool 
 
 

using 3D Pharmacophore Fingerprints 
 

 
 

Bernardo F. Domingues, Andrelly Martins-José, and Júlio C. D. Lopes 
 

 

Chemoinformatics Group NEQUIM, Departamento de Química, Universidade Federal de Minas 
 

Gerais, Belo Horizonte, Brazil 
 

 
E-mail: jlopes.ufmg@gmail.com 

 
 
 

 

Abstract 
 

In this work, we introduced 3D-Pharma, a new Ligand-Based Virtual Screening method 

that uses fingerprints of pharmacophore triplets at atomic resolutions to build very simple 

and predictive models. Within 3D-Pharma the molecules are described by multiple 

representations that comprehend several prototropic species and conformations (multiple 

species, multiple mode approach). All the multiple representations of a compound are 

concatenated into a unique fingerprint that accounts for most of its chemical and 

conformational diversity. The biological activity of an ensemble of active molecules are 

represented by a single modal fingerprint or model, validated through a new exhaustive 10-

fold cross-validation scheme, which improves robustness and internal consistency of the 

models, as well as its predictive power. We benchmark our method with 10 datasets of active 

compounds and decoys gathered from DUD database and compare its performance against 

seven state-of-the-art LBVS methods. To generate the models, we used three external and 

independent datasets of bioactive compounds (Drugs, PDB Ligands and WOMBAT). We 

concluded that 3D-Pharma overperforms all other state-of-the-art LBVS tools analyzed, in 

terms of global accuracy as well as scaffold hopping and early recovery capacities. 

Furthermore, the models produced by 3D-Pharma are simple, robust, consistent and 

predictive.  
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Introduction 
 

Since 1996, the pharmaceutical industry has experienced a long period of low profits whilst at 

same time experiencing continuous increases in expenditures. Productivity, as measured by the 

number of approved NME’s, has fallen to its lowest level  since the 80’s. 1 As a consequence, 

there are an impressive number of blockbuster drugs whose patents will be coming to their 

expiry dates (a phenomena known as "patent cliff").2–4 Therefore, the major players in the 

pharmaceutical industry are under pressure to abandon less profitable branches and to concentrate 

their efforts on those whose financial return is more likely. 5 Within this scenario, in silico methods 

have become even more important in order to speed up the process of discovery at lower 

aggregated cost. 6 

A major problem in drug discovery is the identification of novel compounds that show binding 

properties to protein targets of pharmaceutical interest, together with appropriate pharmacokinetic 

properties. In the lack of previous information regarding target´s structure nor known active 

compounds, there is no choice but to rely on a brute force hit identification process, such as HTS 

(High Throughput Screening), over a whole chemical compound library. 7,8 But as data about 

known ligands or crystallographic structures from protein targets becomes available, such 

information can be used for selecting a small portion of some virtual compound database that shows 

a higher likelihood of interaction with a given target than a randomly chosen compound. 9 Such 

enrichment is the goal of Virtual Screening (VS) applications. 10 VS methods can be broadly 

classified by the origin of the data used in the screening process. If it uses only data derived from 

previously known ligands, the application is known as Ligand-Based VS; if the application uses 

data derived from the structure of the protein target, the method is known as Target-Based VS. 

There is a plethora of methods available within each class, and a handful of hybrid methods, 11–

13 most of them summarized in several recent reviews. 10,14–16
 

The methods of discovery and development of new drugs based on knowledge of the 

structures of biological targets are unavoidably dependent on their validation as potential 

therapeutic targets, as well as the specific mode of action through which the new candidate 

drug will exert its putative/predicted effect. It is worth mentioning that approximately 50% of 
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the compounds rejected at Clinical Phase II is due to insufficient efficacy, 17 suggesting 

deficiencies in target or endpoint biomarkers validations. 18 A TBVS study is typically carried 

out through molecular docking approaches. However, although they are able to reproduce with 

reasonable precision the conformations observed in the crystallographic complexes, the scoring 

functions cannot consistently differentiate active from inactive compounds. 19 Moreover, the 

methods of drug discovery and development based on a knowledge of the structures of the 

active ligands, e.g. those substances previously known to cause a biological, pharmacological or 

therapeutic effect of interest, has a great potential to generate predictive models aiming not only 

at a specific target, but also for biological effects which can be associated with in vitro or in vivo 

biological tests. 20–22 Conversely, the ligand-based tools do not depend on information regarding a 

biological target nor a mechanism of action, hence enabling them to create predictions about effects 

that should be multifactorial. 23–25 The methods based on the structures of the active ligands, 

although not necessarily dependent on a specific mode of action, lack a sufficient knowledge of the 

molecular structure and its role in the interactions with the components of the biological 

environment. 26 Hence, there is no a consistent set of molecular descriptors capable of foreseeing 

the biological properties of small molecules with reasonable confidence. 

The most popular ligand-based methods are those derived from 2D molecular structures, 

possibly due to their availability, speed, ease of use and relatively well established protocols.27 In 

general, they present a good performance in retrospective studies, 28 but the results of prospective 

studies generally are disappointing, even though they lead to a relative enrichment of 

actives.29 The inclusion of conformational data in 3D LBVS methods increases the complexity of 

the algorithms and computational costs. Therefore, most of the 3D methods select only one 

conformation for each compound. The options are the lowest energy conformation, a 

conformation from a co-crystallized complex, or a conformation based on alignment with other 

active compounds. However, the binding event could dramatically change the energy of 

conformers, and the active conformation could not be same of the global minimum calculated 

in water or in a  vacuum, as usually done by most quantum mechanics (QM) or molecular 

mechanics (MM) tools used in chemoinformatics and medicinal chemistry. In fact, recently 
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Nicklaus and co-workers 30 analyzed the conformations of ligands found in the PDB database at 

Density Functional level of theory. The difference of energy between the conformations found in 

PDB structures and the fully optimized conformer remain in the range of 0 to 25 kcal/mol, 

distributed quite evenly and independently of the crystallographic resolution. The ligands 

deposited in the Protein Data Bank 31 mostly present only one conformation bound to the active 

site of the biological target. However, there is an increasing amount of data showing that it is 

not uncommon for a ligand to exhibit multiple conformations or multiple binding modes. 32,33 In 

addiction, the fact that crystallographic structures are not obtained under physiological 

conditions casts doubts over which conformation should be considered as the bioactive. 34 Even 

the soaking method used to produce the crystal can influence the conformation observed in 

models obtained from the X-ray diffraction maps. 35
 

Some recent studies suggest that 2D methods outperform 3D approaches in terms of 

accuracy. 28 This could be due to deficiencies in the quality of the 3D descriptors or problems 

with the conformational sampling.  However, some 3D methods based on shape, electrostatics, 

or pharmacophore features have been shown to perform better than 2D LBVS methods when 

considering scaffold hopping. 36 There are numerous pharmacophore-based VS approaches. The 

classical use of pharmacophore elucidation through the alignment of active compounds is the 

approach taken by the majority of commercially available tools like CATALYST, 37 GALAHAD, 

38 GASP, 39 the pharmacophore module of MOE, 40 PHASE 41 and many others non-commercial 

tools, like PharmaGist. 42,43 Although the traditional pharmacophore mapping approach is well 

established and performs satisfactorily, it is very sensitive to the size of the dataset to be screened 

14 and biased by the conformation selection. 44,45 Pharmacophore keys (or fingerprints) encode the 

pharmacophoric features in binary vectors. They lack the intuitive nature of the classical 

pharmacophore elucidation, but they have a considerably higher throughput when dealing with 

large molecular databases, making them a very popular approach to VS. There are several 

implementations of pharmacophore searches powered by fingerprints, such as FLAP 46–49 and 

Pharmer. 50 Other examples found are commercially available suites like Tripos’ Tuplets 51 and 

Accelrys’ 3DKeys.52 Despite the number of available techniques, any comparison between them is 
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difficult due to the lack of benchmarking standards both in databases and the metrics of 

evaluation. 15
 

Currently there is a search for new molecular descriptors that associated with strong infor- 

mation modeling techniques and robust statistical methods could make better predictions than 

those produced by the traditional methods. 28 Furthermore, considering that chemical and 

biological systems are dynamic in their very nature, both ligands and biological targets are 

adaptive flexible molecules and the emergent properties that arise from the binding event can 

trigger cascade effects that ultimately produce the observed biological effects. 53 A knowledge of 

the structures of binding partners is not sufficient to clarify such a chain of events and to develop 

suitable tools for practical application. 26 Thus, we are currently at a crossroads in which the 

available methods are not up to the challenge of predicting accurately the biological activities of 

small organic molecules. 54 

Molecular recogn i t i on  events are strongly dependent on conformational and proton-

exchange equilibria but they are often neglected in virtual screening studies. 55,56 Different 

microspecies of biological macromolecules and their ligands are characterized by different 

conformations and stereo-electronic characteristics. Therefore, including multiple species and 

multiple conformational data (MultiSpecies-MultiMode approach, or MS-MM) 57,58 in VS 

applications could result in a comprehensive approach of biological activity and of inherent 

dynamics of the process of binding of small molecules to their biological targets. Considering 

those LBVS methods that use DUD datasets as benchmark, there are a few that have as a feature a 

full multimode approach. 59–61 Although it is more common to start with multiple conformations, 

the final results are computed over a single conformation. 46–49,62,63 To the best of our knowledge 

there is no published LBVS method that uses the MS-MM approach with DUD datasets. 

This work aims to introduce 3D-Pharma, a new method for LBVS based on pharmacophore 

fingerprints. The predictive power of 3D-Pharma is compared with other state-of-the-art LBVS 

methods available elsewhere that use the Directory of Useful Decoys (DUD) database 64 as a 

benchmarking data set. The 3D-Pharma method applies a multispecie-multimode (MS-MM) 

approach for the generation of atom-centered potential pharmacophore triplets. Within 3D-
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Pharma, all the multiple representations of a compound are concatenated into a unique binary 

vector or fingerprint that accounts for most of the chemical and conformational diversity of the 

compound. 3D-Pharma uses a single modal fingerprint 65 to represent the biological activity of 

an ensemble of active molecules, each one represented by its unique fingerprint. These models 

were built from three external and independent datasets (Drugs, PDB-Ligands and Wombat) and 

were validated by a new exhaustive 10-fold cross validation scheme where each external dataset 

was divided into three subsets comprising training, evaluation and test sets. The final models were 

selected after extensive internal validation against the evaluation and test sets. 
 

 
 

Material and Methods 
 

 
 

Data 
 

 

A retrospective virtual screening study was made of ten protein targets chosen from among 

the 40 targets available in the Directory of Useful Decoys (DUD) dataset. 64 The DUD Dataset is a 

benchmarking dataset for docking tools, but is commonly used to assess performance of ligand-

based methods and is well suited to do this. 28 The selected targets were: Aldose Reductase 

(ALR2), Andro- gen Receptor (AR), Cyclin-dependent Kinase 2 (CDK2), Cyclooxygenase-2 

(COX-2), Epidermal Growth Factor Receptor Kinase (EGFR), Factor X-α (FXα ), Mitogen 

activated Protein Kinase 14 (P38), HIV-1 Reverse Transcriptase (HIVRT), Phosphodiesterase V 

(PDE5) and Peroxisome Proliferator Activated Receptor γ (PPARγ ). These targets were selected 

based on availability of WOMBAT datasets66,67 in the DUD website. 

For each active molecule in the original release of DUD, there are approximately 36 other 

inactive molecules with similar topological features. Jahn et al 68 performed a lead-like filter 69 

over the molecules, as suggested by Good and Oprea, 67 in order to make the benchmark set more 

suitable for LBVS applications. For each of the aforementioned targets, sets of actives and in- 

actives molecules were obtained from DUD according to Jahn’s filter. Aiming to have true and 

reliable external validation of 3D-Pharma approach, three independent datasets were used to build 

the models for each target. The first dataset, called "Drugs", consists of all available approved 
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and experimental drugs for each target, gathered from the public databases DrugBank, 70,71 KEGG 

Drugs 72 and Therapeutic Targets Database (TTD). 73 The second dataset, called "PDB-Ligands", 

contains the ligands bound to any crystallographic structure of the target deposited in the Protein 

Data Bank (PDB). 31 Finally, the third dataset, as mentioned above, was the WOMBAT dataset 

available through the DUD website. All datasets used to build models for each target (Drugs, PDB 

Ligands and WOMBAT) were previously filtered using a 2D comparison within ChemAxon’s 

Instant JChem 74 against the corresponding DUD Actives subset. Any redundancies between 

them were excluded from the external datasets. A complete list of the molecules gathered for this 

study is available in the Supporting Information. Table 1 shows the datasets sizes as well as the 

number of different chemotypes found in DUD Actives datasets for each target. The numbers 

may vary from the original DUD release and from other publications since some of the molecules 

generated errors throughout the molecular treatment protocol and were not entered in the final 

subsets. 
 

 

Treatment of Molecular Structures 
 

 

All molecules used in this work were preprocessed following a pre-treatment protocol of 

manual dessalting, succeeded by standardization and dominant tautomer calculation with the 

Standardizer program by ChemAxon. 74 These steps ensure that all structures are in the same 

initial state. All datasets were submitted to the same protocol of molecular treatment, which 

starts by determining all dominant tautomers between pH 0 and 14, followed by a major 

microspecie calculation at pH 7 for each tautomer. These steps are important to be sure that a 

relevant sample of the chemical variability of the compound is taken into account when 

computing the potential pharmacophore 
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Table 1: Number of unique compounds for each target in the DUD and external datasets (Drugs, 

PDB-Ligands and WOMBAT), as well as the number of chemotypes for each DUD Active dataset. 

 
 

 
Target 

 

 
Dataset 

 
Number of 

Compounds 

Number of 

Chemotypes 

in DUD 

Actives 
 

 
ALR2 

DUD Actives 

DUD Decoys 

Drugs PDB 

Ligands 

WOMBAT 

26 

910 

11 

26 

41 

 

 
14 

 

 
AR 

DUD Actives 

DUD Decoys 

Drugs PDB 

Ligands 

WOMBAT 

68 

2616 

45 

13 

36 

 

 
10 

 

 
CDK2 

DUD Actives 

DUD Decoys 

Drugs PDB 

Ligands 

WOMBAT 

47 

1702 

37 

132 

148 

 

 
32 

 

 
COX-2 

DUD Actives 

DUD Decoys 

Drugs PDB 

Ligands 

WOMBAT 

212 

11577 

77 

4 

66 

 

 
44 

 

 
EGFR 

DUD Actives 

DUD Decoys 

Drugs PDB 

Ligands 

WOMBAT 

365 

14516 

10 

12 

62 

 

 
40 

 

 
FXα 

DUD Actives 

DUD Decoys 

Drugs PDB 

Ligands 

WOMBAT 

64 

1888 

5 

85 

105 

 

 
19 

 

 
HIVRT 

DUD Actives 

DUD Decoys 

Drugs PDB 

Ligands 

WOMBAT 

34 

1370 

4 

29 

97 

 

 
17 

 

 
P38 

DUD Actives 

DUD Decoys 

Drugs PDB 

Ligands 

WOMBAT 

135 

5416 

16 

76 

52 

 

 
20 

 

 
PDE5 

DUD Actives 

DUD Decoys 

Drugs PDB 

Ligands 

WOMBAT 

26 

1561 

12 

10 

85 

 

 
22 

 

 
PPARγ 

DUD Actives 

DUD Decoys 

Drugs PDB 

Ligands 

WOMBAT 

6 

38 

12 

60 

27 
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points (PPP) (as shown in Figure 1). To accomplish these tasks the ChemAxon’s JChem 74 suite 

was used. 

The next step is a conformational sampling along with partial charge calculations for each 

representation of the initial molecule. As the partial charge distribution affects the conformation 

and vice-versa, an iterative process would be the most accurate. But this approach is not viable 

when dealing with large datasets with thousands of molecules, due to its huge computational cost. 

Hence, a better approach was devised, trying to optimize CPU time without significant loss of 

precision. 75–77 Using OpenEye’s QuacPac and Omega2 78 suites, the lowest-energy conformation 

is computed using the MMFF94s 79 force field, and its partial charges are determined using the 
 

semi-empirical AM1BCC 80 method. The last step is a conformational sampling, limited up to 200 

conformers (for the maximum of 25 rotatable bonds), within an energy window of 5 − 10 kcal/mol 

and an RMSD between 0.5-1.0 Å. 

 

 
Pharmacophore Fingerprint Build 

 

After the molecular treatment, each compound is represented by a large ensemble of several con- 

formations, associated to a small number of tautomers and protonation states. The next step is a 

pharmacophoric mapping, performed by ChemAxon’s PMapper. 74 This process is done atom-wise 

and assigns at least one out of the following six PPP types to all heavy atoms in a molecule. The 

Aromatic (R) feature is assigned to any atom that is part of an aromatic ring. Hydrogen Bond 

Donor (D) and/or Hydrogen Bond Acceptor (A) are assigned to atoms able to establish hydrogen 

bonds with a potential target. Positively Charged (P) and Negatively Charged (N) are assigned to 

atoms with partial charges above +0.4 or below −0.4, respectively. Any other heavy atom that 

fails to fit in the classes above is assigned as Hydrophobic(H). All triplets formed by PPP’s in 3D 

space are generated for each conformer. The Euclidean distance between each pair of points is 

discretized in ten distance bins (in Å): 0–3, 3–4.5, 4.5–6, 6–8, 8–10, 10–12.5, 12.5–15, 15–18, 18–

21 and 21–∞. Each triplet is a putative pharmacophore formed by three heavy atoms with a PPP 

type assigned and a defined distance bin for each edge. This triplet is represented by a 6-character 

string (3 characters for the feature on vertices and 3 for the distance bins on the edges) that 
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identifies it unequivocally. Figure 1 illustrates how the pharmacophore triplet formed by a 

negatively charged carboxyl group, a positively charged amine group and the hydrogen donor 

nitrogen atom in the structure of histidine is represented within 3D-Pharma. 

Each conformation of a single molecule could have hundreds of three-point potential 

pharmacophores, so 3D-Pharma transforms the strings in indexes of a binary fingerprint using a 

hash function provided by the CMPH 81 library. These numeric fingerprints are analogous to 

standard bi- nary fingerprints, but instead of storing a very sparse array of bits, only the indexes 

of lit bits are stored. This decision was made due to the non-scalability of the binary vector size 

when increasing the number of nodes used in each tuple (for example, when using tetrahedrons 

instead of triangles). Therefore, new operations are needed to substitute the binary operators AND 

and OR, since they are not applicable to a non-binary representation. Using Set Theory, the 

analogs to the two binary operations can be redefined: using Intersection (∩) for AND and 

Union (∪) for OR. The Tanimoto coefficient was used for similarity computation between two 

vectors using Set Theory operations. Given the fingerprints of two molecules A and B, the 

Tanimoto coefficient is given by: 
 

T = 
|A ∩ B| 
|A ∪ B| 

 
 
. 

 
 
 

Model Construction 
 

 

In some LBVS applications, it is necessary to generate comprehensive queries that represent a pur- 

sued activity profile. This query should hold enough information to search and retrieve molecules 

with a potential activity from a large compound database. In 3D-Pharma, the query is a model built 

from a set of molecules previously known to be actives. A model (M) is formally defined by a set 

of pharmacophore triplets (x) that are present in the molecules that form the training set (T ) in a 

frequency above a given threshold (τ ). It can be formally defined as:
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Protonation 
states and 

Conformers 

 
 
 
 
 
 
Conformer 1a 

 
 
 
 
 
 
Conformer 1b 

 
 
 
 
 
 
Conformer 2a 

 
 
 
 
 
 
Conformer 2b 

Pharmacophore 
String 

 
PND111 

 
PND123 

 
PND123 

 
PND134 

Hashed 
Pharmacophore 

 

123456 
 

456123 
 

321654 

 
 
 

3D-Pharma 
Hybrid Structure 

of PND 
pharmacophore 

of histidine 

 

 

 
 

 
a.  SMILES  N[C@@H](CC1=CN=CN1)C(O)=O 

 

b. Tautomers 

               

 

Tautomer 1  Tautomer 2 
 

c. 

   

 

 

 
d. 

 
e. 

 

f.  

 
 
 
 

 
Figure 1: The effects of the proposed molecular treatment and generation of the 3D-Pharma 

pharmacophore triplets fingerprint. The amino acid histidine wase selected as an example and all 

structures are depicted in 2D for clarity. a) The SMILES representation of the neutral form of 

histidine. b) The structures of the two dominant tautomers of histidine (pH between 0 and 14), 

showing the hydrogen exchange between the two atoms of nitrogen in the imidazole ring. c) 

The structures of the major microspecies (protomers) of each tautomer of histidine at pH 7. For 

each protomer two hypothetical conformations are presented (only the imidazole ring flip are 

considered). The dotted lines represent the pharmacophore triplet formed by one of the negative 

charged (N) oxygen atom of the carboxyl group, the positive charged (P) alpha-nitrogen atom, 

and the hydrogen-bond donor (D) nitrogen atom in the imidazole ring. The same pharmacophore 

triplet is monitored over all conformations d) the pharmacophore triplets of each conformation are 

converted to a string. PND stands for a triplet formed by a positive, a negative and hydrogen-

bond donor pharmacophores. The numbers after the alphabetic string are indicatives of the 

distance between the atoms (see text). e) The hashed pharmacophore form derived from 

alphanumeric string. f) The hypothetical hybrid representation of the PND pharmacophore of 

histidine encoded by 3D-Pharma fingerprint. All pharmacophore triplets detected over all 

conformations, represented by the dotted lines, are equally considered. 
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m 

 

m 

∑ f (x, Ti) 

x ∈ M ⇔ 
i=1

 

 

 

 

≥ τ , f (x, Ti) = 
 

 

 
1 if x ∈ Ti 

 

0 otherwise 

 

 
 
 

(1) 

 

m being the size of the training set T, and Ti is the ith molecule in the set. We tried to optimize 

the performance by incrementing the value of τ by 0.1 (0 ≤ τ ≤ 1). The gathered data (not shown 
 

here) suggested that a value of 0.7 is a generally optimal cutoff when treating single molecular 

target datasets. 

In order to perform a virtual screening study, it is necessary to have at least two datasets of 

active molecules: a training set and a test set. The former is used for model construction, which 

should be able to retrieve the latter among a set of inactive molecules. Although this is a 

widely used approach, it presents a major problem: how to split the active data between these 

two groups? The query construction is strongly affected by the training set selection. Besides this, 

test and training groups should not be too similar to turn the classification problem into a trivial 

one, nor be too different, so that molecules could show different profiles of activity or action 

mode. 82,83 

To build and validate the models, 3D-Pharma uses a new protocol inspired by the work of Trop- 

sha 84,85 on validation problems of QSAR models. In his work, Tropsha argues that the model must 

be first exhaustively tested and validated internally before being used in external comparisons. In 

order to accomplish this, one should generate multiple training and test groups, and only the most 

internally consistent models should be considered in an external validation. 3D-Pharma splits the 

active molecules among ten groups, using the average 3D similarity between them to create ho- 

mogeneous groups. These groups are used to build models in a stratified 10-fold cross-validation 

scheme where each group plays the role of test group once, and the remaining nine groups are re- 

cursively split between six training groups and three evaluation groups. Each training group is used 

to build a model, which is compared with the molecules in its correspondent evaluation group. 

Since 84 combinations of training/evaluation sets can be formed from nine groups, 84 models are 

generated. Of these, only the ten models with the highest average similarity to the molecules of 

its respective evaluation group are selected. These models are then used as a query to recover the 

https://doi.org/10.26434/chemrxiv-2024-dkvf8 ORCID: https://orcid.org/0000-0002-5872-7611 Content not peer-reviewed by ChemRxiv. License: CC BY-NC-ND 4.0

https://doi.org/10.26434/chemrxiv-2024-dkvf8
https://orcid.org/0000-0002-5872-7611
https://creativecommons.org/licenses/by-nc-nd/4.0/


 
 

test group among a set of inactive molecules, and only the one which has the best recovery rate, 

measured by the area under the Receiver Operating Characteristic (ROC) curve is retained (Fig- 

ure 2). Subsequently, the next group assumes the role of test group and the process is repeated. At 

the end, the full protocol generated a total of 840 models and produced 10 final models, one per 

test group. Henceforth, all results from 3D-Pharma presented here were averaged over these 10 

models. When a dataset contains less than 10 molecules, it is not possible to do a stratified 10-

fold cross-validation and, in this case, a simple model is built without internal validation, 

considering all active molecules to be part of the Training Set. 
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Figure 2: The 3D-Pharma exhaustive 10-fold cross validation scheme used to model construction 

and validation.  Each group out of ten assumes the role of test group once, and the remaining 

groups are systematically split between training (six groups) and evaluation (three groups) sets. 

Each possible distribution generates a model from its training set to be compared against its cor- 

responding evaluation set. There are 84 possible distributions and 84 models are generated. The 

10 models most similar to its evaluation set are selected to a final validation against the test set. 

Only the highest predictive model for each test set is selected, resulting in 10 final models built by 

3D-Pharma. 
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Metrics of Evaluation 
 

 

To assess the performance of 3D-Pharma and also compare it with other available tools, a set 

of metrics were defined for measuring the performance of 3D-Pharma in VS applications. Three 

key features should be addressed when designing a VS method, and each one has its own set of 

metrics: 

 

• Accuracy - The overall performance of a VS method. Can be easily quantified using the area 

under the Receiver-Operating Characteristic curve (AUCROC), which is a statistically 

relevant and unbiased metric for classification performance assessment. 86
 

• Early Recognition - The capacity of the VS method to recover active compounds at early 

cuts. The AUCROC’s capacity to assess the "early recognition" has been criticized, 87 since 

whenever a true positive is found, it’s contribution to the final score is proportionally the 

same regardless of ranking position. Usually results published elsewhere rely on Enrichment 

Factor (EF) of selected cuts to assess the "Early Recognition" problem. However, this metric 

is not suitable as it depends on the size of the database and on the actives/inactives ratio. Even 

in standardized databases, unbiased metrics are preferable. In a  search for  a better 

metric, Truchon and Bayly 87 generalized the Receiver-Operator Characteristic and 

designed the parametric Boltzmann-Enhanced Discrimination ROC curve (BEDROCα). The 

α parameter is used to specify the range of the ranked list that would contribute the most 

to the overall score. In their work, Truchon and Bayly formalized this relation and 

suggested some α values. Within these suggestions, values of α = 160.9, 32.2 and 20, 

which corresponds respectively to an EF at 1%, 5% and 8% of the selection, were chosen. 

 
• Scaffold Hoping - The ability of the VS method to find novel (or diverse) molecular scaffolds. 

 

To account for scaffold hopping in retrospective studies, one would need to cluster the 

actives into groups of similar molecular structures. Since the DUD database has already 

clustered its active molecules, it is straightforward to apply the metrics. The arithmetic 

weighting of the ROC curve (awROC) 88 was used to assess scaffold hopping capabilities, 

which weights 
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the ROC curve to take into account cluster information. A true positive influence in the score 

is inversely proportional to the size of the cluster that it is inserted into, so early recognition 

of low represented clusters contributes more to the final score. 

 

 

Methods in LBVS used for comparison 
 

 

The performance of 3D-Pharma was compared with those of other LBVS methods that also 

used DUD as a benchmarking dataset and its authors supplied enough data to support the full 

compari- son. 

 

 

Optimal Assignment methods 
 

Optimal Assignment is a graph theory solution to the optimization problem. Given a bipartite 

graph where each node is linked to another node by a weighted edge, an optimal assignment is 

a graph-matching where the sum of the edges is maximized. This was first applied in molecular 

similarity by Fröhlich and co-workers, 89,90 when they created the OAK (Optimal Assignment 

Kernel) method. OAKFLEX was a modification of OAK made by Fechner et al 
91 that included 

conformational space similarity into the calculations. Other implementations of algorithms 

which mapped the optimal assignment problem into molecular similarity measures include 2SHA 

(Two-Step Hierarchical Assignment) 68 and OAAP (Optimal Local Atom Pair Environment 

Assignment). 68
 

 

 
 

4D FAPOA 

 

4D FAPOA 
59 generates a very large ensemble of conformations whose atom-pair distance 

profiles are encoded in a series of Gaussian Mixed Models (GMM) generating a single 

probabilistic model. The energy of conformations is used as a weight factor of each measured 

atom-pair distance in the GMM generation. The complete information of the conformational space 

of a molecule is encoded into a list of Gaussian mixture models that could be used to compare 

different molecules without the need for original conformational ensemble. The final similarity 

value is computed through an optimal assignment algorithm over atom-pairs in a distance matrix. 
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FLAP 
 

 

FLAP (Fingerprints for Ligands and Proteins) 46–49 is a well-known 3D fingerprint tool that uti- 

lizes molecular interaction fields (MIFs) from both ligand and target structures, generated by the 

program GRID. 92 Each grid point with a local maximal value of the MIF generates a pharma- 

cophoric point of the type of the probe used to generate the MIF and all tetrahedrons formed by 

these points are stored in a fingerprint. A similarity search is made considering the fingerprints and 

the alignment of the query molecule to the template. In the recent work by Cross et al, 49 data fu- 

sion techniques were used over several data sources to improve recall rates. Of these, LBtParetoR 

and LBOpt were the best ligand-based techniques reported. LBtParetoR uses a recursive Pareto 

sum ranking of the alignments, using the DUD cluster representatives (DUD-Parents) as templates. 

The LBOpt mode uses information of inactive compounds to choose the best template among the 

DUD-Parents. 

 

FieldScreen 
 

 

FieldScreen 93 computes molecular field points around a "relevant" conformation of the query 

molecule and searches a multiconformer database for matching patterns, using maximal 

colored cliques of field points for the alignment. 

 

 
 

Results and discussion 
 

All compounds included in this study (DUD Actives, DUD Decoys, Drugs, PDB Ligands and 

WOMBAT entries) were submitted to the same protocol of molecular treatment. A set of models 

was built from the molecules of each active dataset (except COX-2 PDB Ligands, FXα Drugs and 

HIVRT Drugs, which had less than 10 molecules in the dataset). Each model was used as query 

in a similarity search against a pool of molecules formed by DUD Actives and DUD Decoys. The 

resulting ranking was evaluated through the metrics aforementioned and compared to the LBVS 

methods mentioned previously. 
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As shown in Figure 4, only 3D-Pharma and 4D FAPOA had data comprising all 10 targets 

included in this study. The other techniques mentioned above only made data available for 13 

targets with high chemotype diversity (greater than 15 classes). Within these, there are seven 

targets in common with our selection : CDK2, COX-2, EGFR, FXα , HIVRT, P38 and PDE5. 

Hence, all averaged data on the LBVS methods depicted in Figure 5 and Figure 6 (except for 

3D-Pharma and 4D FAPOA) are averaged across these seven targets. 
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Figure 3: Average AUCROC produced by 3D-Pharma for all targets. For each dataset, the AUCROC 

value was averaged over the 10 models derived from the 10-fold Cross-validation protocol. The 

error bars correspond to the calculated standard deviation for each dataset. 
 

 

As seen in Figure 3, 3D-Pharma had an excellent overall accuracy, with 20 out of 30 models 

with AUCROC above 0.8. Of these, 14 had AUCROC above 0.9. As for the targets, seven out of 

ten had at least one dataset with AUCROC above 0.9, with nine out of ten targets with at least one 

model with AUCROC above 0.8. The models constructed from the WOMBAT database presented 

the best accuracy, with average AUCROC of 0.93 ± 0.08, compared to the other datasets (Drugs 

AUCROC = 0.85 ± 0.12 and PDB AUCROC = 0.80 ± 0.14). This might be due to the fact that 
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Figure 4: Logarithmic ROC plots of all analysed Ligand-Based Virtual Screening tools against the 

DUD datasets: a) AR b) ALR2 c) PPARγ d) CDK2 e) COX2 f) EGFR g) FXα h) HIVRT i) P38 j) 

PDE5 
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Figure 5: Average AUCROC and AUCawROC over 10 selected targets for 3D-Pharma (datasets 

WOMBAT, Drugs and PDB Ligands) and 4D FAPOA. The results of the remaining six Ligand- 

Based Virtual Screening tools were averaged over seven targets. It is worth noting that all meth- 

ods, except 3D-Pharma with PDB ligands and Drugs datasets, show a decrease in the area under 

the curve (AUC) from ROC to awROC. 
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Figure 6: Average BEDROCα scores over 10 selected targets for 3D-Pharma (datasets WOMBAT, 

Drugs and PDB Ligands) and 4D FAPOA. The results of the remaining six Ligand-Based Virtual 

Screening tools were averaged over seven targets. The values for the α parameter were 160.9, 32.2 

and 20, which correspond to Enrichment Factors (EF) at 1%, 5% and 8% of selection, 

respectively. 
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Figure 7: The effect of dataset sizes on 3D-Pharma accuracy. For datasets with 13 or more com- 

pounds most datasets (14 out of 21) produced high quality models (AUC> 0.9). For those datasets 

with 12 or less compounds, two out of nine datasets produced good models (AUC> 0.8). 
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WOMBAT is a solid well stablished database, whereas the Drugs and PDB are still a growing set 

of gathered data. Besides the nature and quality of datasets used to build the models, it seems 

that the size of the datasets shows the major impact on the performance of 3D-Pharma (Figure 7). 

For those datasets with at least 13 compounds (21 datasets), not less than 14 (67%) produced high 

quality models with AUCROC above 0.9, and 18 (86%) produced very good models with AUCROC 

above 0.8. On the other hand, for those datasets with less than 13 compounds, none was able 
to 

 

generate models with AUCROC above 0.9 and only two out of nine (22%) generated models with 
 

AUCROC above 0.8. 

In general, 3D-Pharma outperforms the other methods regardless of the dataset chosen to build 

the models, with FLAP as a close second. However, despite the results achieved, both FLAP 

ligand- based approaches are subject to one drawback: the use of DUD cluster-parent actives as 

query or templates. Therefore, the analysis is subject to analogue bias 67 that could potentially 

increment artificially the results. Another interesting observation arises when BEDROC scores are 

analyzed. When one looks at the bigger cuts (α = 32.2 and 20), all methods analyzed have an 

abrupt fall in the early recovery rate, as seen in Figure 6, but 3D-Pharma fairly maintains its 

scores as α diminishes. It seems that the higher BEDROC160.9 score with a subsequent 

substantial decrease on BEDOC32.2 is an indicat ion  of some kind of analog bias that puts a 

few active compounds very high in the ranking (before 1% of selection) and leaves many other 

active molecules spread over the rank positions. In 3D-Pharma we used three really external 

public datasets, used "as is", that is, without any kind of filter, except for redundant molecules 

between the DUD actives and external datasets. As a consequence, the BEDROC score is 

sustained over all α values used in the benchmark. 
 

The LBOpt and LBParetoR FLAP scenarios yielded very good overall results and 

performed better than the  other methods surveyed, except for 3D-Pharma. LBParetoR uses all 

DUD chemotype cluster parents (DUD-own dataset) for each target as query in an ensemble 

approach with con- sensus analysis of the individual template similarity results. Consequently, 

the number of DUD actives in the ROC analysis is smaller than is all other methods under 

comparison in this paper, and  
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the conclusions must be considered carefully. When we look at the ROC and awROC from 

LBPare- toR, the results are impressive, with average AUC above 0.9 for the seven targets under 

scrutiny. However, the analysis of BEDROC results discloses a disappointing "early recovery", 

mainly for BEDROC160.9 and BEDROC32.2. The LBOpt approach produces smaller AUC in the 

ROC analysis than LBParetoR, but the "early recovery" is much better. LBopt also uses the 

DUD-Parents as query, but they are subject to a previous optimal template selection that optimizes 

proportions of false positives and false negatives in order to select the single template to be used 

as query. 

When analyzing scaffold hopping capabilities, one can note that all techniques, except 3D- 

Pharma, have a significant drop in their average AUCs when considering awROC over the standard 

ROC (Figure 5). On the contrary, 3D-Pharma using the Drugs and PDB-Ligands datasets gave an 

increase in the score. The other techniques tend to rank higher the most populated scaffolds, hence 

lowering AUCawROC scores in relation to AUCROC. 

 

 

Conclusions 
 

The main characteristics of 3D-Pharma are the use of pharmacophore triplets fingerprint based 

on atom-centered potential pharmacophores, the use of several representations of the compound 

that include tautomers, protonation states and conformers and the ensemble template approach 

producing a single modal fingerprint based on frequency of pharmacophore triplets over the active 

compounds. This dynamic pharmacophore fingerprint encodes all chemical and conformational 

variability of the compound in a single fingerprint representation. Thus, the 3D-Pharma approach 

adopts a paradigm where the full ensemble of conformers is taken into account at the same time 

in a single modal fingerprint, similar to the approach implemented by Ranu and Singh. 60 In our 

study, 30 sets of models were generated for 10 selected targets from the DUD database, using three 

external and independent datasets as reference. Is seems that the size of the modeling dataset exerts 

a major impact on the model quality. For those datasets with at least 13 compounds (21 datasets) 

not less than 18 (or 86%) were able to produce very good models with AUCROC above 0.8, and 14 
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datasets (67%) produced very high-quality models with an AUCROC above 0.9. 

The analysis of the scaffold hopping and early recovery capabilities of 3D-Pharma has shown 

two distinguishing behaviours. The AUCawROC, used to estimate scaffold hopping capabilities, 

shows evidence that 3D-Pharma with Drugs and PDB Ligand datasets has a better performance in 

detecting rarer scaffolds than the other LBVS tools analyzed. The second 3D-Pharma 

discerning behaviour can be seen in the BEDROC plot (Figure 6) where 3D-Pharma datasets 

sustain high scores over the three values chosen for the α parameter. All other LBVS tools (except 

FLAP LBParetoR) presented a higher score at lower cuts (BEDROC160.9) than those at higher 

cuts, with a significant decrease in the BEDROC32.2 and BEDROC20 scores. 
 

Thus, the data shown here leads us to strongly believe that 3D-Pharma outperforms all other 

state-of-the-art LBVS tools analyzed, in terms of global accuracy as well as scaffold hopping and 

early recovery capacities. The fact that three external datasets were used to generate the models 

that are at the same time simple, robust, consistent and predictive should be highlighted. Its 

predictive power in prospective virtual screening cases remains to be seen, but as far as the 

results shown here can assess, 3D-Pharma is a promising method that can effectively contribute to 

the success of any drug discovery process. 
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