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Abstract 

Transition metal complexes have played crucial roles in various homogeneous 

catalytic processes due to their exceptional versatility. This adaptability stems not only 

from the central metal ions but also from the vast array of choices of the ligand spheres, 

which form an enormously large chemical space. For example, Rh complexes, with a 

well-designed ligand sphere, are known to be efficient in catalyzing the C-H activation 

process in alkanes. To investigate the structure-property relation of the Rh complex 

and identify the optimal ligand that minimizes the calculated reaction energy ΔE of an 

alkane C-H activation, we have applied a Δ-Machine Learning method trained on 

various features to study 1,743 pairs of reactants (Rh(PLP)(Cl)(CO)) and intermediates 

(Rh(PLP)(Cl)(CO)(H)(propyl)). Our findings demonstrate that the models exhibit robust 

predictive performance when trained on features derived from electron density (R2 = 

0.816), and SOAPs (R2 = 0.819), a set of position-based descriptors. Leveraging the 

model trained on xTB-SOAPs that only depend on the xTB-equilibrium structures, we 

propose an efficient and accurate screening procedure to explore the extensive 

chemical space of bisphosphine ligands. By applying this screening procedure, we 

identify ten newly selected reactant-intermediate pairs with an average ΔE of 33.2 kJ 
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mol-1, remarkably lower than the average ΔE of the original data set of 68.0 kJ mol-1. 

This underscores the efficacy of our screening procedure in pinpointing structures with 

significantly lower energy levels. 

 

1. Introduction 

Organometallic compounds have been extensively applied in homogeneous catalytic 

processes, owing to their versatile redox properties that can be easily tuned and 

optimized to the specific chemical process of interest. This tunability is achieved 

through the alteration of the metal center, and more importantly, through structural 

modification of the ligand sphere. For example, by precisely designing the ligand 

architecture, Ir- and Rh-based complexes can be applied for the hydrogenation of CO2
1 

and olefins,2 the oxidation of water,3 the dehydrogenation of alkanes,4, 5 as well as the 

carbonylation of alkanes and benzene.4, 6 Notably, variation in the efficiencies has been 

observed in the dehydrogenation reaction of alkanes mediated by Rh complexes 

featuring different ligands.5 This emphasizes the important role of ligand selection in 

determining the efficiency of organometallic catalysts. 

Computational chemistry serves as a potent tool for ligand design for organometallic 

catalysts. Reaction energies and activation barriers can readily be obtained by 

analyzing the energy profiles of molecular configurations on the potential energy 

(hyper-)surface, calculated by quantum chemical (QC) methods, such as density 

functional theory (DFT). These values can be linked to the reaction rate by means of 

the transition state theory.7 Moreover, with the aid of QC methods, the key 

intermediates and transition states (TSs) of the catalytic reaction can be identified. 

Once the ligand sphere of the transition metal complex is specified, this process can 

also be accomplished via automated exploration of the chemical reaction network 

(CRN).8-14  However, the massive number of possible combinations of the building 

blocks of the ligands leads to a vast chemical space with varying properties.15 Due to 

the high computational cost, QC methods become impractical to screen thousands of 

key intermediates and TSs for the reaction of interest to find an optimized ligand 
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structure.  

By virtue of high computational efficiency, machine learning (ML) techniques have 

emerged as complements to QC methods, and have been successfully applied in drug 

discovery,16, 17 as well as in screening the properties of metal-organic frameworks18 

and transition metal complexes.19 ML techniques are also widely applied in the 

investigation of chemical reactions.20 For instance, Choi et al.21 predicted the activation 

barriers of reactions from the RMG-py10 database with a mean squared error (MAE) of 

1.95 kcal mol-1. In addition, the activation barriers in the CRN of formamide, aldol, and 

unimolecular decomposition of 3-hydroperoxypropanal were accurately predicted 

using an artificial neural network (ANN).22 It is noteworthy that the ML models used in 

these studies incorporated the thermodynamic properties of the products and 

reactants as the descriptors for the reaction, aligning with the Bell–Evans–Polanyi 

principle23 and leading to high prediction accuracy. The utilization of QC-free molecular 

descriptors was also proven to be successful in predicting the activation barriers of 

glutathione adduct formation24 and dihydrogen activation.25 However, the challenge 

remains in effectively modeling another parameter, the reaction energy Δ𝐸 . This 

challenge may stem from the large number of conformers of both reactants, 

intermediates, and products, making it difficult to pair the proper reactant-product or 

reactant-intermediate pairs. Consequently, the improper pairing can lead to 

inaccuracies in the training data that are fed into the ML models. In addition, the 

activation energy of the elementary reactions within the same family can be easily 

deduced according to the Bell–Evans–Polanyi principle, if the relatively accurate 

reaction energy Δ𝐸  could be obtained. Therefore, the accurate prediction of the 

reaction energy plays an important role in the ligand design, where the selection of 

ligand sphere can lead to huge differences in the energy landscape of the same type 

of reaction. 

The present study aims to predict the energy difference, denoted as Δ𝐸, between the 

6-coordinated metal alkyl-hydride (Rh(PLP)(Cl)(CO)(H)(alkyl)) and the 4-coordinated 

precursor (Rh(PLP)(Cl)(CO)) featuring different bidentate phosphine ligands PLP. 

According to the theoretical and experimental mechanistic studies,26-28 the critical 6-
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coordinated intermediate can follow one of two pathways: it could proceed with a 

subsequent C-C formation step in the carbonylation process or undergo a C-H 

recombination to regenerate the initial 4-coordinated precursor. Therefore, an efficient 

screening scheme of the Δ𝐸  between the 4-coordinated reactant and the 6-

coordinated intermediate featuring different ligands can significantly benefit the design 

of the ligand sphere. We demonstrate that the Δ-ML approach,29 which has been 

successfully applied in predicting the activation barriers and reaction enthalpies of the 

“breaking two bonds, forming two bonds” type reactions,30 is a possible way for the 

reaction energy prediction. By training on diverse sets of descriptors, the Δ-ML models 

can obtain a well-balanced performance between the efficiency and the accuracy of 

the prediction. We will demonstrate that this allowed us, to identify ten newly selected 

reactant-intermediate pairs with an average ∆𝐸 which is remarkably lower than the 

average ∆𝐸 of the original data set. 

 

2. Methodology 

2.1. The Δ-ML Approach for Prediction of Driving Force 

The primary objective of the original ∆𝑏
𝑡 -model29 was to predict the target (𝑡) value 

based on a baseline (𝑏) value as a reference, accompanied by a correction obtained 

through an ML approach. More specifically, to predict the molecular property 𝑃𝑡(𝑹𝑡) 

at the geometry 𝑹𝑡, which is determined at an advanced level of theory, the model 

primarily relies upon a related molecular property �̃�𝑏(𝑹𝑏), calculated at a low level of 

theory with the geometry 𝑹𝑏 , as the main constituent of the approximation. 

Furthermore, the correction is performed utilizing an ML-optimized function 

𝐹ML(𝝈(𝑹𝑏))  that depends on the molecular descriptors 𝝈(𝑹𝑏)  evaluated at the 

geometry 𝑹𝑏. Therefore, the molecular property 𝑃𝑡(𝑹𝑡) acquired at the target level of 

theory can be approximated as29 

𝑃𝑡(𝑹𝑡) ≈ ∆𝑏
𝑡 (𝑹𝑏) = �̃�𝑏(𝑹𝑏) + 𝐹ML(𝝈(𝑹𝑏)). (1) 

In our study, we have employed this Δ-ML methodology to investigate reaction 

energies associated with the C-H activation process mediated by Rh complexes. In 
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this context, the properties obtained at the DFT level serve as the target values to be 

predicted while those obtained at the computationally much more efficient semi-

empirical GFN2-xTB31 level of theory (further denoted as xTB throughout this study) 

are used as the baseline values.  

Firstly, to account for the errors that are solely introduced by the different levels of 

theory, namely DFT vs xTB, we examine the upper bound of the reaction driving force, 

denoted as ∆𝐸′
DFT  (see Fig. 1a). We denote the corresponding ∆𝑏

𝑡  -model as 

∆x′
D′

. The prediction task can be formulated as follows, 

∆𝐸′
DFT =  𝐸xD,i −  𝐸DD,r ≈ ∆x′

D′
(∆𝐸′

xTB, 𝝈), (2) 

where 𝐸DD,r represents the DFT energies of reactants obtained at DFT-equilibrium 

structures, and 𝐸xD,i is the DFT energy obtained at the xTB-equilibrium structure of 

the intermediate. Throughout the entire study, 𝐸r refers to the energy of the system in 

the reactant state, namely the sum of the potential energy of 4-coordinated 

Rh(PLP)(Cl)(CO) and the energy of propane while 𝐸i  refers to the energy of 6-

coordinated Rh(PLP)(Cl)(CO)(H)(propyl) after the C-H activation. The baseline value 

is the lower bound of the reaction driving force obtained at xTB level of theory, defined 

as 

∆𝐸′
xTB =  𝐸xx,i − 𝐸Dx,r, (3) 

where 𝐸xx,i  denotes the xTB energies of the intermediate computed at xTB-

equilibrium structures while 𝐸Dx,r is the xTB energy obtained at the DFT-equilibrium 

structure of the reactant. Note that our approach differs from merely adding a 

correction 𝐹ML(𝝈(𝑹𝑏)) to the baseline property �̃�𝑏(𝑹𝑏), as indicated in Eq (1); instead, 

we incorporate the baseline property as an additional feature for the ML model, as 

indicated in Eq (2).  

Beyond the baseline value ∆𝐸′
xTB, the feature vector 𝝈 of the reactant-intermediate 

pair is constructed by incorporating the structural information from both reactant and 

intermediate. In this context, we define 𝝈 as 𝝈(𝑹DFT,r, 𝑹xTB,i), which helps to account 

for the difference between ∆𝐸′
xTB  and ∆𝐸′

DFT . Referring to Fig. 1a, 𝑹DFT,r  and 

𝑹xTB,i represent the geometries of the DFT-equilibrium reactant and xTB-equilibrium 
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intermediate, respectively. Topological-based descriptors, such as autocorrelation 

functions (ACs)32, 33 or position-based descriptors, such as smooth overlap atomic 

positions (SOAPs),34, 35 can be used to construct the feature vector 𝝈. If electronic 

information is also taken into consideration, the feature vector can be further expanded 

as 𝝈 =  𝝈(𝑹DFT,r, 𝑹xTB,i, 𝜌DFT,r, 𝜌xTB,r, 𝜌xTB,i) , where 𝜌  depends on the electron 

density information obtained at different level of theories (see AIM-AC in Section 2.2 

for details).  

 

 

Fig. 1 Illustrative potential energy curve for a C-H activation calculated at DFT (black) and xTB 

(red) level of theory. (a) The ∆x′
D′

-model predicts the target value ∆𝐸′DFT using baseline value 

∆𝐸′xTB obtained at the same geometries. (b) The ∆x
D-model predicts the target value ∆𝐸DFT 

using the baseline value ∆𝐸xTB  obtained at different geometries for both reactants and 

intermediates. 

 

Secondly, another ∆𝑏
𝑡 -model, denoted as ∆x

D-model, is trained to predict the reaction 

energy ∆𝐸DFT  (see Fig. 1 Illustrative potential energy curve for a C-H activation 

calculated at DFT (black) and xTB (red) level of theory.b)  

∆𝐸DFT =  𝐸DD,i −  𝐸DD,r ≈ ∆x
D(∆𝐸xTB, 𝝈), (4) 

where 𝐸DD,i  represents the DFT energy of the intermediates obtained at the 

respective DFT-equilibrium structure and ∆𝐸xTB  is obtained by performing xTB 

calculations:  
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∆𝐸xTB =  𝐸xx,i −  𝐸xx,r. (5) 

Here, 𝐸xx,r represents the xTB energy of the reactants obtained at the respective xTB-

equilibrium structure (see Fig. 1 Illustrative potential energy curve for a C-H activation 

calculated at DFT (black) and xTB (red) level of theory.b). In addition to the different 

level of theory, the ∆𝑏
𝑡  -model also needs to account for the deviation caused by 

changes in the complex geometry. To improve the prediction accuracy, the feature 

vector can be further augmented by including the information based on the xTB-

equilibrium structure of the reactant, namely, 𝝈 =  𝝈(𝑹xTB,r, 𝑹xTB,i, 𝑹DFT,r) . More 

details of the features are discussed in Section 2.2. It is noteworthy that the Δ-ML 

approach provides a natural solution to the difficulty of assigning the proper reactant-

intermediate pair, given that the information of the pairs is incorporated in the baseline 

model, ∆𝐸xTB or ∆𝐸′xTB. 

 

2.2. Features used in the Description of Reactant-Intermediate 

Pairs of Rh Complexes 

Autocorrelation Functions (ACs) 

ACs32, 33 combining the atomic properties were employed as the descriptors to 

characterize the Rh complexes. This class of molecular descriptors were not only 

successfully applied to the structure-property relationships in the domain of organic 

chemistry32, 36 and transition metal complexes,19 but have also been used in predicting 

the dihydrogen activation barrier mediated by Vaska’s complex featuring various 

ligands.25 Standard ACs32, 33 are conventionally defined as  

𝑀𝑑
P = ∑ ∑ 𝐴𝑖

P𝐴𝑗
P

𝑗𝑖

𝛿(𝑑𝑖𝑗 , 𝑑), (6) 

where 𝑀𝑑
P represents the AC for property P at depth 𝑑, 𝑑𝑖𝑗 is the bond-wise path 

distance between atoms 𝑖 and 𝑗, and 𝐴𝑖
P denotes the atomic property 𝐴P for atom 

𝑖. The atomic properties used to construct the ACs in our study were selected from a 

vast set of single atom properties computed at DFT level of theory, as well as from 

fitting parameters employed in the xTB calculations. A comprehensive list of all isolated 

atomic properties is provided in Table S1. By choosing the maximal depth 𝑑max and 

https://doi.org/10.26434/chemrxiv-2024-d985s ORCID: https://orcid.org/0009-0006-1302-0571 Content not peer-reviewed by ChemRxiv. License: CC BY-NC-ND 4.0

https://doi.org/10.26434/chemrxiv-2024-d985s
https://orcid.org/0009-0006-1302-0571
https://creativecommons.org/licenses/by-nc-nd/4.0/


the number of atomic properties 𝑁 , it is possible to generate a 𝑁(𝑑max + 1 )-

dimensional vector to describe a given complex. Additionally, to further include more 

detailed information on the ligands, the ACs were modified to evaluate solely on 

subsets of atoms. For example, if ACs were only evaluated on the atoms in the ligand, 

the ligand-specific ACs (l-ACs) could be obtained as: 

𝐿𝑑
P = ∑ ∑ 𝐴𝑖

P𝐴𝑗
P

𝑗 ∈ 𝐿𝑖 ∈ 𝐿

𝛿(𝑑𝑖𝑗 , 𝑑). (7) 

Furthermore, ACs can be evaluated on a specified atom 𝑖, which helps to describe the 

atomic environment. This is defined as the atom-specific ACs (a-ACs): 

𝐴𝑖,𝑑
P =  𝐴𝑖

P ∑ 𝐴𝑗
P𝛿(𝑑𝑖𝑗 , 𝑑)

𝑗

. (8) 

By subtracting the a-ACs of the selected atoms from the standard ACs, another type 

of ACs can be obtained, denoted as rest-ACs. The rest-ACs can provide the equivalent 

global information of the complex as the standard ACs, when used in combination with 

a-ACs in machine learning problems. The rest-ACs are defined as: 

𝑅𝑑
P =  ∑ ∑ 𝐴𝑖

P𝐴𝑗
P

𝑗𝑖 ∉ {sel}

𝛿(𝑑𝑖𝑗 , 𝑑). (9) 

The illustrations of standard ACs, rest-ACs, l-ACs and a-ACs are shown in Fig. S1. To 

offer a detailed description that focuses on the local reaction site, the a-ACs of selected 

atoms (Rh, P1, P2, Cl, R11, R12, R21, R22, L1, L2) were employed to construct the feature 

vector for the reactant, while a broader set of atoms (Rh, P1, P2, Cl, R11, R12, R21, R22, 

L1, L2, H, C) was used for the intermediate (see Fig. S3 for details). The chemical 

environment of the reaction site, i.e., Rh and Cl ions in our study, is expected to 

undergo significant changes before and after reacting with the C-H bond. Therefore, 

including the a-ACs of these specified atoms, which emphasizes the description of the 

atomic environment, is deemed beneficial for characterizing the reactant-intermediate 

pairs and the associated reaction energy. In addition, we also incorporated the global 

information of the Rh complex, by including the rest-ACs and l-ACs. All ACs are solely 

dependent on the graph structures of the complex, therefore the feature vectors in both 

∆x′
D′

- and ∆x
D-models take the form of 𝝈(𝑹r, 𝑹i). 
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Autocorrelation Functions correlating Atoms-in-Molecules Properties (AIM-ACs) 

In addition to the properties calculated for the isolated atoms, the atomic properties 

obtained through the application of Atoms in Molecules (AIM) theory37, 38 were also 

utilized to construct the molecular ACs. It is worth noting that these ACs exclusively 

encapsulate AIM-derived atomic properties. Therefore, we refer to this category of ACs 

as AIM-ACs. 

In the framework of AIM theory,37, 38 the nuclei in a molecule are naturally separated in 

atomic basins Ω, the boundary of which is defined by a zero-flux surface in the gradient 

vector field of the electron density. The partitioning of the molecular space into atomic 

basins enables the assignment of the molecular properties to individual atoms. Details 

of the atomic properties used in this study are listed in Table S1 and explained in the 

SI. The AIM analysis, as implemented in Multiwfn,39 can be applied to both, the DFT 

and xTB calculations. Consequently, including the AIM-ACs of the reactant calculated 

at DFT level of theory provides additional information for describing the reaction energy. 

In this context, both feature vectors for ∆x′
D′

 - and ∆x
D -models not only depend on 

geometries 𝑹DFT,r, 𝑹xTB,i (and  𝑹xTB,r), but also on the electron information 𝜌DFT,r, 

𝜌xTB,r and 𝜌xTB,i. 

 

Smooth Overlap of Atomic Positions (SOAP) 

SOAP descriptors34, 35 are descriptors that depend on the 3D structure of the molecules. 

Similar to a-ACs, SOAPs are designed to emphasize the atomic environment of the 

specified atom by projecting the Gaussian-smeared local atomic density onto the 

spherical harmonics and radial basis functions. The SOAPs in our study were 

generated using the dscribe40, 41 package. The details of SOAPs can be found in the 

SI. In our study, the molecular feature vector comprises the atomic SOAPs evaluated 

for atoms Rh, P1, P2 and Cl, with 𝑙max = 2 , 𝑛max = 2  and 𝑟cut = 10 Å  aiming to 

characterize the environmental change around the reaction site (see Fig. S4 for 

graphical illustration).  

Given SOAPs’ ability to capture the 3D structure of the molecules, SOAPs evaluated 

on the xTB-equilibrium reactant are included to account for the energy difference 
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caused by the change in geometry, when predicting the reaction energy ∆𝐸DFT (recall 

Fig. 1b). Consequently, the feature depends on 𝑹DFT,r, 𝑹xTB,r and 𝑹xTB,i in the ∆x
D-

model, whereas in the ∆x′
D′

-model, the feature vector of the reactant-intermediate pair 

depends only on 𝑹DFT,r and 𝑹xTB,i, given that 𝑹DFT,r and 𝑹xTB,r are equivalent. 

2.3. Computational Exploration of Reaction Energies   

The computational protocol used in this work is illustrated in Fig. 2. 

 

Fig. 2 Computational protocol used in the generation of the DFT and xTB data. We first employ 

RDKit and Openbabel to generate fictitious prototypic species with 4 Cl ions in a combinatorial 

manner. A conformer search using CREST is employed on a subset of prototypes.  All 

conformers of the prototype were considered as distinct complexes in the data set. A 

subsequent xTB optimization was employed on all prototypic species before the substitution of 

the Cl ions to obtain the reactant and intermediate species.  

 

The geometry guesses required to optimize the reactant and intermediate states were 

generated using the combination of RDKit42 and OpenBabel.43 We initiated the 

construction of reactants and intermediates geometries from an octahedral 

Rh(PLP)(Cl)4 prototype, where the linkers L, as well as the residual groups R1 and R2 

were selected from a comprehensive set of 19 different linkers and 62 residual groups 
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(see Fig. S5). To address potential conformational variations, conformer searches 

using CREST44 were performed within a subset of prototypes. In addition to the 

conformer with the lowest energy, several other minima on the xTB potential energy 

(hyper)surface (PES) were identified in the conformer search processes. Each of these 

minima represented different prototypic molecules, and would subsequently serve as 

individual data points for ML analysis.  

After the prototypes were optimized at GFN2-xTB31 level of theory, the initial guesses 

of 4-times coordinated reactants Rh(PLP)(Cl)(CO) were achieved by removing the 

excess chloride ions in the axial positions. Furthermore, one additional chloride ion in 

the equatorial plane is replaced by CO. Additionally, the initial geometries of 6-times 

coordinated intermediates Rh(PLP)(Cl)(CO)(H)(propyl) were generated by substituting 

one chloride ion in the axial position with H, and two equatorial chloride ions with a 

propyl group and a CO, respectively. 

Calculations at density functional of theory (DFT), as well as at xTB level of theory, 

were carried out sequentially for every system, to obtain the target values ∆𝐸DFT and 

∆𝐸′DFT, as well as the baseline values ∆𝐸xTB and ∆𝐸′xTB for our ML objectives. 

Firstly, xTB optimizations were performed on the initial guesses of reactants and 

intermediates, yielding the xTB single point energies 𝐸xx,r and 𝐸xx,i. Subsequently, 

both xTB-optimized species were further optimized at the level of DFT, yielding the 

single-point DFT energies 𝐸DD,r and 𝐸DD,i, respectively. 

The DFT calculations, employing the range-separated 𝜔B97XD functional45 and the 

def2-SVP basis set, along with the respective effective core potential,46 were carried 

out in Gaussian 16 software package.47 A vibrational analysis was carried out for DFT-

equilibrium structure to verify that a minimum was obtained on the PES. Furthermore, 

the DFT single-point energies 𝐸xD,i, were obtained by performing a calculation for each 

xTB-optimized intermediate while the xTB single-point energies 𝐸Dx,r, were obtained 

for each DFT-optimized intermediate. Recall that 𝐸xD,i is used to calculate the target 

upper bound of reaction energy ∆𝐸′DFT  (Eq. 2), and 𝐸Dx,r  is used to calculate the 

corresponding baseline value ∆𝐸′xTB (Eq. 3). Structural assessments were performed 

on reactants and intermediates optimized at both DFT and xTB levels of theory, to 

https://doi.org/10.26434/chemrxiv-2024-d985s ORCID: https://orcid.org/0009-0006-1302-0571 Content not peer-reviewed by ChemRxiv. License: CC BY-NC-ND 4.0

https://doi.org/10.26434/chemrxiv-2024-d985s
https://orcid.org/0009-0006-1302-0571
https://creativecommons.org/licenses/by-nc-nd/4.0/


validate that the coordination numbers of Rh ion are 4 and 6 in reactant and 

intermediate states, respectively. In addition, the phosphine ligands of both reactant 

and intermediate states of the molecules are ensured to be in cis- position. 

 

2.4. Machine Learning Models trained on the ACs, AIM-ACs and 

SOAPs 

After examining the structure of the reactants and intermediates, three sets of feature 

vectors based on ACs, AIM-ACs, and SOAPs of complexes were calculated for the Δ-

ML study. To decrease the training time and complexity48 for the non-linear model, a 

feature selection based on extra-trees regressor,49 as implemented in scikit-learn,50 

was performed to reduce the dimension of the feature vectors. In this selection method, 

the extra-tree models were trained to predict ∆𝐸′DFT and ∆𝐸DFT merely with the ACs, 

AIM-ACs or SOAPs features, i.e., in the absence of the ∆𝐸′xTB  and ∆𝐸xTB , 

respectively. The features with importance lower than 0.0003 were considered 

unimportant and discarded, and by this filtering, the dimensionality of the feature 

vectors was considerably decreased. The dimensionalities of the various feature sets 

before and after reduction are summarized in Table S2. 

The artificial neural network (ANN) implemented within the NeuralFastAI51 framework, 

was employed to train the two types of Δ-ML models on the features after 

dimensionality reduction. The ANN models utilize the rectified linear functions (ReLU) 

to capture potential nonlinear relationships between the features on the target values. 

For optimization, the Adam optimizer,52 a method for efficient stochastic optimization, 

was employed to fit the parameters of the model. Hyperparameters, including the 

network architectures, embedding layers dropout rate, linear layers dropout rate, and 

number of epochs were optimized efficiently using the Bayesian optimization53, 54 in an 

automated fashion, as implemented in AutoGluon package.55 Furthermore, the 

permutation importance56, 57 of the features was assessed on the best-performing 

model, in order to gain insights into the relationships between the descriptors and the 

deviation of the baseline values from the target values.  
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3. Results and Discussion 

3.1. Predictions on the upper Bound of Reaction Energy ∆𝐸′DFT 

In this study, 1,743 reactant-intermediate pairs were successfully optimized, and the 

corresponding target values  𝛥𝐸DFT
′   and ∆𝐸DFT  were obtained. Fig. 3a provides a 

visual representation of the disparity between the baseline model and the target model, 

where the baseline values 𝛥𝐸xTB
′  range from -96.6 to 121.4 kJ mol-1 while the target 

values  𝛥𝐸DFT
′  range from 59.7 to 298.9 kJ mol-1. Directly applying linear regression to 

the baseline values for predicting the target values yields significant errors, with a root 

mean squared error (RMSE) of 23.2 kJ mol-1 and a coefficient of determination (R2) of 

only 0.55. This deviation of baseline and target values is exclusively introduced by the 

disparities stemming from the choice of different calculation levels.  

 

Fig. 3 Parity plots between baseline value and target value: (a) between 𝛥𝐸xTB
′  and 𝛥𝐸DFT

′ , 

and (b) between Δ𝐸xTB and Δ𝐸DFT. A linear regression fit between the baseline values and 

target values was performed on the 1743 reactant-intermediate pairs, yielding a correlation R2 

of 0.541 and 0.563, respectively. 

 

To account for the difference arising from the different calculation levels, ∆x′
D′

-models 

were trained using AIM-ACs and ACs of varying depths as molecular descriptors. The 

dataset of 1,743 reactant-intermediate pairs were split into training, validation and test 
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sets with a ratio of 64:16:20. The performance of the ∆x′
D′

-models is depicted in Fig. 4 

Performance of ∆x′
D′

-model for predicting the target 𝛥𝐸DFT
′  using AIM-ACs and ACs as 

features. Plot (a) and (b) depict the variation of root mean squared error (RMSE) and 

the coefficient of determination (R2) as functions of the maximum number of depths 

𝑑max. Dimensionality reduction was performed on both feature sets before training. 

Plot (c) and (d) illustrate the change of distribution of AIM-ACs and ACs of different 

depths as the maximum depth, 𝑑max , changes. Having comprised the electron 

information computed at both DFT and xTB levels of theory, all models trained on AIM-

ACs with varying maximum depths 𝑑max exhibited notably good performance, with a 

RMSE of approximately 11.0 kJ mol-1 and a R2 exceeding 0.90. When increasing the 

maximum feature depth from 1 to 3, the RMSE decreased from 11.1 kJ mol-1 to 10.6 

kJ mol-1, and the R2 increased from 0.905 to 0.913. The optimal performing model, 

achieved with 𝑑max = 3 , had 4 hidden layers with 1042, 367, 150, 121 neurons, 

respectively, along with an embedding layer dropout rate of 0.651, linear layer dropout 

rate of 0.002 and 24 epochs. The hyperparameter sets and other detailed results of 

the optimal models trained on different 𝑑max  are summarized in Table S2. Further 

increasing the maximum feature depth did not improve the performance of the ∆x′
D′

-

models. This suggests that the discrepancy between the 𝛥𝐸xTB
′  and 𝛥𝐸DFT

′  could be 

attributed to the difference in description of electron information in the short range (𝑑 =

0, 1, 2, 3). Fig. 4c provides insight into the fraction of AIM-ACs with different 𝑑max  after 

dimensionality reduction. As 𝑑max  increased from 3 to 9, the fraction of AIM-AC of 

𝑑 = 0, 1, 2, 3  remained consistently over 0.72. This observation supports the 

conclusion that including AIM-AC features with larger 𝑑max   (𝑑max > 3 ) does not 

provide additional information for addressing the difference between the 𝛥𝐸xTB
′  and 

𝛥𝐸DFT
′ . 

Although Δ𝑏′
𝑡′

-models trained on AIM-ACs have exhibited excellent performance, it is 

important to note that the calculations for AIM-based atomic properties are 

computationally demanding, rendering AIM-ACs less practical in accelerating high-
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throughput screening for the desired catalysts. In contrast, the original ACs based on 

the isolated atomic properties demand significantly lower computational costs.  

In our study, a substantial number of isolated atomic properties derived from DFT 

calculations with a 𝜔B97XD functional45 and the parameters used in xTB calculations 

were used to construct the ACs (see SI). However, in comparison to AIM-ACs, the ∆x′
D′

-

models trained on ACs generally had poorer performance in predicting the 𝛥𝐸DFT
′ . The 

best performing model was obtained at 𝑑max = 7, with a RMSE of 14.2 kJ mol-1 and a 

R2 of 0.845. Fig. 4d illustrates the importance of including the atomic properties with 

larger 𝑑max  . As 𝑑max   increased from 1 to 7, the peak of the fraction also moves 

towards a higher 𝑑  values, with 𝑑 = 5  and 𝑑 = 6  contributing the largest fraction 

(0.23 and 0.24, respectively) to the entire feature vector. On the contrary, ACs of 𝑑 =

0  and 𝑑 = 1  were less important and discarded via the dimensionality reduction 

procedure as 𝑑max  increased.  

 

 

Fig. 4 Performance of ∆x′
D′

-model for predicting the target 𝛥𝐸DFT
′  using AIM-ACs and ACs as 

features. Plot (a) and (b) depict the variation of root mean squared error (RMSE) and the 

coefficient of determination (R2) as functions of the maximum number of depths 𝑑max . 
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Dimensionality reduction was performed on both feature sets before training. Plot (c) and (d) 

illustrate the change of distribution of AIM-ACs and ACs of different depths as the maximum 

depth, 𝑑max, changes. 

 

The details of the best performing models trained on AIM-ACs (𝑑max = 3) and ACs 

(𝑑max = 7), along with the corresponding feature importance analysis, are presented 

in Fig. 5. Regarding the model trained on AIM-ACs with 𝑑max = 3, data points in the 

test and training sets were distributed evenly around the 𝑦 = 𝑥 line in the parity plot. 

Compared to the prediction performance using the pure baseline value 𝛥𝐸xTB
′   (as 

shown in Fig. 3a), this ∆x′
D′

-model displays a notable enhancement, with the RMSE 

decreasing from 23.2 to 10.6 kJ mol-1. Feature importance analysis indicates that the 

a-AIM-ACs contributed the most to the improvement. On the contrary, the l-AIM-ACs, 

which are designed to describe the ligands, play less crucial roles in improving the 

model. Although this optimal model was trained on the AIM-ACs with 𝑑max = 3 , 

features of 𝑑 = 0 and 1 exhibited the strongest predictive power, with AIM-ACs of 

𝑑 = 2, 3 contributing only minor corrections to the model.  

Compared to AIM-ACs, ∆x′
D′

 -model trained on ACs exhibited lower accuracy, and 

notable deviating points were observed in both test and training sets. This disparity 

could be attributed to the inherent inflexibility of ACs compared to AIM-ACs, as the 

distribution of ACs in ℝ is much sparser than that of AIM-ACs. Nevertheless, when 

compared to the pure baseline model, the performance of ∆x′
D′

-model trained on ACs 

has considerably improved at a considerably lower cost. In contrast to the model 

trained on AIM-ACs, the ACs of 𝑑 = 0  or 𝑑 = 1  barely provided distinctive 

information for different complexes. Consequently, ACs of greater depth (𝑑 = 2~6 ) 

have higher predictive power in addition to the baseline value 𝛥𝐸xTB
′ . It is noteworthy 

that the features with high importance are dependent on the xTB parameters, 

particularly the anisotropic XC scaling parameter 𝑓XC
Θ𝐴 , which is parametrized to 

describes the quadrupole expansion of the electron density of a specific element and 

account for the anisotropic exchange-correlation effect.31 
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In addition to the topology-based features such as AIM-ACs and ACs, the ∆x′
D′

-model 

was also trained on the position-based feature set, such as SOAPs, which can be 

computed very efficiently in the dscribe40, 41 package. Compared to the model trained 

on ACs, the model trained on SOAPs exhibited superior prediction performance, with 

a RMSE of 13.0 kJ mol-1 and a R2 of 0.871. The optimal set of hyperparameters is 

summarized in Table S2. In contrast to the model trained on AIM-ACs features, where 

the xTB charge of the Cl ion in the intermediate (chgxTB
0 (Cl)) emerged as the most 

important feature, the atomic environments around Rh ( 𝑝(Rh) ) played the most 

significant role in enhancing the predictive performance of the model trained on SOAPs.  

 

Fig. 5 Parity plots between the prediction values and the true (DFT) values of the best ∆x′
D′

-

models trained on AIM-ACs (𝑑max = 3), ACs (𝑑max = 7) and SOAPs feature sets, respectively, 

as well as the corresponding feature importance analysis. 

 

In summary, the ∆x′
D′

-models trained on AIM-ACs exhibit strong predictive performance. 

However, it is important to note that the calculation of the AIM properties demands high 
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computational power (roughly equivalent to a single point calculation), due to the heavy 

numerical integration of the electron density. Nevertheless, by comprising the electron 

information into the feature sets, these models point out that the charge in the Cl basin 

calculated at the xTB level of theory ( chgxTB
0 (Cl) ) is the most relevant feature 

accounting for the difference between 𝛥𝐸xTB
′   and 𝛥𝐸DFT

′  . Alternatively, ACs and 

SOAPs provide a much faster route to predict 𝛥𝐸DFT
′  with relatively high accuracies. 

In the case of ACs, features with higher 𝑑 value have stronger predictive power while 

in the case of SOAPs, the atomic environments of Rh play significant roles in 

enhancing the performance of the model. 

3.2. Predictions on the Reaction Energy ∆𝐸DFT 

The Δ -machine learning strategy has been further adapted to predict the reaction 

energy ∆𝐸DFT, which plays a significant role in determining the relative concentration 

of the intermediate and reactant in equilibrium. Therefore, finding a suitable ligand 

architecture that can reduce the reaction energy ∆𝐸DFT would be advantageous for 

facilitating the C-H activation and subsequent functionalization. Fig. 3b illustrates the 

difference between the baseline values 𝛥𝐸xTB and the target values 𝛥𝐸DFT, where the 

values span from of -66.8 to 167.0 kJ mol-1, and from 10.8 to 205.5 kJ mol-1, 

respectively. The results of ∆x
D -models trained on AIM-ACs and ACs with different 

𝑑max values are presented in Fig. 6. The best performing models were achieved when 

trained on 𝑑max = 9  and 𝑑max = 1 , with RMSEs of 10.4 and 12.5 kJ mol-1, 

respectively. However, compared to corresponding the ∆x′
D′

 -models, ∆x
D -models 

exhibited lower R2 values, which suggests that the features have a limitation in 

predicting the difference between ∆𝐸DFT and ∆𝐸xTB. This arises from two aspects, the 

different levels of theory and the changes in geometries. In addition to the information 

provided by AIM-ACs of 𝑑 = 0, 1, 2, 3 , which mainly accounts for the difference in 

calculation levels (as discussed in Section 3.1, including the information of greater 

depths can further enhance the performance of the model. The proportion of AIM-ACs 

of 𝑑 = 7, 8, 9 is also comparably larger in this model than in the ∆x′
D′

-model, with a 

fraction of 0.11 vs 0.02, respectively (refer to Fig. 6c vs Fig. 4c). The presence of non-
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zero AIM-AC features of greater depth (𝑑 = 7, 8, 9) typically suggests that the complex 

possesses a large and bulky ligand, which may introduce more significant deviation 

between the xTB- and DFT-equilibrium structures. Therefore, including the AIM-ACs 

of greater depths can potentially account for the difference due to the change in 

geometries.  

The ∆x
D-models trained on ACs generally exhibit lower accuracies than the models 

trained on AIM-ACs. Unexpectedly, the best performing model was obtained at 𝑑max =

1, with a RMSE of 12.7 kJ mol-1 and a R2 of 0.723. Fig. 6d illustrates that the fraction 

of ACs of 𝑑 = 0, 1 dropped drastically as 𝑑max increases. However, in contrast to the 

𝛥𝐸DFT
′  prediction, including the AC features with 𝑑 > 1 does not improve the accuracy 

of the model. 

 

Fig. 6 Performance of ∆x
D-model for predicting the target 𝛥𝐸DFT

  using AIM-Acs and Acs as 

features. Plot (a) and (b) depict the variation of root mean squared error (RMSE) and the 

coefficient of determination (R2) as functions of the maximum number of depths 𝑑max . 

Dimensionality reduction was conducted on both feature sets before training. Plot (c) and (d) 

illustrate the changes of distribution of AIM-Acs and Acs of different depths as the maximum 

depth, 𝑑max, changes.  

 

Details and the feature importance analysis of the ∆x
D-model trained on AIM-ACs with 
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𝑑max = 9 are shown in Fig. 7. Data points in the test and training sets were distributed 

uniformly around the 𝑦 = 𝑥 line in the parity plot, with only a few notably deviating 

points present in the high energy region where ∆𝐸DFT  exceeds 100 kJ mol-1. The 

corresponding feature importance analysis reveals that a-AIM-ACs are the most 

significant contributors to the high predictive performance of the model. Among these 

features, the electron information around Cl and Rh ions are of the highest significance, 

particularly the AIM-charge of Cl in the intermediate calculated at xTB level of theory 

(chgxTB,i
0 (Cl) ). As discussed in Section 3.1, this feature primarily accounts for the 

difference arising from the different calculation levels of theory. In contrast to the ∆x′
D′

-

model, where electronic information from xTB calculations plays a more prominent role, 

DFT information from the reactant is more important in this model, in addition to the 

already known importance of chgxTB,i
0 (Cl). Note that the changes in geometries in both 

reactants and intermediates can introduce errors independently to the prediction in the 

energy difference. The structural change of the reactants can be captured by the AIM 

analysis on the DFT-equilibrium structure and xTB-equilibrium structure of the reactant, 

namely, on 𝑹DFT,r and 𝑹xTB,r, respectively. However, the change in geometries of the 

intermediates remains hard to describe solely through the AIM analysis of 𝑹xTB,i . 

Therefore, higher importance of the AIM-ACs which depend on the DFT calculations 

is observed. On the contrary, it is less practical to discuss the results for ∆𝑥
D-models 

trained on ACs due to their low prediction accuracy. Nevertheless, the parity plot and 

the corresponding feature importance ranking are shown in Fig. S6. 
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Fig. 7 Parity plots between the prediction values and the true (DFT) values of the best ∆𝑥

D-

models trained on AIM-ACs (𝑑max = 9), SOAPs and SOAPs feature only depending on xTB 

structures (xTB-SOAPs), respectively, as well as the corresponding feature importance analysis. 

 

Furthermore, the ∆x
D-model was trained using SOAPs that depend on the structure of 

reactants optimized at both xTB and DFT levels of theory, as well as the structure of 

the intermediate optimized at the xTB level of theory. It is noteworthy that SOAPs can 

be calculated much more efficiently compared to AIM-ACs, and the performance of the 

model trained on these features even slightly exceeds that of the model trained on 

AIM-ACs, with a RMSE of 10.3 kJ mol-1 and a R2 of 0.819. Given that SOAPs are less 

accurate in predicting the difference in different levels of theory than the AIM-ACs, as 

demonstrated in the comparative study on the ∆x′
D′

-models, this result suggests that 

SOAPs may have stronger predictive power regarding the change in geometries. 

Among all the SOAP features, the atomic environment of the Rh ions in DFT-

equilibrium structures of the reactants and in xTB-equilibrium structures of the 

intermediates is the most significant factor for the accuracy of this ∆x
D-model.  

The SOAPs can be further simplified by excluding the information of the DFT structure, 

https://doi.org/10.26434/chemrxiv-2024-d985s ORCID: https://orcid.org/0009-0006-1302-0571 Content not peer-reviewed by ChemRxiv. License: CC BY-NC-ND 4.0

https://doi.org/10.26434/chemrxiv-2024-d985s
https://orcid.org/0009-0006-1302-0571
https://creativecommons.org/licenses/by-nc-nd/4.0/


although it plays an important role according to the results of the feature ranking. In 

this manner, the energy difference of the reaction obtained at the DFT level of theory 

∆𝐸DFT can be predicted exclusively using the information from xTB calculations, which 

eliminates the need for computationally expensive structural optimizations at the DFT 

level of theory. This simplified feature set is denoted as xTB-SOAPs. As expected, the 

performance of the ∆x
D-model slightly deteriorated after excluding the information from 

DFT-equilibrium structures, with the RMSE increasing to 11.1 kJ mol-1, and the R2 

reducing to 0.789. However, compared to the prediction from pure baseline values 

∆𝐸xTB , this is already a considerable improvement with only a minor increase in 

computational cost. Without the information of the atomic environments of Rh obtained 

in the DFT-equilibrium structure, the feature ranking shows an increased importance 

of the environment around P1 in the reactant, which emphasizes information from the 

ligands. A large size and high bulkiness of a ligand usually implies a large deviation 

between DFT-equilibrium and xTB-equilibrium structures. Therefore, the importance of 

a more detailed description on the ligand structure is heightened, when the direct 

descriptions on the change in geometries, such as SOAPs evaluated on DFT-

equilibrium structure, are absent. 

In summary, the ∆x
D-model trained on AIM-ACs and SOAPs exhibits good performance 

in predicting the energy difference ∆𝐸DFT . However, these two feature sets may 

account for different aspects of the difference between the baseline value and the 

target value: AIM-ACs are more related to the difference in levels of theory, while 

SOAPs are more associated to the change in geometry. Furthermore, xTB-SOAPs 

features are highly recommended for efficient prediction of the energy difference, 

owing to the low computational costs for xTB optimization and SOAPs calculation. 

3.3. High-throughput screening using the ∆x
D-model trained on xTB-

SOAPs 

Utilizing the ∆x
D -model trained on xTB-SOAPs, we propose an efficient two-step 

screening pipeline for exploring the chemical space of Rh complexes featuring 

bidentate phosphine ligands. First, 27,832 selected reactant and intermediate pairs 

https://doi.org/10.26434/chemrxiv-2024-d985s ORCID: https://orcid.org/0009-0006-1302-0571 Content not peer-reviewed by ChemRxiv. License: CC BY-NC-ND 4.0

https://doi.org/10.26434/chemrxiv-2024-d985s
https://orcid.org/0009-0006-1302-0571
https://creativecommons.org/licenses/by-nc-nd/4.0/


undergo xTB optimization without conformer search. The baseline value ∆𝐸xTB , as 

well as the SOAP features were evaluated at the xTB equilibrium structure of reactants 

and intermediates. After the evaluation of ∆𝐸ML using the trained ∆x
D-model, 60 pairs 

with lowest reaction energies are selected for a refined screening step. In a second 

step, the selected reactant-intermediate pairs undergo conformer search. ∆𝐸ML and 

SOAP features were obtained from the corresponding optimal conformer structures. 

Detailed information on the procedure is described in the SI. Implementing the two-

step high-throughput screening procedure onto a vast chemical space with 27,832 

data points, we identified 10 reactant-intermediate pairs of Rh complexes with 

potentially the lowest ∆𝐸ML. These Rh complexes are promising catalysts for the C-H 

activation process. The Lewis structures of the bidentate phosphine ligands, the 

predicted energy difference of the reactant-intermediate pairs ∆𝐸ML , the baseline 

value ∆𝐸xTB, as well as the target value ∆𝐸DFT as validation, are summarized in Table 

1. The RMSE evaluated on these 10 reactant-intermediate pairs is 10.8 kJ mol-1, where 

the errors of 6 of these structures are smaller than 5.0 kJ mol-1. Although this result is 

less accurate than the predictive study on the H2 activation barrier catalyzed by Vaska’s 

complexes25, our study allows the prediction of energy differences between the 

reactant and intermediate, which have greater structural differences than the reactant 

and the transition state, because they are further apart on the 3N-6 potential energy 

surface. Compared to the averaged reaction energy of the original dataset with 1,743 

data points (68.0 kJ mol-1), the average reaction energy of the ten newly proposed 

structures is 34.8 kJ mol-1 lower (33.12 kJ mol-1). This outcome indicates that the ∆x
D-

model trained on xTB-SOAPs provides an efficient and reliable way for designing 

ligand structures with optimal properties via high-throughput screening. 
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Table 1 Details of the 10 reactant-intermediate pairs with lowest ∆𝐸ML selected from the two-

step screening procedure, including the structure of the ligands, the predicted energy difference 

∆𝐸ML , the baseline value ∆𝐸xTB  (in squared bracket) and the target value ∆𝐸DFT  (in 

parentheses) as validation. 

Ligand structure 

∆𝐸ML 

(∆𝐸DFT) 

[∆𝐸xTB] / 

kJ mol-1 

Ligand structure 

∆𝐸ML 

(∆𝐸DFT) 

[∆𝐸xTB] / 

kJ mol-1 

 

19.1 

(21.9) 

[-25.8] 

 

27.7 

(41.3) 

[5.4] 

 

19.9 

(44.2) 

[11.4] 

 

31.7 

(27.1) 

[-22.3] 

 

22.6 

(19.8) 

[-31.6] 

 

33.7 

(31.5) 

[-9.2] 

 

23.3 

(36.2) 

[-9.9] 

 

33.9 

(38.2) 

[-0.1] 

 

24.5 

(25.4) 

[-5.9] 

 

34.2 

(46.7) 

[-5.8] 
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As can be seen from Table 1, the linker unit connecting the two coordinating 

phosphorous atoms varies and includes flexible alkyl chains but also more rigid 

aromatic or 2,3-O-isopropylidene-2,3-dihydroxy-1,4-bisbutyl structures. All structures 

have in common that the phosphorus atoms bear at least one aromatic substituent. A 

more in-depth analysis of geometric and electronic parameters based on the DFT-

optimized [Rh(PLP)(CO)(Cl)] equilibrium structures reveals that the newly suggested 

ligand structures have larger buried B5 Sterimol parameter,58 as well as an on average 

lower dipole moment. In total 20 geometric and electronic descriptors exhibit significant 

differences between the original and the newly proposed bisphosphine set (see SI). 

Importantly, steric factors describing the accessibility of the Rh center such as 

the %Buried Volume59 are included in this descriptor set. The complexes with a lower 

predicted reaction energy also have a lower %Buried Volume, pointing to the fact that 

the Rh center is more accessible for the substrate. Overall, the dependence of the C-

H activation reaction energy on the complex structure cannot be explained with a single 

factor, instead, multiple geometric and electronic parameters influence the C-H 

activation process. This underlines the complexity when searching for new C-H 

activation catalysts. 

 

4. Conclusion 

In this study, an efficient and reliable prediction of the energy difference between the 

4-coordinated Rh(PLP)(CO)(Cl) and 6-coordinated Rh(PLP)(CO)(Cl)(H)(propyl) was 

realized by employing the Δ-ML approach. On the one hand, the ∆x′
D′

-model trained on 

autocorrelation functions based on atoms in molecules theory (AIM-ACs) achieved the 

best performance with a root-mean-squared error (RMSE) of 10.6 kJ mol-1 and a R2 of 

0.913. This result underscores the superiority of AIM-ACs over the other two feature 

sets in accounting for errors due to the difference in the level of theory. On the other 

hand, the ∆x
D -model trained on smooth overlap atomic position (SOAP) features 

achieved remarkable performance with an RMSE of 10.3 kJ mol-1 and an R2 of 0.819, 

which suggests that SOAPs have better performance in accounting for errors due to 
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the change in geometry. Notably, the ∆x
D-model trained on xTB-SOAPs alone excels 

not only in efficiently screening the chemical space of Rh complexes featuring 

bidentate phosphine ligands but also in accurately predicting the reaction energies 

∆𝐸DFT. With our approach, we were able to predict ten promising ligand structures that 

should feature a low C-H reaction energy and therefore, should be able to substantially 

accelerate the catalytic functionalization of alkanes. 

 

Data Availability Statement  

The DFT optimized xyz files, the Gaussian16 log files as well as csv files used for 

training of the different models are available from Zenodo 

(https://doi.org/10.5281/zenodo.10529637, DOI: 10.5281/zenodo.10529636, Version 

used: 1.0). Additional detailed experiment descriptions, figures, as well as tables 

supporting the findings of the article can be found in the Electronic Supporting 

Information. 

.  

Conflict of Interest 

The authors declare no conflict of interest. 

Acknowledgement 

T.H. and S.G. gratefully acknowledge funding from Carl-Zeiss-Stiftung “Durchbrüche”. 

SG highly acknowledges funding by the German Science Foundation DFG within the 

priority program SPP 2363 "Molecular Machine Learning", GR4482/6. R.G. gratefully 

acknowledges funding from the “Bund-Länder Tenure-Track Programm” of the Federal 

Ministry of Education and Research (BMBF) as well as by an accompanying grant from 

the Free State of Thuringia (FKZ: 16TTP133). All calculations were performed at the 

Universitätsrechenzentrum of the Friedrich Schiller University of Jena. 

References 

1. W.-H. Wang, Y. Himeda, J. T. Muckerman, G. F. Manbeck and E. Fujita, CO2 

Hydrogenation to Formate and Methanol as an Alternative to Photo- and 

Electrochemical CO2 Reduction, Chem. Rev., 2015, 115, 12936-12973. 

2. R. Crabtree, Iridium compounds in catalysis, Acc. Chem. Res., 1979, 12, 331-337. 

3. M. D. Kärkäs, O. Verho, E. V. Johnston and B. Åkermark, Artificial Photosynthesis: 

Molecular Systems for Catalytic Water Oxidation, Chem. Rev., 2014, 114, 11863-12001. 

4. X. Li, W. Ouyang, J. Nie, S. Ji, Q. Chen and Y. Huo, Recent Development on Cp* Ir 

(III)‐Catalyzed C− H Bond Functionalization, ChemCatChem, 2020, 12, 2358-2384. 

5. T. Sakakura, T. Sodeyama, K. Sasaki, K. Wada and M. Tanaka, Carbonylation of 

hydrocarbons via carbon-hydrogen activation catalyzed by RhCl (CO)(PMe3) 2 under 

https://doi.org/10.26434/chemrxiv-2024-d985s ORCID: https://orcid.org/0009-0006-1302-0571 Content not peer-reviewed by ChemRxiv. License: CC BY-NC-ND 4.0

https://doi.org/10.5281/zenodo.10529637
https://doi.org/10.26434/chemrxiv-2024-d985s
https://orcid.org/0009-0006-1302-0571
https://creativecommons.org/licenses/by-nc-nd/4.0/


irradiation, J. Am. Chem. Soc., 1990, 112, 7221-7229. 

6. A. J. Kunin and R. Eisenberg, Photochemical carbonylation of benzene by iridium (I) 

and rhodium (I) square-planar complexes, Organometallics, 1988, 7, 2124-2129. 

7. K. J. Laidler and M. C. King, The development of transition-state theory, J. phys. Chem, 

1983, 87, 2657-2664. 

8. A. L. Dewyer, A. J. Argüelles and P. M. Zimmerman, Methods for exploring reaction 

space in molecular systems, Wiley Interdiscip. Rev.: Comput. Mol. Sci., 2018, 8, e1354. 

9. L. J. Broadbelt, S. M. Stark and M. T. Klein, Computer Generated Pyrolysis Modeling: 

On-the-Fly Generation of Species, Reactions, and Rates, Ind. Eng. Chem. Res., 1994, 

33, 790-799. 

10. C. W. Gao, J. W. Allen, W. H. Green and R. H. West, Reaction Mechanism Generator: 

Automatic construction of chemical kinetic mechanisms, Comput. Phys. Commun., 

2016, 203, 212-225. 

11. D. Rappoport, C. J. Galvin, D. Y. Zubarev and A. Aspuru-Guzik, Complex chemical 

reaction networks from heuristics-aided quantum chemistry, J. Chem. Theory Comput., 

2014, 10, 897-907. 

12. S. Habershon, Sampling reactive pathways with random walks in chemical space: 

Applications to molecular dissociation and catalysis, J. Chem. Phys., 2015, 143, 

094106. 

13. M. Bergeler, G. N. Simm, J. Proppe and M. Reiher, Heuristics-guided exploration of 

reaction mechanisms, J. Chem. Theory Comput., 2015, 11, 5712-5722. 

14. A. L. Dewyer and P. M. Zimmerman, Finding reaction mechanisms, intuitive or 

otherwise, Org. Biomol. Chem., 2017, 15, 501-504. 

15. D. H. Valentine Jr and J. H. Hillhouse, Electron-rich phosphines in organic synthesis II. 

Catalytic applications, Synthesis, 2003, 2003, 2437-2460. 

16. H. Altae-Tran, B. Ramsundar, A. S. Pappu and V. Pande, Low data drug discovery with 

one-shot learning, ACS Cent. Sci., 2017, 3, 283-293. 

17. A. Mayr, G. Klambauer, T. Unterthiner, M. Steijaert, J. K. Wegner, H. Ceulemans, D.-A. 

Clevert and S. Hochreiter, Large-scale comparison of machine learning methods for 

drug target prediction on ChEMBL, Chem. Sci., 2018, 9, 5441-5451. 

18. Y. J. Colón and R. Q. Snurr, High-throughput computational screening of metal–organic 

frameworks, Chem. Soc. Rev., 2014, 43, 5735-5749. 

19. J. P. Janet and H. J. Kulik, Resolving transition metal chemical space: Feature selection 

for machine learning and structure–property relationships, J. Phys. Chem. A, 2017, 121, 

8939-8954. 

20. T. Lewis‐Atwell, P. A. Townsend and M. N. Grayson, Machine learning activation 

energies of chemical reactions, Wiley Interdiscip. Rev.: Comput. Mol. Sci., 2022, 12, 

e1593. 

21. S. Choi, Y. Kim, J. W. Kim, Z. Kim and W. Y. Kim, Feasibility of activation energy 

prediction of gas‐phase reactions by machine learning, Chem. - Eur. J., 2018, 24, 

12354-12358. 

22. I. Ismail, C. Robertson and S. Habershon, Successes and challenges in using machine-

learned activation energies in kinetic simulations, The Journal of Chemical Physics, 

2022, 157, 014109. 

https://doi.org/10.26434/chemrxiv-2024-d985s ORCID: https://orcid.org/0009-0006-1302-0571 Content not peer-reviewed by ChemRxiv. License: CC BY-NC-ND 4.0

https://doi.org/10.26434/chemrxiv-2024-d985s
https://orcid.org/0009-0006-1302-0571
https://creativecommons.org/licenses/by-nc-nd/4.0/


23. M. Evans and M. Polanyi, Inertia and driving force of chemical reactions, Trans. 

Faraday Society, 1938, 34, 11-24. 

24. F. Palazzesi, M. R. Hermann, M. A. Grundl, A. Pautsch, D. Seeliger, C. S. Tautermann 

and A. Weber, BIreactive: a machine-learning model to estimate covalent warhead 

reactivity, J. Chem. Inf. Model., 2020, 60, 2915-2923. 

25. P. Friederich, G. dos Passos Gomes, R. De Bin, A. Aspuru-Guzik and D. Balcells, 

Machine learning dihydrogen activation in the chemical space surrounding Vaska's 

complex, Chem. Sci., 2020, 11, 4584-4601. 

26. P. Margl, T. Ziegler and P. E. Bloechl, Reaction of methane with Rh (PH3) 2Cl: A 

dynamical density functional study, J. Am. Chem. Soc., 1995, 117, 12625-12634. 

27. T. Huang, S. Kupfer, M. Richter, S. Gräfe and R. Geitner, Bidentate Rh (I)‐Phosphine 

Complexes for the C− H Activation of Alkanes: Computational Modelling and 

Mechanistic Insight, ChemCatChem, 2022, 14, e202200854. 

28. J. S. Bridgewater, T. L. Netzel, J. R. Schoonover, S. M. Massick and P. C. Ford, Time-

Resolved Optical and Infrared Spectral Studies of Intermediates Generated by 

Photolysis of trans-RhCl (CO)(PR3) 2. Roles Played in the Photocatalytic Activation of 

Hydrocarbons1, lnorg. Chem., 2001, 40, 1466-1476. 

29. R. Ramakrishnan, P. O. Dral, M. Rupp and O. A. Von Lilienfeld, Big data meets quantum 

chemistry approximations: the Δ-machine learning approach, J. Chem. Theory 

Comput., 2015, 11, 2087-2096. 

30. Q. Zhao, D. M. Anstine, O. Isayev and B. M. Savoie, D2 machine learning for reaction 

property prediction, Chem. Sci., 2023, 14, 13392-13401. 

31. C. Bannwarth, S. Ehlert and S. Grimme, GFN2-xTB—An accurate and broadly 

parametrized self-consistent tight-binding quantum chemical method with multipole 

electrostatics and density-dependent dispersion contributions, J. Chem. Theory 

Comput., 2019, 15, 1652-1671. 

32. H. Wiener, Structural determination of paraffin boiling points, J. Am. Chem. Soc., 1947, 

69, 17-20. 

33. B. Hollas, An analysis of the autocorrelation descriptor for molecules, J. Math. Chem., 

2003, 33, 91-101. 

34. A. P. Bartók, R. Kondor and G. Csányi, On representing chemical environments, Phys. 

Rev. B, 2013, 87, 184115. 

35. M. Ceriotti, M. J. Willatt and G. Csányi, in Handbook of Materials Modeling: Methods: 

Theory and Modeling, Springer, Cham, 2020, pp. 1911-1937. 

36. J. Devillers, D. Domine, C. Guillon, S. Bintein and W. Karcher, Prediction of partition 

coefficients (log p oct) using autocorrelation descriptors, SAR QSAR Environ. Res., 

1997, 7, 151-172. 

37. R. Bader, Atoms in molecules: a quantum theory Oxford University Press, USA, 1994. 

38. R. J. B. Chérif F. Matta, The quantum theory of atoms in molecules: from solid state to 

DNA and drug design, Wiley‐VCH Verlag GmbH & Co. KGaA, 2007. 

39. T. Lu and F. Chen, Multiwfn: a multifunctional wavefunction analyzer, J. Comput. Chem., 

2012, 33, 580-592. 

40. L. Himanen, M. O. Jäger, E. V. Morooka, F. F. Canova, Y. S. Ranawat, D. Z. Gao, P. 

Rinke and A. S. Foster, DScribe: Library of descriptors for machine learning in materials 

https://doi.org/10.26434/chemrxiv-2024-d985s ORCID: https://orcid.org/0009-0006-1302-0571 Content not peer-reviewed by ChemRxiv. License: CC BY-NC-ND 4.0

https://doi.org/10.26434/chemrxiv-2024-d985s
https://orcid.org/0009-0006-1302-0571
https://creativecommons.org/licenses/by-nc-nd/4.0/


science, Comput. Phys. Commun., 2020, 247, 106949. 

41. J. Laakso, L. Himanen, H. Homm, E. V. Morooka, M. O. Jäger, M. Todorović and P. 

Rinke, Updates to the DScribe library: New descriptors and derivatives, J. Chem. Phys., 

2023, 158, 234802. 

42. G. Landrum, RDKit: A software suite for cheminformatics, computational chemistry, and 

predictive modeling, Greg Landrum, 2013, 8, 31. 

43. N. M. O'Boyle, M. Banck, C. A. James, C. Morley, T. Vandermeersch and G. R. 

Hutchison, Open Babel: An open chemical toolbox, Journal of cheminformatics, 2011, 

3, 1-14. 

44. P. Pracht, F. Bohle and S. Grimme, Automated exploration of the low-energy chemical 

space with fast quantum chemical methods, Phys. Chem. Chem. Phys., 2020, 22, 

7169-7192. 

45. J.-D. Chai and M. Head-Gordon, Long-range corrected hybrid density functionals with 

damped atom–atom dispersion corrections, Phys. Chem. Chem. Phys., 2008, 10, 

6615-6620. 

46. F. Weigend and R. Ahlrichs, Balanced basis sets of split valence, triple zeta valence 

and quadruple zeta valence quality for H to Rn: Design and assessment of accuracy, 

Phys. Chem. Chem. Phys., 2005, 7, 3297-3305. 

47. M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. 

Cheeseman, G. Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji, X. Li, M. Caricato, 

A. V. Marenich, J. Bloino, B. G. Janesko, R. Gomperts, B. Mennucci, H. P. Hratchian, 

J. V. Ortiz, A. F. Izmaylov, J. L. Sonnenberg, Williams, F. Ding, F. Lipparini, F. Egidi, J. 

Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V. G. Zakrzewski, J. Gao, 

N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, 

M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, J. A. 

Montgomery Jr., J. E. Peralta, F. Ogliaro, M. J. Bearpark, J. J. Heyd, E. N. Brothers, K. 

N. Kudin, V. N. Staroverov, T. A. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. 

P. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, J. M. Millam, M. Klene, C. 

Adamo, R. Cammi, J. W. Ochterski, R. L. Martin, K. Morokuma, O. Farkas, J. B. 

Foresman and D. J. Fox, Gaussian 16 Rev. C.01.Journal, 2016. 

48. I. Guyon and A. Elisseeff, An introduction to variable and feature selection, J. Mach. 

Learn. Res., 2003, 3, 1157-1182. 

49. P. Geurts, D. Ernst and L. Wehenkel, Extremely randomized trees, Mach. Learn., 2006, 

63, 3-42. 

50. F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, 

P. Prettenhofer, R. Weiss and V. Dubourg, Scikit-learn: Machine learning in Python, J. 

Mach. Learn. Res., 2011, 12, 2825-2830. 

51. J. Howard and S. Gugger, Fastai: A layered API for deep learning, Information, 2020, 

11, 108. 

52. D. P. Kingma and J. Ba, Adam: A method for stochastic optimization, arXiv preprint 

arXiv:1412.6980, 2014. 

53. B. Shahriari, K. Swersky, Z. Wang, R. P. Adams and N. De Freitas, Taking the human 

out of the loop: A review of Bayesian optimization, Proc. IEEE, 2015, 104, 148-175. 

54. A. Klein, L. C. Tiao, T. Lienart, C. Archambeau and M. Seeger, Model-based 

https://doi.org/10.26434/chemrxiv-2024-d985s ORCID: https://orcid.org/0009-0006-1302-0571 Content not peer-reviewed by ChemRxiv. License: CC BY-NC-ND 4.0

https://doi.org/10.26434/chemrxiv-2024-d985s
https://orcid.org/0009-0006-1302-0571
https://creativecommons.org/licenses/by-nc-nd/4.0/


asynchronous hyperparameter and neural architecture search, arXiv preprint 

arXiv:2003.10865, 2020. 

55. N. Erickson, J. Mueller, A. Shirkov, H. Zhang, P. Larroy, M. Li and A. Smola, Autogluon-

tabular: Robust and accurate automl for structured data, arXiv preprint 

arXiv:2003.06505, 2020. 

56. A. Altmann, L. Toloşi, O. Sander and T. Lengauer, Permutation importance: a corrected 

feature importance measure, Bioinformatics, 2010, 26, 1340-1347. 

57. L. Breiman, Random forests, Mach. Learn., 2001, 45, 5-32. 

58. T. Gensch, G. dos Passos Gomes, P. Friederich, E. Peters, T. Gaudin, R. Pollice, K. 

Jorner, A. Nigam, M. Lindner-D’Addario and M. S. Sigman, A comprehensive discovery 

platform for organophosphorus ligands for catalysis, J. Am. Chem. Soc., 2022, 144, 

1205-1217. 

59. L. Falivene, R. Credendino, A. Poater, A. Petta, L. Serra, R. Oliva, V. Scarano and L. 

Cavallo, SambVca 2. A web tool for analyzing catalytic pockets with topographic steric 

maps, Organometallics, 2016, 35, 2286-2293. 

 

  

https://doi.org/10.26434/chemrxiv-2024-d985s ORCID: https://orcid.org/0009-0006-1302-0571 Content not peer-reviewed by ChemRxiv. License: CC BY-NC-ND 4.0

https://doi.org/10.26434/chemrxiv-2024-d985s
https://orcid.org/0009-0006-1302-0571
https://creativecommons.org/licenses/by-nc-nd/4.0/


Table of Content / Graphical Abstract 

 

Δ-Machine Learning approach for predicting the reaction energy of C-H activation at the DFT 

level of theory, based on the reaction energy obtained at xTB-GFN2 level of theory. Features 

derived from atomic position and electronic density were utilized to train the Δ -Machine 

Learning models. 

https://doi.org/10.26434/chemrxiv-2024-d985s ORCID: https://orcid.org/0009-0006-1302-0571 Content not peer-reviewed by ChemRxiv. License: CC BY-NC-ND 4.0

https://doi.org/10.26434/chemrxiv-2024-d985s
https://orcid.org/0009-0006-1302-0571
https://creativecommons.org/licenses/by-nc-nd/4.0/

