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Abstract: This study reports on the chemical composition and antileishmanial and anticandidal 20 

activities of essential oils (EOs) distilled from Schinus molle dried leaves (SM-EO), Cinnamomum 21 

cassia branch bark (CC-EO) and their blends against promastigote forms of Leishmania (Leishma- 22 

nia) amazonensis and nine Candida strains. Major constituents of SM-EO were spathulenol 23 

(26.93%), β-caryophyllene (19.90%), and caryophyllene oxide (12.69%), whereas cinnamalde- 24 

hyde (60.11%), cinnamyl acetate (20.90%) and (E)-cis-2-methoxycinnamic acid (10.37%) were 25 

predominant in CC-EO. SM-EO (IC50 = 21.45 µg/mL) and CC-EO (IC50 = 23.27 µg/mL) displayed 26 

good activity against L. amazonensis. SM-EO and CC-EO also proved to be good or moderate 27 

activity against nine Candida strains, with Minimum Inhibitory Concentration (MIC) values 28 

ranging from 31.25 to 250 µg/mL. While the three SM-EO and CC-EO blends were not more 29 

active than the EOs tested individually, they exhibited remarkably high antileishmanial activity, 30 

with IC50 values ranging between 3.12 and 7.04 µg/mL, which is very similar to the IC50 of am- 31 

photericin B (positive control). These results show that SM-EO, CC-EO, and their blends may be 32 

considered to participate in the formulation of drugs with antileishmanial and antifungal activ- 33 

ities. 34 

Keywords: American pepper tree; candidiasis; spices; Leishmania amazonensis; natural active in- 35 

gredients. 36 
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1. Introduction 38 

Leishmaniasis, a parasitic Neglected Tropical Disease (NTD) caused by protozoa of the genus Leish- 39 

mania, leads to approximately 30,000 deaths annually [1]. The manifestations of this disease, whether 40 

tegumentary (TL) or visceral (VL), are determined by specific Leishmania species responsible for the 41 

infection and the mammalian host’s immunological and nutritional status. In the Americas, L. amazonen- 42 

sis is the primary causative agent of TL [2]. TL can lead to skin lesions that may be either healed on their 43 

own or progress to form disfiguring scars, along with damage in nasopharyngeal mucosal tissues [3]. 44 

Early diagnosis and treatment of TL are challenging as the disease advances slowly and affects extensive 45 

skin areas [4]. Furthermore, the drugs that are currently available for the treatment of leishmaniasis, such 46 

as pentavalent antimonials, amphotericin B, pentamidine, miltefosine, and paramomycin, display some 47 

drawbacks. These drawbacks encompass toxicity, high cost, and the emergence of parasitic resistance [5]. 48 

The genus Candida comprises approximately 150 species, with a significant number of these species 49 

acting as endosymbionts in humans, particularly affecting immunosuppressed individuals. While Candida 50 

albicans is responsible for about 80% of infections, there is an increasing incidence of infections caused 51 

by non-albicans Candida species such as C. glabrata, C. tropicalis, and C. krusei [6]. Current antifungal 52 

drugs used to treat Candida infections display some significant drawbacks, such as poor oral bioavaila- 53 

bility and decreased efficacy due to the emergence of resistant strains [7]. 54 

The genus Cinnamomum (Lauraceae) is native to Indonesia and comprises about 250 perennial tree 55 

species that grow up to 8-9 m in height [8]. Cinnamomum species, popularly known as cinnamon, or 56 

“sweet wood”, have been among the most popular plants in the world since remote antiquity [9]. It has 57 

been used by the Chinese since 2500 BC and by Egyptians along with other spices for embalmment. 58 

Cinnamon comes from the tree trunk; its dried branches are separated from the bark, which is reddish 59 

brown and has a strong fragrance [8]. The dry inner trunk bark of cinnamon is considered their main 60 

product because it is a rich source of essential oils (EOs). Cinnamon EOs have been widely sold due to 61 

their biological and pharmacological properties, such as anti-inflammatory, antithermitic, nematicidal, 62 

larvicidal, insecticidal, antimycotic, and anticancer [10]. The four most important Cinnamomum species 63 
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in the international market are Ceylon cinnamon (Cinnamomum verum Presl, sin. C. zeylanicum Bl.); 64 

Saigon cinnamon (C. loureirii Nees); Chinese cassia or Chinese cinnamon (C. cassia Presl.); and Indone- 65 

sian cinnamon or Padang cassia (C. burmannii (C.G. and Th. Nees) Bl.) [9]. C. cassia, for instance, has 66 

been traditionally used as tooth powder to treat toothache, dental problems, oral microbiota, and bad 67 

breath [10]. 68 

Schinus molle L. (Anacardiaceae), commonly known as the “American pepper tree” is native to 69 

South America but has become a global species [11]. This aromatic plant can reach heights of 5-15 m and 70 

is commonly used in folk medicine as an anti-inflammatory, antispasmodic, antipyretic, and antitumoral 71 

[12] and to treat bronchitis, coughs, colds, fever, and tuberculosis [13]. The EOs of S. molle have been 72 

reported to have antibacterial [11,14-16], antifungal [11,14-17], insecticidal [18,19], and larvicidal [20] 73 

properties. 74 

As part of our ongoing project on the biological activities of EOs [21-24], and based on the literature 75 

reports on the antifungal and antiparasitic activity of the EOs of C. cassia [25-29] and S. molle [15,30- 76 

32], this study aimed to investigated the anticandidal and antileishmanial activity of the EOs from S. molle 77 

dried leaves (SM-EO) C. cassia bark (CC-EO) and their blends, as well as to determine their chemical 78 

composition using gas chromatography-mass spectrometry (GC-MS) and gas chromatography flame ion- 79 

ization detection (GC-FID).  80 

 81 

2. Results 82 

2.1. Chemical composition of SM-EO and CC-EO 83 

The essential oil from S. molle dried leaves (SM-EO) was obtained as a light-yellowish oil in 84 

1.52±0.36% yield. A total of twenty compounds were identified in SM-EO, with a predominance of oxy- 85 

genated sesquiterpenes (55.15%) and monoterpenes (17.34%), as shown in Table 1. Spathulenol 86 

(26.93%), β-caryophyllene (19.90%), and caryophyllene oxide (12.69%) were the major compounds in 87 

SM-EO.  88 
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The chemical composition of the essential oil of C. cassia (CC-EO) purchased from the supplier 89 

doTERRA® is shown in Table 1. Major constituents identified in CC-EO-were the phenylpropanoids (E)- 90 

cinnamaldehyde (60.11%), cinnamyl acetate (20.90%), and (E)-cis-2-methoxycinnamic acid (10.37%). 91 

This chemical composition is similar to that reported by the company on its official website [33]. 92 

 93 

2.2. Antileishmanial activity of SM-EO and CC-EO 94 

The in vitro antileishmanial activity of SM-EO, CC-EO, and blends 1 (SM-EO: CC-EO 3:1 v/v), 2 95 

(SM-EO: CC-EO 1:1 v/v), and 3 (SM-EO:CC-EO 1:3 v/v) against promastigote forms of L. amazonensis 96 

is shown in Table 2. At concentrations of 25, 50, and 100 µg/mL, CC-EO caused a higher inhibition 97 

percentage of L. amazonensis promastigote forms compared to SM-EO and blends 1, 2, and 3. On the 98 

other hand, at concentrations lower than 12.5 µg/mL, blend 2 was more active than blends 1 and 3, and 99 

SM-EO and CC-EO when tested individually. The IC50 (i.e., the half-maximal inhibitory concentration) 100 

values of blends 1 (IC50 = 7.04± 1.20 µg/mL), 2 (IC50 = 3.12± 1.60 µg/mL), and 3 (IC50 = 23.27± 4.50 101 

µg/mL) were lower compared to those of SM-EO (IC50 = 21.45± 4.06 µg/mL), and CC-EO (IC50 = 7.04± 102 

1.20 µg/mL). 103 

 104 

2.3. Anti-Candida activity of SM-EO and CC-EO 105 

The antifungal activity of SM-EO, CC-EO, and their three blends against nine Candida spe- 106 

cies were evaluated in terms of their Minimal Inhibitory Concentration (MIC) values. MIC val- 107 

ues ranged between 31.2 and 125 µg/mL, as shown in Table 3. SM-EO displayed the lowest MIC 108 

against C. albicans (MIC = 62.5 µg/mL), C. glabrata (MIC = 62.5 µg/mL), C. krusei (MIC = 31.2 109 

µg/mL), C. orthopilosis (MIC = 31.2 µg/mL), and C. parapsilosis (MIC = 62.5 µg/mL). On the other 110 

hand, the lowest MIC values against C. rugosa, C. tropicalis, and C. metapsilosis were obtained for 111 

blends 1, 2, and 3 (MIC = 31.2 µg/mL), respectively. Amphotericin B, which was used the 112 
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positive control against the tested Candida strains, displayed MIC values ranging from 0.25 to 113 

1.0 µg/mL. 114 

 115 

3. Discussion 116 

3.1. Chemical composition of SM-EO and CC-EO 117 

In a study on the seasonality effect on the yield and chemical composition of the EOs from 118 

four S. molle accessions in Brazil Southeastern, Pereira and co-workers reported that the highest 119 

S. molle EO yields (3.26%) were obtained in Autumn and Spring, whereas the lowest EO yield 120 

(1.30%) was obtained in Summer [34]. Herein, SM-EO was obtained in 1.52±0.36% yield from a 121 

specimen collected in Brazil Southeastern at the end of Summer, which is very similar to the 122 

average EO yield reported by Pereira and co-workers for specimens collected in the Summer 123 

(1.53%) [34]. 124 

In literature, several studies report the extraction and chemical composition of essential oils 125 

from S. molle dried leaves collected in different regions of Brazil [15,31,32,34-40]. Monoterpenes 126 

and sesquiterpenes are the main constituents in the EO from S. molle leaves, with the predomi- 127 

nance of myrcene [15,32,34], α-pinene [31,32,35], β-pinene [31,32,35], limonene [15,31,37], sab- 128 

inene [31,34], α-phellandrene [15,39], β-phellandrene [39], β-caryophyllene [37,40], bicycloger- 129 

macrene [34,37], caryophyllene oxide [36,40], spathulenol [35,36,40], cubenol [35,36], and elemol 130 

[15,39]. Some studies have also demonstrated that the chemical composition of the EO from S. 131 

molle leaves is affected by the season [34,38,41] and region of collection [41], the extraction 132 

method [42], and the extraction time [38]. SM-EO was found to be rich in sesquiterpenes (76.8%), 133 

especially spathulenol (26.93%), β-caryophyllene (19.90%), and caryophyllene oxide (12.69%). 134 
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This chemical composition is very similar to that of the EO obtained from a S. molle chemotype 135 

from Brazil's Midwest region, as reported by Silva and co-workers [40]. 136 

The phenylpropanoids (E)-cinnamaldehyde, cis-2-methoxycinnamic acid, and cinnamyl ac- 137 

etate were the main compounds identified in CC-EO. (E)-cinnamaldehyde is been considered a 138 

marker of cinnamon EOs, and its occurrence as the major compound in the EO from C. cassia 139 

bark has been commonly reported [25,26,28,43-53], followed by (E)-o-methoxy-cinnamaldehyde 140 

[25,28,43,45,47,48,50-53], and cinnamyl acetate [25,26,44,48,50,53]. On the other hand, the iden- 141 

tification of (E)-cis-2-methoxycinnamic acid as a major compound in the EO from C. cassia bark 142 

is rare [54,55], whereas the presence of benzaldehyde with a relative area higher than 5% is 143 

uncommon. Although benzaldehyde is one of the most common constituents in the EO of C. 144 

cassia bark [25,26,28,43-49,53,54], its relative area commonly ranges from 0.1 to 1.5%.  145 

 146 

3.2. Antileishmanial activity of SM-EO, CC-EO, and their blends 147 

According to the literature, IC50 values lower than 10 µg/mL, between 11 and 50 µg/mL, 148 

between 51 and 100 µg/mL, and higher than 100 µg/mL denote EOs that are highly active, active, 149 

moderately active, and inactive, respectively [56]. Based on these criteria, SM-EO (IC50 = 150 

21.45±4.06 µg/mL) and CC-EO (IC50 = 23.27± 4.50 µg/mL) can be considered active against L. 151 

amazonensis promastigote forms in vitro.  152 

Data on the antileishmanial activity of S. molle are still scarce. To mention, Delgado-Alta- 153 

mirano and co-workers reported that the aqueous and dichloromethane:methanol 1:1 extracts 154 

from S. molle leaves and branches collected in Mexico displayed IC50 values of 15.4±5.5 and 155 

29.4±6.0 µg/mL, respectively, against L. amazonensis promastigotes. These extracts were also 156 
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active against intracellular amastigotes of L. amazonensis, with IC50 of 25.9±4.9 and 21.8±4.5 157 

µg/mL, respectively [57]. However, to the best of our knowledge, the antileishmanial activity of 158 

S. molle EOs has not been previously investigated to date. Our results indicated that SM-EO is 159 

active against L. amazonensis promastigotes in vitro, with an IC50 value (IC50 = 21.45±4.06 µg/mL) 160 

very similar to those reported by Delgado-Altamirano and co-workers for their aqueous and 161 

dichlorometane: methanol S. molle extracts [57]. This activity may be associated with the sesquit- 162 

erpenes spathulenol [58], caryophyllene oxide [58], and β-caryophyllene [59], which are major 163 

in SM-EO and had their antileishmanial activity against L. amazonensis reported in the literature 164 

[58,59]. 165 

Conversely, the antileishmanial activity of extracts and EOs from C. cassia has been tested 166 

against different Leishmania species. Afrin and co-workers reported that the dichloromethane 167 

extract from C. cassia bark collected in India was active against promastigote forms of L. do- 168 

novani, with an IC50 of 33.60 µg/mL [60]. Le and co-workers isolated the EO from C. cassia fresh 169 

leaves collected in Vietnam and assessed its antileishmanial activity against L. mexicana pro- 170 

mastigote forms. The authors obtained a high activity for the tested EO, with an IC50 value of 171 

8.49 µg/mL [29]. Our results revealed that SM-EO is active against L. amazonensis promastigote 172 

forms, displaying an IC50 value of 23.27 µg/mL. This activity may be due to the high concentra- 173 

tions of (E)-cinnamaldehyde (60.11%) in SM-EO. The antileishmanial activity of cinnamalde- 174 

hyde against L. amazonensis promastigote and amastigote forms has been reported [61].  175 

Based on recent studies reporting that binary combinations of EOs may be more active than 176 

the EOs tested individually [62,63], we also tested the antileishmanial activity of SM-EO and 177 

CC-EO combinations (i.e., blends). Three blends were prepared and tested for the 178 
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antileishmanial activity against L. amazonensis promastigotes: SM-EO:CC-EO 3:1 (v/v), SM- 179 

EO:CC-EO 1:1 (v/v), and SM-EO:CC-EO 1:3 (v/v), which were referred as blends 1, 2, and 3, 180 

respectively. All three blends were highly active, displaying IC50 of 7.04 µg/mL, 3.12 µg/mL, and 181 

4.17 µg/mL, respectively. These results revealed an interesting synergism between SM-EO and 182 

CC-EO constituents, which makes IC50 decrease 3-7 times compared to the IC50 of SM-EO and 183 

CC-EO tested individually. The antileishmanial activity of blend 2 is noteworthy because its IC50 184 

is very similar to that of amphotericin B (IC50 < 3.12 µg/mL), which was used as the positive 185 

control.  186 

 187 

3.3. Antifungal activity of SM-EO, CC-EO, and their blends 188 

In literature, based-MIC criteria to classify the antifungal activity are not uniform. For ex- 189 

ample, Barbosa and co-workers considered that natural products with MIC values equal to or 190 

below 500 μg/mL are potent inhibitors of microbial activity [64]. On the other hand, Souza and 191 

co-workers established that compounds with MIC ≤ 1000 μg/mL display relevant antifungal 192 

activity, whereas MIC ≤ 250 μg/mL denotes highly interesting antifungal activity [65]. Based on 193 

these criteria, and inspired by the Oliveira and co-workers’ review [66], in this study, the anti- 194 

fungal activity will be classified as follows: MIC ≤ 10 µg/mL, 10 < MIC ≤ 100 µg/mL, 100 < MIC 195 

≤ 500 µg/mL, and 500 < MIC ≤ 1000 µg/mL denotes high, good, moderate, and weak activities, 196 

whereas MIC > 1000 µg/mL indicate inactivity. 197 

Although the antifungal activity of the EOs of S. molle against a wide diversity of fungi and 198 

yeasts has been investigated [15-17,42,67-71], data on their activity against Candida species are 199 

still scarce [32,72]. To mention, Prado and co-workers assessed the anti-Candida activity of the 200 
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EO of S. molle fresh leaves from a specimen collected at Brazil Southeastern against six Candida 201 

species (C. albicans ATCC 36801, C. guilliermondii ATCC 22017, C. krusei ATCC 6258, C. orthopsilo- 202 

sis ATCC 96141, C. metapsilosis ATCC 96142, C. parapsilosis ATCC 90018, and C. neoformans ATCC 203 

90012). The authors reported poor activity of the EO against all the Candida species tested, with 204 

MIC values of 5000 µg/mL or higher against most of the Candida species and MIC = 2500 µg/mL 205 

against C. albicans [67]. SM-EO displays good activity against most of the Candida species, with 206 

MIC values lower than 100 µg/mL, and moderate activity against C. tropicalis and C. metapsilosis 207 

(MIC = 125 µg/mL). These MIC values are considerably lower than those reported by Prado and 208 

co-workers [67]. Taking into account that some Candida ATCC strains used in this study are the 209 

same as those of Prado and co-workers, differences between the MIC values are likely due to 210 

different chemical composition of SM-EO and the EO of S. molle tested by Prado and co-workers 211 

[67]. Indeed, the monoterpenes α-pinene (18.72%), β-pinene (25.23%), and myrcene (11.54%) are 212 

the major compounds in the EO reported by the authors, whereas the sesquiterpenes spathu- 213 

lenol (26.93%), β-caryophyllene (19.90%), and caryophyllene oxide (12.69%) are predominant in 214 

SM-EO. Thus, spathulenol, whose anticandidal activity is well-known [73,74], can be considered 215 

as one of the responsible for the antifungal activity of SM-EO. Differences between the antican- 216 

didal activity of EOs from S. molle fruits obtained from specimens collected in Yemen [75] and 217 

Zimbawe [72] against C. albicans have been also reported.  218 

Many studies have addressed the anticandidal activity of the EO from C. cassia bark. Alt- 219 

hough most of these studies are focused on C. albicans [50-52,76-78], the activity against other 220 

Candida species like C. glabrata [51,77,78], C. krusei [78], C. apicola [79], and C. auris [53] has also 221 

been reported. The synergism between amphotericin B and the EO from C. cassia bark against 222 
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C. albicans ATCC 90029 has been also investigated [50]. In this study, CC-EO displayed moderate 223 

activity against most of the Candida species tested, with MIC values of CC-EO ranging from 125 224 

to 250 µg/mL. However, comparison of the anticandidal activity of CC-EO with previous studies 225 

reporting the anticandidal activity of EOs from C. cassia bark is complex because of discrepan- 226 

cies in the methodologies, including dilutions of the EO based on v/v [50,51,78,80] rather than 227 

m/v and the use of differences in the Candida strains [52].  228 

Gucwa and co-workers investigated the mode of action of the EO from C. cassia barks 229 

against C. albicans and C. glabrata and found out that this EO influenced potassium ion influx; 230 

however, alterations in the cellular morphology and damaged both cell wall and plasma mem- 231 

brane in treated Candida cells due to (E)-cinnamaldehyde [81] and other lipophilic compounds 232 

[7] could not be proved [77]. Recently, Gu and Workers investigated the mechanism of antifun- 233 

gal action of the EOs from C. cassia barks from China against C. albicans and found out that (E)- 234 

cinnamaldehyde and (E)-cinnamoyl acetate showed excellent binding with specific targets of 235 

AKR1B1, PPARG, BCHE, CYP19A1, CYP2C19, QPCT, and CYP51A1 [76]. 236 

In general, combinations of SM-EO and CC-EO (i.e., blends 1, 2, and 3) did not lead to a 237 

significant increase in the anticandidal activity compared to the EOs tested isolated, except in 238 

the case of blend 1 against C. orthopsilosis (MIC = 31.2 µg/mL), blend 2 against C. tropicalis 239 

(MIC=31.2 µg/mL), and blend 3 against C. metapsilosis and C. parapsilosis ATCC 90018 (MIC = 240 

31.2 µg/mL).  241 

4. Materials and Methods 242 

4.1. Plant material and EO extraction 243 
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Schinus molle L. leaves were collected in Rio Verde, Goiás (GO) state, Brazil (17°47’25’’S and 244 

50°57’54’’W) in February 2023. They were identified by the biologist Aternoskaires R.S. da Silva 245 

and a voucher specimen of S. molle (HJ5028SM) was deposited at the Herbarium Jataiense Pro- 246 

fessor Germano Guarim Neto. Leaves were then taken to the Laboratory of Natural Product 247 

Chemistry at IF Goiano - Campus Rio Verde, located in Rio Verde, GO. Leaves were weighed 248 

and dehydrated in an air circulation oven at 40 °C for 24 h. 249 

Samples of S. molle dried leaves (3 x 300 g) were added to 1-L round-bottom flasks contain- 250 

ing 500 mL distilled water and submitted to hydrodistillation on a Clevenger-type apparatus 251 

for 3 h. After manual collection of the EO samples, traces of remaining water in the EOs were 252 

removed with anhydrous sodium sulfate, which was followed by filtration. The isolated oil (SM- 253 

EO) was stored under refrigeration up to the analysis and assays. The SM-EO yield was calcu- 254 

lated based on the dried leaves (w/w).  255 

EO from C. cassia bark (CC-EO) was purchased from doTERRA® in May 2023 (lot number 256 

60203421). 257 

Blends of SM-EO and CC-EO were obtained by mixing the EOs as follows: Blend 1: SM- 258 

EO:CC-EO 3:1 (v/v); Blend 2: SM-EO:CC-EO 1:1 (v/v); Blend 3: SM-EO:CC-EO 1:3 (v/v).  259 

4.2. GC-MS and GC-FID analyses 260 

Gas chromatography flame ionization detection (GC-FID) analyses were performed by a 261 

Shimadzu GC2010 plus gas chromatograph equipped with an AOC-20s autosampler and fitted 262 

with flame ionization detector (FID) and a data-handling processor. An Rtx-5 (Restek Co., Belle- 263 

fonte, PA, USA) fused silica capillary column (30-m x 0.25-mm i.d.; 0.25-μm film thickness) was 264 

employed. Operation conditions were as follows: column temperature programmed to rise from 265 
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60 to 240 °C at 3 °C/min and then hold at 240 °C for 5 min; carrier gas = He (99.999 %), at 1.0 266 

mL/min; injection mode; injection volume, 0.1 µL (split ratio of 1:10); and injector and detector 267 

temperatures = 240 and 280 °C, respectively. Relative concentrations of the EOs components 268 

were obtained by peak area normalization (%) and expressed as the mean of three replicate 269 

analyses.  270 

GC-MS analyses were carried out by a Shimadzu QP2010 Plus (Shimadzu Corporation, 271 

Kyoto, Japan) system equipped with an AOC-20i autosampler. The column was an RTX-5MS 272 

(Restek Co., Bellefonte, PA, USA) fused silica capillary one (30 m x 0.25 mm i.d. x 0.25 µm film 273 

thickness). Electron ionization mode occurred at 70 eV. Helium (99.999 %) was employed as the 274 

carrier gas at a constant flow of 1.0 mL/min. The injection volume was 0.1 µL (split ratio of 1:10). 275 

Injector and ion-source temperatures were set at 240 and 280 °C, respectively. The oven temper- 276 

ature program was the same as the one used for GC. Mass spectra were taken at a scan interval 277 

of 0.5 s, in the mass range from 40 to 600 Da. Identification of SM-EO and CC-EO constituents 278 

was based on their retention indices on an RTX-5MS capillary column under the same operating 279 

conditions as those used in the GC-FID analyses, related to a homologous series of n-alkanes 280 

(C8-C40). Structures were computer-matched with the Wiley 7, NIST 08, and FFNSC 1.2 spectra 281 

libraries, and their fragmentation patterns were compared with literature data [82].  282 

 283 

4.3. Antileishmanial assays 284 

SM-EO, CC-EO, and blends 1, 2, and 3 were evaluated against promastigote forms of Leish- 285 

mania (Leishmania) amazonensis (IFLA/BR/67/PH8), based on the methodology described by 286 

Oliveira and co-workers [83]. Therefore, promastigote forms maintained in RPMI 1640 medium 287 
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supplemented with 10% FBS (Fetal Bovine Serum) and 1% antibiotic (Penicillin 10,000 IU/mL 288 

and Streptomycin 10,000 mg/mL) (Cultilab) were transferred to a 96-well plate (1 x 106) contain- 289 

ing RPMI (Roswell Park Memorial Institute)1640 medium (Gibco) supplemented and incubated 290 

at different concentrations of essential oils and blends (6.25 to 200 μg/mL) previously solubilized 291 

in dimethylsulfoxide (DMSO). Cultures were incubated in a Biochemical Oxygen Demand 292 

(BOD) incubator at 24 oC for 24 h. The antileishmanial activity was determined by counting the 293 

total number of live promastigotes in a Neubauer chamber, considering flagellar motility under 294 

an optical microscope. As the negative control, promastigote forms were maintained in RPMI 295 

1640 medium containing 0.1% DMSO and, as the positive control, promastigote forms were in- 296 

cubated with Amphotericin B at concentrations ranging from 0.0027 to 1.56 μM. 297 

 298 

4.4. In Vitro Anti-Candida Assays 299 

Candida species reference strains, namely C. albicans ATCC 90028, C. glabrata ATCC 2001, 300 

C. krusei ATCC 6258, C. rugosa ATCC 10571, C. tropicalis ATCC 13903, C. orthopsilosis ATCC 301 

96141, C. metapsilosis ATCC 96143, C. parapsilosis ATCC 22019, and C. parapsilosis ATCC 90018 302 

and were used for evaluating anti-Candida activity of EOs. Strains were maintained at -80 °C in 303 

sterile distilled water and 50% glycerol and subcultured in Sabouraud Dextrose Agar (SDA, 304 

Difco, Detroit, MI, USA) and CHROMagar Candida medium (Becton, Dickinson and Company, 305 

Sparks, MD, USA) at 37 °C for 24 h to ensure purity and viability. In vitro antifungal suscepti- 306 

bility assays were performed by the broth microdilution method in agreement with protocol 307 

M27-S4 issued by the Clinical and Laboratory Standards Institute (CLSI) [84]. Sterile 96-well 308 

microtiter plates (Corning Inc., Corning, NY, USA) were used. The final inoculum size was 2.5 309 
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× 103 cells/mL. Amphotericin B (Amp B), SM-EO, CC-EO, and blends ranging from 0.03 to 16 310 

µg/mL and from 3.90 to 2.000 µg/mL, respectively, were used. AmpB and EOs were solubilized 311 

in dimethyl sulfoxide (DMSO, 2%) and diluted in RPMI 1640 (Sigma) medium with 0.2% glu- 312 

cose. C. parapsilosis ATCC 22019, C. krusei ATCC 6258 strains, and AmpB were used as quality 313 

controls [84]. AmpB was used as the positive control because of its broad-spectrum antifungal 314 

[85]. Minimum Inhibitory Concentration (MIC) values were determined by the fluorometric in- 315 

dicator resazurin at 0.01% (w/v) [86]. MIC was defined as the lowest antifungal/EO concentra- 316 

tion that maintained the blue hue. Wells in which microorganisms grew got pink. 317 

5. Conclusions 318 

The EOs from S. molle dried leaves (SM-EO) and C. cassia bark (CC-EO) displayed good 319 

antileishmanial activity against L. amazonensis promastigote forms. These EOs also showed good 320 

or moderate activity against the panel of Candida standard strains. While the three blends of SM- 321 

EO and CC-EO did not affect the anticandidal activity significantly, they were very active 322 

against L. amazonensis promastigotes, with IC50 values lower than 10 µg/mL. Noteworthy, the 323 

IC50 of blend 2 (SM-EO:CC-EO 1:1 v/v) was similar to that of amphotericin B, which was used 324 

as the positive control. These results revealed that combinations between SM-EO and CC-EO 325 

boost the antileishmanial activity compared to the EOs tested individually and motivate further 326 

studies on the antiparasitic activity of these blends. To understand the synergism between SM- 327 

EO and CC-EO deeper, studies are being carried out to evaluate the synergistic relationships 328 

between (E)-cinnamaldehyde, β-caryophyllene, caryophyllene oxide, and spathulenol. 329 

 330 
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Table 1: Chemical composition of the essential oils of S. molle (SM-EO) and C. cassia (CC-EO), as determined by 644 

GC-FID and GC-MS. 645 

Compounds Retention index (RI) % RA 

RIexp RIlit SM-EM CC-EO 

α-Thujene 930 928 1.64±0.32  

β-Pinene 973 972 1.58±0.25  

Benzaldehyde 980 982  8.62±0.61 

Linalool 1096 1098 1.04±0.38  

Nopinone 1140 1137 1.43±0.84  

trans-Pinocarveol 1142 1140 2.72±0.91  

trans-Verbenol 1145 1144 1.90±0.56  

Pinocarvone 1161 1160 2.04±0.47  

p-Cymen-8-ol 1179 1179 2.43±0.95  

(E)-Cinnamaldehyde 1189 1189  60.11±1.22 

Myrtenal 1192 1193 3.58±0.44  

Verbenone 1205 1197 2.20±0.33  

β-Caryophyllene 1419 1419 19.90±1.23  

γ-Cadinene 1523 1524 1.66±0.61  

(E)-cis-2-Methoxycinnamic acid 1546 1546  10.37±0.9 

Spathulenol 1578 1576 26.93±1.84  

Caryophyllene oxide 1583 1581 12.69±1.12  

Globulol 1584 1583 0.58±0.02  

(E)-Cinnamyl acetate 1588 1590  20.90±1.01 

Viridiflorol 1592 1592 1.04±0.07  

1,10-di-epi-cubenol 1613 1613 2.27±0.34  

Cubenol 1643 1642 8.59±0.88  

α-Cadinol 1654 1653 2.39±0.75  

Khusinol 1674 1674 0.66±0.13  

Monoterpene hydrocarbons   3.22  

Oxygenated monoterpenes   17.34  

Sesquiterpene hydrocarbons   21.65  

Oxygenated sesquiterpenes   55.15  

Phenylpropanoids    91.5 

Others    8.5 

Not identified   2.64  

a RI: Retention Index; b RA: relative area. 646 
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 648 

Table 2. In vitro leishmanial activity of SM-EO, CC-EO and their blends against Leishmania amazonensis 649 

promastigote forms.*  650 

 % of inhibition of flagellar mobility ± SD (24 h) IC50 

(µg/mL) 
100 50 25 12.5 6.25 3.12 

SM-EO 100.00±0 91.92±4.51 55.56±4.17 24.49±6.51 3.54±5.51 0±0 21.45±4.06 

CC-EO 100.00±0 100.00±0 93.44±4.62 0±0 0±0 0±0 23.27± 4.50 

Blend 1  100.00±0 83.84±1.33 80.23±1.14 56.46±2.47 49.87±1.24 32.70±2.47 7.04± 1.20 

Blend 2  100.00±0 90.68±1.33 80.04±2.09 74.90±0.19 57.98±1.71 55.51±2.19 3.12± 1.60 

Blend 3  99.49±0.11 99.68±0.11 74.40±0.11 66.29±0.48 58.75±2.47 47.53±0.76 4.17± 0.25 

*Positive control: Amphotericin B (IC50 < 3.12 µg/mL). SM-EO: essential oil from S. molle dried 651 

leaves; CC-EO: essential oil from C. cassia bark.   652 

 653 

 654 

Table 3. Minimal Inhibitory Concentration (μg/mL) values of SM-EO, CC-EO, and their blends against 655 

Candida species. 656 

 SM-EO CC-EO Blend 1 Blend 2 Blend 3 Amp B* 

C. albicans ATCC 90028 62.5 125 62.5 100 100 1.00 

C. glabrata ATCC 2001 62.5 62.5 62.5 100 62.5 0.25 

C. krusei ATCC 6258 31.2 125 100 100 62.5 0.25 

C. tropicalis ATCC 13903 125 250 100 31.2 100 0.35 

C. rugosa ATCC 10571 62.5 250 31.2 100 100 0.25 

C. orthopsilosis ATCC 96141 31.2 125 31.2 100 62.5 0.50 

C. metapsilosis ATCC 96143 125 250 100 100 31.2 0.25 

C. parapsilosis ATCC 22019 62.5 125 100 62.5 100 1.00 

C. parapsilosis ATCC 90018 62.5 125 100 62.5 31.2 1.00 

*Amphotericin B (positive control); SM-EO: essential oil from S. molle dried leaves; CC-EO: essential 657 

oil from C. cassia bark; Blend 1: mixture of SM-EO:CC-EO 3:1 (v/v); Blend 2: mixture of SM-EO:CC- 658 

EO 1:1 (v/v); Blend 3: SM-EO:CC-EO 1:3 (v/v).  659 
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