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We describe a procedure for the calculation of quasi-diabatic states within the recently

introduced DFT/MRCI(2) framework [J. Chem. Phys., 157, 164103 (2022)]. Based

on an effective Hamiltonian formalism, the proposed procedure, which we term QD-

DFT/MRCI(2), has the advantageous characteristics of being simultaneously highly ef-

ficient and effectively black box in nature, while directly yielding both quasi-diabatic

potentials and wave functions of high quality. The accuracy and efficiency of the QD-

DFT/MRCI(2) formalism are demonstrated via the simulation of the vibronic absorption

spectra of furan and chlorophyll a.
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I. INTRODUCTION

The starting point for quantum dynamics simulations is the choice of representation. For stud-

ies of excited-state dynamics, the adoption of a diabatic representation is usually preferable as

this ameliorates the problems arising due to singular non-adiabatic couplings in the adiabatic rep-

resentation. Here, the coupling of the electronic and nuclear degrees of freedom is transformed

into the off-diagonal elements of the potential matrix, which are smooth, well-behaved functions

of the nuclear coordinates. For polyatomic molecules, strictly diabatic representations, for which

the troublesome derivative couplings are rendered zero, are non-existent1. Instead, one seeks a

quasi-diabatic representation, in which the singular components of the derivative couplings are

removed and the, hopefully small, finite residual components can be safely neglected. Since such

a transformation is not rigorously defined, there exist a plethora of proposed quasi-diabatisation

procedures2.

Beyond the choice of quasi-diabatisation procedure, one must choose an underlying level of

electronic structure theory. Here, a level of theory that can account for the, in general, multi-

reference nature of excited electronic states is highly desirable. Furthermore, in order to be reli-

ably applicable to large molecular systems, computational efficiency (while ideally not sacrificing

accuracy) is a necessity. One powerful class of methods that somewhat uniquely fulfils these

three criteria are those based on the combined density functional theory and multi-reference con-

figuration interaction (DFT/MRCI) formalism3,4. First formulated by Grimme and Waletzke3,

the DFT/MRCI method combines the flexibility of the MRCI method with semi-empirical DFT-

specific corrections that allow for the recovery of the preponderance electron correlation whilst

using short wave function expansions. Furthermore, the DFT/MRCI method can be implemented

in a completely black box manner using an automated reference space selection and refinement

algorithm5, leaving the user to specify only the number of roots of interest.

Although already very efficient in its original formulation, recently introduced semi- and fully-

perturbative approximations have resulted in new methods within the DFT/MRCI family, termed

p-DFT/MRCI5 and DFT/MRCI(2)6, respectively, that achieve additional computational savings

of 2-3 orders of magnitude but also retain the accuracy of the original method. The DFT/MRCI(2)

approximation in particular will be the focus of this current work because, as shall be detailed in

the following, its roots in effective Hamiltonian theory are found to lend itself to the solution of a

number of difficulties often encountered in the calculation of quasi-diabatic states.
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In Reference 7, we introduced a procedure for the quasi-diabatisation of DFT/MRCI electronic

states based on the elegant and rigorous block diagonlisation diabatisation (BDD) framework of

Pacher, Köppel and Cederbaum8–10. The method, which propagatively generates quasi-diabatic

states (and was accordingly termed P-BDD), was shown to correctly capture the non-adiabatic

coupling effects in a number of prototypical systems. However, the proposed methodology does

have two significant limitations that need to be overcome for widespead, black box usage. First,

the P-BDD working equations exhibit a singularity when a higher-lying state crosses into the

subspace of interest, which in general cannot be avoided. Second, the P-BDD method requires the

calculation of overlaps between wave functions at neighboring geometries expressed in terms of

non-orthogonal molecular orbital (MO) bases, which can become prohibitively expensive for very

large molecular systems.

The main result of this paper is to show that both of these limitations can be overcome by

working within the DFT/MRCI(2) framework. In particular, as we shall demonstrate, the state-

crossing problem may be eliminated by the adoption of a root-following procedure, which is made

straightforward given that the eigenstates furnished by DFT/MRCI(2) are obtained from pertur-

bation theory. At the same time, the effective Hamiltonian formulation of DFT/MRCI(2) may be

exploited to arrive at a framework for the direct calculation of quasi-diabatic wave functions and

potentials that may be considered as a perturbative approximation to those yielded by the P-BDD

procedure. As shall be detailed, the proposed method requires the overlaps of only the reference

space wave functions of a given geometry with the full quasi-diabatic wave functions of a neigh-

boring one, leading to large computational savings compared to the original P-BDD procedure. As

this new formalism makes direct use of the working components of a DFT/MRCI(2) calculation

and directly yields quasi-diabatic potentials and wave functions, we term it QD-DFT/MRCI(2),

the "QD" standing for "quasi-diabatic".

We note that this work builds on old ideas for constructing quasi-diabatic potentials and wave

functions using quasi-degenerate perturbation theory (QDPT)11–13. However, previous QDPT-

based quasi-diabatisation schemes have been severely hampered by the use of, in general, poor

zeroth-order quasi-diabatic states expanded in terms of overly-small, hand-selected sets of elec-

tronic configurations. Moreover, such schemes were largely superseded by the BDD framework of

Pacher, Köppel and Cederbaum8–10, which provides a non-perturbative route to the same desired

outcome. We show here, however, that an implementation within the DFT/MRCI(2) framework

overcomes these problems. Namely, it is found possible to automatically construct zeroth-order
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quasi-diabatic states that lead to results of excellent quality.

The rest of this paper is as follows. In Section II A, we provide an overview of the DFT/MRCI

and DFT/MRCI(2) methods, with a focus on aspects pertinent to the development of an improved

diabatisation scheme. In Section II B, we discuss the P-BDD algorithm, focusing on its limitations.

In Section II D, we introduce the QD-DFT/MRCI(2) method. In Section IV, we present some

selected applications of QD-DFT/MRCI(2): (i) the simulation of absorption spectrum of furan,

demonstrating the accuracy of the approach, and; (ii) calculation of the Q and B bands of the

absorption spectrum of chlorophyll a, showing the applicabilty of the method to large systems.

Finally, in Section V, we present our conclusions and outlook for potential applications of the

QD-DFT/MRCI(2) method.

II. THEORY

A. The DFT/MRCI framework

We begin by providing a brief overview of the DFT/MRCI and DFT/MRCI(2) methods. In

each case, the adiabatic electronic states |ΨI〉 are expanded in terms of a basis of spin-adapted

configuration state functions (CSFs) {|Ω〉}:

|ΨI〉= ∑
Ω∈R

CΩI|Ω〉+ ∑
Ω∈F

CΩI|Ω〉. (1)

Here, we separate the contributions from the reference space R and first-order interacting space

(FOIS) F . The CSFs belonging to the, in general, small reference space R are chosen to recover

the static correlation and give a qualitatively correct description of the states of interest. The much

larger FOIS, obtained via single and double excitations out of the reference space, accounts for the

missing dynamic correlation to first-order in perturbation theory.

1. DFT/MRCI

In an ab initio MRCI calculation, the size of the FOIS quickly becomes prohibitively large

with increasing reference space dimension and molecular size. In the DFT/MRCI method, only a

small subset of the FOIS is used, which is made possible via the use of DFT-specific Hamiltonian

corrections aimed at the recovery of the preponderance of the dynamic electron correlation in a
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manner removed from the interaction of the reference and FOIS CSFs. The starting point here

is the recognition that the ab initio on-diagonal Hamiltonian matrix elements may be written in

terms of the difference from the self-consistent field (SCF) energy as follows14,15:

〈Ω|Ĥ−ESCF|Ω〉= 〈wω|Ĥ−ESCF|wω〉

= ∑
i

Fii∆wi +
1
2 ∑

i j

(
Vii j j−

1
2

Vi j ji

)
∆wi∆w j

+
1
2 ∑

i∈Sw
∑

j∈Sw

Vi j ji

[
η

ji
i j (w,ω,w,ω)(1−δi j)−

1
2

]
.

(2)

Here, each CSF |Ω〉 is specified by a spatial occupation vector w, giving the occupancies of the

MOs, and a spin coupling patern ω: |Ω〉 = |wω〉. ∆wp = wp−wp denotes the difference of

the occupation of the pth spatial orbital relative to a base, or anchor, occupation w, chosen as

the Hartree-Fock (HF) occupation. Sw is the set of indices of singly-occupied orbitals in the

configuration w, F is the Fock matrix, Vpqrs denotes a two-electron integral in the Chemists’

notation, and η
ji

i j is a spin-coupling coefficient,

η
ji

i j (w,ω,w,ω) = 〈wω|Ê j
i Ê i

j|wω〉, (3)

where Ê j
i denotes a singlet excitation operator. From Equation 2, we see that the on-diagonal

matrix elements may be interpreted in a particle-hole picture, where the first term takes the form

of the difference in on-diagonal Fock matrix elements between the orbitals involved in the ex-

citation linking w and the base configuration w. The second term corresponds to Coulomb and

exchange interactions between these particle and hole orbitals, and the third term accounts for the

spin-coupling between the open shells in w. Grimme’s insight was to recognise that the differ-

ences between KS orbital energies, εKS
p , are typically closer to ground-to-excited-state excitation

energies than the corresponding differences in Fock matrix elements. Substituting the Fock matrix

elements for the corresponding KS orbital energies, accompanied by Coulomb and exchange cor-

rections, leads to the general form of the on-diagonal DFT/MRCI Hamiltonian matrix elements:

〈wω|Ĥ−EDFT|wω〉= (EDFT −ESCF)+∑
i

ε
KS
ii ∆wi +∆EC +∆EX , (4)

where the Coulomb and exchange corrections, ∆EC and ∆EX , respectively, account for a down-

scaling of the ab initio Coulomb and exchange integrals that enter into Equation 4, the exact forms

of which vary between implementations3,16,17.
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Building the KS orbital energies into the on-diagonal Hamiltonian matrix elements effectively

incorporates a large amount of dynamic electron correlation that would otherwise be accounted

for by the coupling of the reference and FOIS CSFs. To avoid a double counting of dynamic

correlation, the off-diagonal Hamiltonian matrix elements must be appropriately adjusted. This is

achieved through the introduction of a damping of the off-diagonal elements that is dependent on

the energetic separation of the bra and ket CSFs:

〈
Ω
∣∣Ĥ∣∣Ω′〉→ 〈Ω∣∣Ĥ∣∣Ω′〉 ·D(∆EΩΩ′), (5)

where

∆EΩΩ′ =
1

nω

nω

∑
ω

HDFT
Ω,Ω −

1
nω ′

n
ω ′

∑
ω ′

HDFT
Ω′,Ω′ (6)

denotes the spin-coupling-averaged difference between the on-diagonal matrix elements corre-

sponding to the bra and ket CSFs. The damping function D(∆E) is chosen to decay rapidly with

increasing ∆E: in practice chosen as either an exponential3,18 or inverse arctangent16,17 function.

In this way, the coupling of energetically distant reference and FOIS CSFs is damped to near-zero,

thereby avoiding to a large extent a double counting of dynamic correlation.

The decoupling of a large part of the FOIS from the reference space means that most of the

FOIS CSFs are no longer required. These are identified a priori using a simple orbital energy-

based selection criterion3, which proceeds as follows. For each FOIS configuration w, the quantity

dw = ∑
p

∆wpε
KS
p −δEsel (7)

is computed, where δEsel is a parameter with a value conventionally chosen as either 1.0 or 0.8 Eh.

If dw is less than the highest reference space eigenvalue of interest, then all the CSFs generated

from the configuration w are selected for inclusion, else they are discarded. This configuration

selection step results in a massive reduction of the size of the CSF basis, typically by many orders

of magnitude, and results in huge speedups relative to an ab initio MRCI calculation.

2. The DFT/MRCI(2) approximation

Although the above-described energy-based configuration selection procedure results in CSF

bases that are exceptionally compact relative to an ab initio MRCI calculation, for large molecules
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the dimension of the DFT/MRCI Hamiltonian matrix may be of the order of 106− 109, and it’s

iterative diagonalisation can become prohibitively expensive. To obviate this, a new, perturba-

tive approach to account for the interaction of the reference and FOIS spaces was recently intro-

duced, termed DFT/MRCI(2)6. The main idea here is the replacement of the large, NCSF ×NCSF

DFT/MRCI Hamiltonian with a small, Nstate×Nstate effective Hamiltonian obtained via the appli-

cation of the Epstein-Nesbet Hamiltonian partitioning19,20 and 2nd-order generalised van Vleck

perturbation theory21. The resulting effective Hamiltonian reads

[
H

[2]
DFT

]
IJ
= δIJE(0)

I +
1
2 ∑

Ω∈F ′
BΩIBΩJ ∑

i=I,J

(
E(0)

i −E(0)
Ω

)−1
, (8)

where

BΩI = 〈Ω|ĤDFT |Ψ(0)
I 〉, (9)

F ′ denotes the subset of FOIS CSFs that have survived the energy-based configuration selection,

and |Ψ(0)
I 〉 and E0

I are the eigenpairs of the DFT/MRCI Hamiltonian projected onto the reference

space R:

(
∑

Ω,Ω′∈R
|Ω〉〈Ω|ĤDFT |Ω′〉〈Ω′|

)
|Ψ(0)

I 〉= E(0)
I |Ψ

(0)
I 〉. (10)

Here, and in the following, the notation 〈·|ĤDFT |·〉 is used to denote a Hamiltonian matrix element

that has been subjected to the DFT/MRCI corrections.

Diagonalisation of the effective Hamiltonian H
[2]

DFT yields second-order approximations E [2]
I to

the energies of the states of interest as well as first-order corrected wave functions

|Ψ[1]
I 〉= ∑

J
XJI

[
|Ψ(0)

J 〉+ ∑
Ω∈F ′

(
BΩJ

E(0)
J −E(0)

Ω

)
|Ω〉

]
, (11)

where X is the matrix of eigenvectors of H
[2]
DFT .

Remarkably, the errors in excitation energies introduced by the DFT/MRCI(2) effective Hamil-

tonian approximation are found to be of the order of 10−2 eV6, whilst speedups of between two

and three orders of magnitude are realised for large molecular systems.
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B. Propagative block diagonalisation diabatisation

We here give a brief overview of the P-BDD scheme, highlighting aspects that impact neg-

atively on both stability and computational efficiency. For a more in depth description of the

method, we direct the reader to Reference 7 as well as the original block diagonalisation diabati-

sation papers of Pacher, Köppel and Cederbaum8–10. In the following, where appropriate, the

geometry dependence of the electronic states will be explicitly referenced, with R used to denote

the vector of nuclear coordinates.

At the heart of the BDD formalism is the idea that, within the group Born-Oppenheimer ap-

proximation, it should be possible to identify a subset P of states of interest that are only weakly

coupled to their orthogonal complement, termed the Q space. It then follows that the ADT matrix

of interest can be approximated to only operate within the P space, thus leading to a block diag-

onal quasi-diabatic potential matrix. As such, within the BDD framework, we first represent the

Hamiltonian in an, as of yet unspecified, ‘initial state’ basis {|ΦI(R)〉},

HIJ(R) = 〈ΦI(R)|Ĥ|ΦJ(R)〉, (12)

and seek a block-diagonalising transformation T (R) that: (i) operates only within the P space,

and; (ii) results in a quasi-diabatic representation. As there are an infinite number of transforma-

tions that will yield the desired block diagonal structure, a constraint has to be imposed. In the

BDD framework, this is taken as the following ‘least action principle’:

||T (R)−1||= min, (13)

where || · || denotes the Frobenius norm. This least action principle leads to a unique solution22 but,

in order to yield quasi-diabatic states, requires that the initial states |ΦI(R)〉 already behave some-

what quasi-diabatically themselves. In the P-BDD approach, the initial states |ΦI(R+∆R)〉 are

taken as the quasi-diabatic states {|φI(R)〉} taken from a neighboring geometry. Via the enforce-

ment of the least action principle (Equation 13), the adiabatic-to-diabatic transformation (ADT)

U(R+∆R) is found to take the form8:

U(R+∆R) = S−1(R+∆R)
[
S(R+∆R)S†(R+∆R)

] 1
2
, (14)

with
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SIJ(R+∆R) = 〈φI(R)|ΨJ(R+∆R)〉. (15)

Here, the |ΨI〉 are the adiabatic electronic states to be used in the expansion of the quasi-diabatic

states,

|φI(R)〉= ∑
J

UJI(R)|ΨI(R)〉. (16)

To fix the global gauge of the ADT and to provide an initial set of quasi-diabatic states, the ADT

is taken to be the unit matrix at a user-specified reference geometry R0. Quasi-diabatic states and

potentials may then be computed along a chain of neighboring nuclear geometries R0,R1, . . . ,Rn,

taking the quasi-diabatic states computed at geometry Ri−1 as input for the calculation of the ADT

matrix at geometry Ri. We note that the P-BDD procedure may be trivially incorporated into a

DFT/MRCI(2) calculation, with the first-order corrected wave functions |Ψ[1]
I 〉 (Equation 11) being

substituted for the variationally determined adiabatic wave functions |ΨI〉.

The P-BDD method is optimal in the sense that, in the limit of infinitesimal displacements ∆R,

the integral of the squared L2 norm of the resulting quasi-diabatic derivative coupling tensor along

the path R0,R1, . . . ,Rn is minimised10. However, in practice, two significant limitations appear.

The first problem concerns the inversion of the overlap matrix S(R). If a higher-lying adiabatic

state crosses into the manifold of interest at some geometry Ri, then, taking the basis {|ΨI(Ri)〉}

to comprise the N lowest-lying adiabats, the matrix S(R) can become near-singular, or even truly

singular in high-symmetry cases. We shall refer to this as the ‘state-crossing problem’. The second

problem pertains to the calculation of the overlap matrix

SIJ(Ri) = 〈φI(Ri−1)|ΨJ(Ri)〉

= ∑
K

U†
IK(Ri−1)〈ΨK(Ri−1)|ΨJ(Ri)〉 .

(17)

This requires the evaluation of overlaps between bra and ket wave functions expressed in terms

of non-orthogonal MOs. Even though the original DFT/MRCI P-BDD implementation employed

the efficient intermediate-reuse algorithm of Plasser et al.23, this step still becomes prohibitively

expensive for very large molecules. We shall be refer to this as the ‘overlap problem’.
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C. Solution of the state-crossing problem: root following

In order to avoid (near) singular overlap matrices S (Equation 15), we employ a simple root-

following procedure that allows the states that correlate with those computed at the reference

geometry R0 to be calculated at all displaced geometries. At geometry Ri, the reference space

Hamiltonian is explicitly built and all its eigenpairs computed. As DFT/MRCI(2) employs highly

tailored and compact individually selected reference spaces, the reference space is usually spanned

by somewhere between a few tens and a few hundreds of CSFs. Thus, this full diagonalisation

step is computationally trivial to perform. Next, the overlaps between all reference space wave

functions |Ψ(0)
I (Ri)〉 and the first-order corrected wave functions |Ψ[1]

I (Ri−1)〉 of the previous

geometry are computed. Here, highly-truncated Slater determinant expansions are used in order

to maintain computational tracability. The reference space wave functions with greatest absolute

overlap values are then selected for inclusion in the subsequent DFT/MRCI(2) effective Hamiltio-

nian calculation.

For this root-following procedure to work, the reference space R at Ri must have good support

for the DFT/MRCI(2) wave functions computed at Ri−1. To ensure that this requirement holds,

R is constructed from the reference space of the previous geometry as follows. Let {w(0)(R)}

denote the set of reference space configuration vectors at geometry R: w(0)
p (R) has values of 0, 1,

or 2 depending on whether the pth MO is unoccupied, single-occupied, or doubly-occupied. The

reference space configurations w(0)(Ri) at the ith geometry are constructed from those w(0)(Ri−1)

of the previous geometry via an approximate MO transformation:

w(0)(Ri) =Kw(0)(Ri−1), (18)

Kpq = δpI (q), (19)

I (q) = max
p′
{∣∣〈ϕp′(Ri)|ϕq(Ri−1)〉

∣∣} , (20)

where {ϕp(R)} is the MO basis at geometry R. This reference space propagation algorithm is

predicated upon a near-one-to-one mapping between the MOs at neighboring geometries, which

will only hold for small nuclear displacements. However, as the P-BDD procedure also requires

small displacements to give reliable results, this is not problematic.
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Using the above described root-following algorithm, we have found that the states of interest

may be reliably and selectively computed across a wide range of nuclear geometries, even when

embedded in dense manifolds of other states. This essentially solves the state-crossing problem.

D. Solution of the overlap problem: the QD-DFT/MRCI(2) method

To arrive at approximations of the P-BDD quasi-diabatic poentials and states that do not require

the calculation of full wave function overlaps between neighboring geometries, we consider the

field of effective Hamiltonian theories24–28. Common to all effective Hamiltonian formalisms is

the determination of a block diagonalisation of the Hamiltonian Ĥ initially represented in the basis

of eigenfunctions of a zeroth-order Hamiltonian Ĥ0. Let the eigenfunctions of Ĥ be partitioned

into a subspace P of interest and its orthogonal complement Q. The eigenfunctions of Ĥ0 are

partitioned into the corresponding subspaces P0, and Q0. A transformation T̂ is sought such that

the similarity transformed Hamiltonian

Ĥ = T̂−1ĤT̂ (21)

is block diagonal between the P0 and Q0 subspaces. That is,

Ĥ = P̂0Ĥ P̂0 + Q̂0Ĥ Q̂0, (22)

where P̂0 and Q̂0 are the projectors onto the P0 and Q0 subspaces, respectively. An effective

Hamiltonian may then be defined as

Ĥe f f = P̂0Ĥ P̂0, (23)

which has the same eigenvalues as Ĥ within the P subspace.

This block diagonalisation of Ĥ provides a clear link to the BDD formalism. As the block

diagonalisation transformation T̂ is not uniquely defined, there exist a multitude of different effec-

tive Hamiltonian formalisms. As noted by Cederbaum et al.22, however, the use of des Cloizeux’s

transformation29

T̂dC = P̂
(
P̂0P̂P̂0

)− 1
2 + Q̂

(
Q̂0Q̂Q̂0

)− 1
2 (24)
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is equivalent to the imposition of the least action principle of Equation 13. Thus, des Cloizeaux’s

effective Hamiltonian

Ĥe f f ,dC = P̂0T̂−1
dC ĤT̂dCP̂0

=
(
P̂0P̂P̂0

)− 1
2 P̂ĤP̂

(
P̂0P̂P̂0

)− 1
2 ,

(25)

when constructed using a suitably chosen subspace partitioning, can be equated with a quasi-

diabatic potential matrix that is equivalent to the transformation of the adiabatic potential using

the BDD ADT of Equation 14. The main idea persued here is to directly compute the quasi-

diabatic potential matrix using a perturbative approximation of des Cloizeaux’s Hamiltonian in

place of the calculation of the BDD transformation matrix. As shall be discussed below, although

this is now an approximate approach, the associated errors incurred can be expected to be small

for an implementation within the DFT/MRCI(2) framework. Moreover, this approximation leads

to a resolution the overlap problem encountered in the P-BDD approach.

Through second-order in perturbation theory, des Cloizeaux’s effective Hamiltonian reads

[
H

[2]
e f f ,dC

]
IJ
= 〈ψ(0)

I |Ĥ|ψ
(0)
J 〉

+
1
2 ∑

ψ
(0)
K ∈Q0

〈ψ(0)
I |Ĥ|ψ

(0)
K 〉〈ψ

(0)
K |Ĥ|ψ

(0)
J 〉 ∑

i=I,J

(
E(0)

i −E(0)
K

)−1
, ψ

(0)
I ,ψ

(0)
J ∈ P0,

(26)

where |ψ(0)
I 〉 and E(0)

I denote the eigenpairs of Ĥ0. Important to note here is that if the Epstein-

Nesbet Hamiltonian partitioning is used to construct Ĥ0, and the DFT/MRCI Hamiltonian matrix

elements are substituted for their ab initio counterparts, then the DFT/MRCI(2) working equa-

tions are obtained. If, however, a different choice of zeroth-order Hamiltonian is made, then

the second-order effective Hamiltonian H
[2]
e f f ,dC may be used as an approximation of the quasi-

diabatic potential matrix of interest. To arrive at such an effective Hamiltonian, we require a

zeroth-order Hamiltonian Ĥ0 possessing a subset of eigenfunctions of qualitative similarity to the

quasi-diabatic states of interest. Our choice of such a zeroth-order Hamiltonian reads as follows:

Ĥ0 = ∑
n
|φ̃n〉〈φ̃n|Ĥ|φ̃n〉〈φ̃n|+∑

IJ
|Ψ(0)

I 〉〈Ψ
(0)
I |Ĥ|Ψ

(0)
J 〉〈Ψ

(0)
J |+ ∑

Ω∈F ′
|Ω〉〈Ω|Ĥ|Ω〉〈Ω|. (27)

Here, the |φ̃n〉 denote what we shall term ‘prototype diabatic states’, the |Ψ(0)
I 〉 ‘complement

states’, both of which shall be defined below. The |Ω〉 are the FOIS CSFs that have survived
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the energy-based configuration selection. The prototype diabatic states are constructed as zeroth-

order approximations to the quasi-diabatic states of interest and form our choice of P0. They are

constructed using the following procedure.

First, the normalised projections of a subset of N +Nbu f reference space eigenstates onto the

quasi-diabatic states |φn(Ri−1)〉 of the previous geometry are computed. Let these projections be

denoted by |φ̃ ′n(Ri)〉:

|φ̃ ′n(Ri)〉=
∑I∈B |Ψ

(0)
I (Ri)〉〈Ψ(0)

I (Ri)|φn(Ri−1)〉∣∣∣∣∣∣∑I∈B |Ψ
(0)
I (Ri)〉〈Ψ(0)

I (Ri)|φn(Ri−1)〉
∣∣∣∣∣∣ , n = 1, . . . ,N. (28)

Here, the set basis states {|Ψ(0)
I (Ri)〉|I ∈B} is chosen as the N with greatest overlap with the

quasi-diabatic states of the previous geometry plus a small number, Nbu f , of ‘buffer’ states. These

buffer states are simply taken as the lowest-energy reference states orthogonal to the N of great-

est overlap. The non-orthogonal projections |φ ′n(Ri)〉 are then subjected to Löwdin’s symmetric

orthogonalisation to yield the orthogonal ‘precursor’ states |φ̃ #
n (Ri)〉:

|φ̃ #
n (Ri)〉=

N

∑
m=1

Y
− 1

2
mn |φ̃ ′m(Ri)〉, (29)

where

Ymn = 〈φ̃ ′m|φ̃ ′n〉. (30)

The use of Löwdin’s symmetric orthogonalisation here is important as, amongst all possible or-

thogonalisations, it yields orthogonalised functions that are closest in the least squares sense to

the original ones30,31. The precursor states form good zeroth-order approximations to the diabatic

states of interest. Hence, the union of the precursor state basis with both its orthogonal comple-

ment within the reference space and the FOIS CSFs can be used to form a linearly independent

basis with which to represent the zeroth-order Hamiltonian. However, as more reference than

diabatic states are used in their construction, an additional step must be taken to construct their

orthogonal complement within the reference space. To do so, the projections of the basis states

|Ψ(0)
I (Ri)〉, I ∈B onto the orthogonal complement of the precursor states are computed:

Q̂#|Ψ(0)
I (Ri)〉=

[
1−

N

∑
n=1
|φ̃ #

n (Ri)〉〈φ̃ #
n (Ri)|

]
|Ψ(0)

I (Ri)〉. (31)
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The set of projected basis states {Q̂#|Ψ(0)
I (Ri)〉} is then subjected to canonical orthogonalisation

followed by the discarding of the N null space vectors to yield the Nbu f linearly-independent states

|Ψ(0)#
I (Ri)〉. To do so, first the matrix

Zν(I)ν(J) = 〈Ψ
(0)
I (Ri)|Q̂#|Ψ(0)

J (Ri)〉, I,J ∈B (32)

is computed, where ν(I) is a map ν : B→{1,2, . . . ,N+Nbu f }. The matrix Z is then diagonalised:

Z =AΛAT , ΛIJ = δIJλJ. (33)

Let the eigenvalues λI be arranged in descending order. Then, the last N columns of the eigenvector

matrix A correspond to the null space that we wish to discard. Let A denote the truncation of A to

the first Nbu f columns. Linearly independent states |Ψ(0)#
I (Ri)〉 that are orthogonal to the precursor

states may then be obtained as

|Ψ(0)#
I (Ri)〉=

N+Nbu f

∑
J=1

AJI|Ψν−1(I)(Ri)〉, I = 1, . . . ,Nbu f (34)

At this point, we have a linearly independent basis with which we could represent the zeroth-order

Hamiltonian, namely,

{|φ̃ #
n (Ri)〉}∪{|Ψ

(0)#
I 〉}∪{|Ω〉|Ω ∈F ′}.

However, it is preferable to first partially block diagonalise the Hamiltonian, decoupling the

{|φ̃ #
n (Ri)〉} and {|Ψ(0)#

I 〉} blocks. This could be handled approximately in the subsequent effective

Hamiltonian calculation, but it somewhat trivial to perform exactly in an additional step before-

hand. To do so, we construct the representation of the Hamiltonian in the basis {|φ̃ #
n (Ri)〉} ∪

{|Ψ(0)#
I 〉}. Let the Hamiltonian matrix projected onto this subspace be denoted by h. A block

diagonalising transformation, b, of h is sought that: (i) decouples the {|φ̃ #
n (Ri)〉} and {|Ψ(0)#

I 〉}

blocks, and; (ii) satisfies the least action principle ||b−1||= min. The transformation that satisfies

this reads as follows22:

b= vvT
BD
(
vBDv

T
BD
)− 1

2 , (35)

where v denotes the matrix of eigenvectors of h, and vBD is the portion of v corresponding to

the desired block diagonal structure. The thus constructed matrix b defines the transformation
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from the coupled basis {|φ̃ #
n (Ri)〉} ∪ {|Ψ

(0)#
I 〉} to the decoupled basis {|φ̃n(Ri)〉} ∪ {|Ψ

(0)
I 〉} of

prototype diabatic states |φ̃n(Ri)〉 and complement states |Ψ(0)
I 〉. Along with the FOIS CSFs |Ω〉,

these are used to construct our zeroth-order Hamiltonian Ĥ0 (Equation 27).

Taking the P0 space to be spanned by the prototype diabatic states, and inserting the DFT/MRCI

Hamiltonian into Equation 26, we obtain the QD-DFT/MRCI(2) quasi-diabatic potential matrix,

W
[2]
DFT ,

[W
[2]
DFT ]mn = 〈φ̃m|ĤDFT |φ̃n〉+

1
2 ∑

Ω∈F ′
〈φ̃m|ĤDFT |Ω〉〈Ω|ĤDFT |φ̃n〉 ∑

k=m,n

(
E(0)

k −E(0)
Ω

)−1
, (36)

which may be considered as a second-order perturbative approximation of the DFT/MRCI(2) P-

BDD potential. We note that this quasi-diabatic potential matrix corresponds to a symmetrized

verson of that of Cimiralia et al.12, but with a significantly improved zeroth-order Hamiltonian.

In addition to quasi-diabatic potentials, first-order corrected quasi-diabatic wave functions

|φ [1]
n 〉 may also be computed as

|φ [1]
n 〉= |φ̃n〉+ ∑

Ω∈F ′

(
〈φ̃n|ĤDFT |Ω〉
E(0)

n −E(0)
Ω

)
|Ω〉, (37)

Using the |φ [1]
n 〉, quasi-diabatic properties and transition matrix elements may be computed. Fur-

thermore, the quasi-diabatic states |φ [1]
n 〉 computed at geometry Ri−1 can be used in the construc-

tion of the precursor state basis {|φ̃ #
n 〉} at the neighboring geometry Ri.

The most computationally expensive aspect of the evalution of the QD-DFT/MRCI(2) quasi-

diabatc potential matrix W
[2]
DFT would the calculation of the matrix elements 〈φ̃m|ĤDFT |Ω〉. How-

ever, these may be constructed via a recycling of the B-vectors BΩI used in the calculation of the

DFT/MRCI(2) adiabatic states and potentials (see Equation 8), essentially eliminating the cost of

this step altogether if both adiabatic and quasi-diabatic states are to be computed. The computa-

tional bottleneck then shifts to the calculation of the projections of the reference space eigenstates

onto the quasi-diabatic states of the previous geometry (Equation 28). As in the P-BDD pro-

cedure, this requires the calculation of wave function overlaps involving non-orthogonal MOs.

Taking NCSF to be the total number of CSFs (assumed here to be equal for both bra and ket wave

functions), the P-BDD procedure requires the consideration of N2
CSF non-orthogonal CSF pairs.

This is reduced to NCSF×N(0)
CSF in the QD-DFT/MRCI(2) case, where N(0)

CSF is the number of refer-

ence space CSFs. In a DFT/MRCI(2) calculation, N(0)
CSF << NCSF holds, with the ratio NCSF/N(0)

CSF
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taking a value of up to 105-106 for very large systems. Thus, the overlap problem of the P-BDD

procedure is ameliorated in the QD-DFT/MRCI(2) formalism.

Finally, we note that it can be expected that the QD-DFT/MRCI(2) approach will, in general,

yield excellent approximations to DFT/MRCI(2) P-BDD quasi-diabatic potentials. The reasons

for this are two-fold. Firstly, we note that, in the limit of Nbu f = 0, the above-described proce-

dure for the construction of the prototype diabatic states |φ̃n〉 reduces to a P-BDD calculation,

but with the Hamiltonian replaced by its projection onto the reference space (see Appendix A of

Reference 5). Secondly, the selected CI nature of a DFT/MRCI(2) calculation, combined with an

iterative refinement of the reference space, results in reference space wave functions of very high

quality. That is, the projections of these onto the DFT/MRCI(2) first-order corrected wave func-

tions typically have large (near-unit) norms. Thus, the QD-DFT/MRCI(2) procedure can be seen

as corresponding to the perturbative correction of the results of a P-BDD calculation performed

with high-quality zeroth-order wave functions.

E. Enforcement of consistent phases

We end this section by noting that, in order to obtain continuous quasi-diabatic couplings

and transition matrix elements, a consistent phase convention must be imposed on the QD-

DFT/MRCI(2) first-order corrected quasi-diabatic wave functions. This is a consequence of

the arbitrary phases of the reference space wave functions that enter into the QD-DFT/MRCI(2)

working equations. Having wave function overlaps available, however, it is trivial to enforce a

consistent phase. Namely, following the calculation of the first-order corrected quasi-diabatic

wave functions |φ [1]
n (Ri)〉 at geometry Ri, one may compute overlaps with the quasi-diabatic

wave functions |φ [1]
n (Ri−1)〉 of the previous geometry. With these available, the phase factors

Γn = sgn
(

max
m {〈φ

[1]
n (Ri)|φ [1]

m (Ri−1)〉}
)

(38)

are computed and |φ [1]
n (Ri)〉 is multiplied by Γn. Here, to avoid ruinious computational costs, the

required overlaps are computed using heavily truncated wave function expansions, using a norm-

based truncation threshold of 0.95, which suffices for the calculation of the phase factors Γn but

limits the wave function expansions to just the handful of dominant CSFs.

Furthermore, in order to obtain consistent wave function phases from calculation-to-calculation,

the phases of the MOs entering into a QD-DFT/MRCI(2) calculation have to be fixed. To do so,
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we simply take the dominant atomic orbital (AO) coefficient for each MO to be positive. In the

presence of non-Abelian point group symmetry and degenerate dominant AOs, the AO chosen

can simply be taken as that generating the highest-indexed irrep in the highest Abelian sub-group

according to some pre-defined list. This MO-phasing step is essential, e.g., for the calculation of

multi-dimensional quasi-diabatic potential surfaces.

III. METHODOLOGY

A. Calculation of vibronic spectra

To assess the accuracy of the QD-DFT/MRCI(2) quasi-diabatic potentials, we considered their

use in the construction of model Hamiltonians for the simulation of vibronic absorption spectra.

We focused on two systems: (i) the first band in the absorption spectrum of furan, and; (ii) the first

two bands in the absorption spectrum of chlorophyll a. For both molecules, it is known that strong

vibronic coupling effects are manifest in their absorption spectra. The first system, furan, is small

enough that both P-BDD and QD-DFT/MRCI(2) calculations are tractable, enabling a comparison

of the quasi-diabatic potentials yielded by each. The size of the second system, chlorophyll a, is

large enough to prohibit the application of the P-BDD methodology, while QD-DFT/MRCI(2)

remains eminently tractable, highlighting the efficiency and scope of the approach.

Let σI(E) denote the linear absorption spectrum corresponding to excitation from the ground

state to the excited quasi-diabatic state |φI〉. We adopt a time-depenedent formalism, in which

σI(E) may be computed from the Fourier transform of the wave packet autocorrelation function

aI(t) corresponding to an initial wave packet |Ψ(t = 0)〉 prepared via vertical excitation of the

ground vibronic eigenstate to the electronic state |φI〉:

σI(E) ∝ E
∫

∞

−∞

aI(t)exp(iEt)dt, (39)

with

aI(t) = 〈Ψ(0)|Ψ(t)〉 , (40)

|Ψ(0)〉= {|φI〉〈φ1|+h.c.}|ΨGS〉 . (41)
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Here, |ΨGS〉 denotes the ground vibronic state, which was obtained via wave packet relaxation32,

and |φ1〉 is the ground quasi-diabatic electronic state.

All wave packet propagations were performed using the multi-layer multi-configurational time-

dependent Hartree (ML-MCTDH) method33–40. For furan, all 21 vibrational degrees of freedom

were included in the wave packet propagations. For chlorophyll a, 204 out of the total of 213

vibrational degrees of freedom where included, with those excluded corresponding to highly an-

harmonic, high-frequency modes that were found to be spectroscopically inactive. The full details

of these calculation, including the ML-MCTDH wave function trees, are given in the Supplemen-

tary Information.

In order to perform the ML-MCTDH wave packet propagations, the total molecular Hamilto-

nian, Ĥ, was represented in a basis of quasi-diabatic states {|φI〉},

Ĥ = ∑
IJ
|φI〉〈φI| Ĥ |φJ〉〈φJ|

= ∑
I
|φI〉 T̂n 〈φI|+∑

IJ
|φI〉WIJ(R)〈φJ| ,

(42)

where T̂n denotes the nuclear kinetic energy operator, and W (R) is the nuclear-coordinate-

dependent quasi-diabatic potential matrix. To proceed, the latter must be cast into a form compat-

ible with ML-MCTDH. Specifically, as a sum of products of monomodal operators35. This was

achieved by approximating W (R) using the vibronic coupling Hamiltonian model of Köppel et

al.41. In brief, W (R) is represented by a Taylor expansion in terms of mass- and frequency-scaled

normal modes, Qα , about the ground state minimum Q0. Our model potential is complete up to

fourth-order in the one-mode terms, and reads as follows:

WIJ(R)≈W mod
IJ (Q) = τ

(I,J)
0 +

4

∑
p=1

1
p! ∑

α

τ
(I,J)
pα Qp

α . (43)

For each molecule, expansion coefficients τ
(I,J)
pα were computed using the normal equations ap-

proach detailed in Reference 7 using either DFT/MRCI(2) P-BDD or QD-DFT/MRCI(2) quasi-

diabatic potential matrix elements as input. We note that the model potential of Equation 43 offers

only approximations to the true DFT/MRCI(2) P-BDD or QD-DFT/MRCI(2) quasi-diabatic po-

tentials. However, it does capture the leading order vibronic coupling effects and essential physics

of the problem. Thus, if the these models furnish accurate vibronic absorption spectra then we

may conclude that the quasi-diabatic potentials to which they are fitted are of good quality.
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B. DFT/MRCI(2) and QD-DFT/MRCI(2) calculations

All DFT/MRCI(2) and QD-DFT/MRCI(2) calculations were performed using the General Ref-

erence Configuration Interaction (GRaCI) program42. In all calculations, the recently devel-

oped QE8 DFT/MRCI Hamiltonian43 was used, which is parameterised for use with the QTP17

exchange-correlation functional44. In the furan and chlorophyll a calculations, the aug-cc-pVTZ

and def2-SVP basis sets were used, respectively.

IV. RESULTS

A. Furan

We consider the absorption spectrum of furan over the interval 5.6 to 6.7 eV, which is shown

for reference in Figure 1. In this region, the spectrum consists, broadly speaking, of: (i) a broad,

relatively featureless background, and; (ii) several sharp, well defined peaks superimposed towards

higher energy. The former is a hallmark of strong vibronic coupling effects, making furan an

excellent test case for the application of QD-DFT/MRCI(2). The electronic states underlying this

regions are the A2(π3s), B2(ππ∗), A1(ππ∗), B1(π3py), and A2(π3pz) states. From the work of

Gromov et al.45,46, it is known that this manifold of states forms a complex system of vibronic

coupling, with strong direct coupling of the B2(ππ∗) state to both the A2(π3s) and A1(ππ∗) states.

Additionally, there exists an important indirect coupling of the A2(π3s) and B2(ππ∗) states via

coupling to both the A1(ππ∗) abd B1(π3py) states. This non-trivial vibronic coupling system

can thus be seen to constitute a suitable test of the ability of the QD-DFT/MRCI(2) to correctly

describe non-adiabatic coupling.

We begin out analysis with a brief discussion of the vertical excitation energies yielded by

the QD-DFT/MRCI(2) method at the ground state minumum geometry, Q0, at which the quasi-

diabatic and adiabatic representations are taken to be equal. These values, as computed using

the aug-cc-pVTZ basis, are shown in Table I. Shown alongside are the current theoretical best

estimates, computed at the CCSDT/aug-cc-pVTZ level of theory and taken from the QUESTDB

database47,48. Overall, the agreement with the theoretical best estimates is very good, with a mean

absolute error of 0.06 eV and a maximum deviation of 0.11 eV.

We next consider the ability of the DFT/MRCI(2), P-BDD- and QD-DFT/MRCI(2)-parameterised

model Hamiltonians to reproduce the vibronic absorption spectrum. The spectra obtained using
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State QD-DFT/MRCI(2) CCSDT

A2(π3s) 6.14 (6.09) 6.09

B2(ππ∗) 6.48 (6.28) 6.37

A1(ππ∗) 6.48 (6.56) 6.56

B1(π3py) 6.66 (6.71) 6.64

A2(π3pz) 6.87 (6.81) 6.81

TABLE I. Ground state minimum energy geometry vertical excitation energies computed using QD-

DFT/MRCI(2) and CCSDT in conjunction with the aug-cc-pVTZ basis set. All values are given in units

of eV. The CCSDT values are taken from Reference 48. The values in parentheses are the shifted vertical

excitation energies found to best reproduce the experimental absorption spectrum

these models are shown in Figure 1. Shown alongside is the experimental spectrum of Holland et

al.49, obtained from the Mainz spectral database50. The simulated spectra were computed using

the slightly-shifted vertical excitation energies given in parentheses in Table I, chosen so as to

best reproduce the experimental spectrum. We note that all applied shifts are within the expected

accuracy of the DFT/MRCI(2) method. Overall, the computed spectra are in excellent agreement

with their experimental counterpart, with the broad background arising from vibronic coupling

effects correctly reproduced by both Hamiltonians. In addition, the sharp peaks between around

6.5 and 6.7 eV, attributable to the B1(π3py) state, are also correctly described. Importantly, the

spectra computed using the two model Hamiltonians are barely distinguishable, implying that

QD-DFT/MRCI(2) provides an excellent approximation to the DFT/MRCI(2) P-BDD diabatic

potentials and couplings.

B. Chlorophyll a

Having established the accuracy of the QD-DFT/MRCI(2) diabatic potentials and couplings

relative to the more formally rigorous, but more expensive, DFT/MRCI(2) P-BDD approach, we

now consider the application of the QD-DFT/MRCI(2) method to a system whose size prohibits

the application of the P-BDD approach. For this purpose, we consider the simulation of the first

two bands in the absorption spectrum of cholorophyll a: the so-called Q and B bands. The relevant

region of the spectrum is shown in Figure 2, adapted from the action spectroscopy measurements

of Gruber et al.51 Inset is the ground state minimum energy geometry of cholorophyll a. Across
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FIG. 1. Vibronic absorption spectra computed using vibronic coupling Hamiltonians parameterised via

fitting to quasi-diabatic potentials computed at the DFT/MRCI(2), P-BDD and QD-DFT/MRCI(2) levels of

theory using the aug-cc-pVTZ basis. Also shown is the experimental spectrum of Holland et al.49, obtained

from the Mainz spectral database50.

this energy range (1.9 to 3.8 eV), there exist four ‘Gouterman-type’ states52,53, corresponding to

excitation amongst the HOMO-1, HOMO, LUMO and LUMO+1 π and π∗ orbitals localised on the

chlorin ring. In order of increasing vertical excitation energy, these are the Qy, Qx, Bx and By states.

It is believed that the Q band contains contributions from vibronic states of mixed Qx/Qy character

as a result of strong non-adiabatic coupling between the two54, whereas the current interpretation

of the B band assumes transitions to vibronic states of independent Bx and By character. We note,

however, that there are some caveats to these interpretations. First, the current interpretation of

the role of intensity borrowing in the Q band relied on the construction of model Hamiltonians

parameterised by fitting to spectroscopic data and did not account for the potential interaction of

the Q and B states54. Second, as far as we are aware, the role of intensity borrowing in the B band

has not yet been assessed using high-level calculations. As a first step towards an assessment of

these factors, we consider the a reduced dimensionality model obtained via the replacement of the

phytyl chain with a methyl group. This model structure is shown in Figure 3. We note that this

structual modification is known to have little effect on the energies of the Q and B states.
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We begin with a discussion of the QD-DFT/MRCI(2) vertical excitation energies computed at

the ground state minimum energy geometry, Q0. These are shown in Table II for the def2-SVP

basis. Shown alongside are the near-benchmark quality DLPNO-STEOM-CCSD/def2-TZVP val-

ues of Sirohiwal et al.55. Also shown are the previous best estimates obtained by Sirohiwal et

al. via the adjustment of the the DLPNO-STEOM-CCSD values to best match the experimental

spectrum when used in a vibronic spectrum simulation. Overall, the QD-DFT/MRCI(2)/def2-SVP

vertical excitation energies are in excellent agreement with best estimates, with a maximum devi-

ation of just 0.08 eV. An important caveat here, however, is that the best estimate values here were

extracted from spectrum simulations performed within the Born-Oppenheimer approximation, a

point that we shall return to later.

Shown Figure 4 is the total simulated vibronic absorption spectrum alongside the experimental

spectrum. The QD-DFT/MRCI(2)-parameterised model Hamiltonian is found to reproduce all

main features of both the Q and B bands, providing validation of both the form of the model and the

underlying QD-DFT/MRCI(2) calculations. We note that, in order to maximise agreement with

the experimental spectrum, the vertical excitation energies entering into the model Hamiltonian

were adjusted slightly. The values yielding maximal agreement are given in the final column of

Table II and, we believe, constitute the current best estimates of the veritcal excitation energies

of the Q and B states of chlorophyll a. Overall, our current best estimates are in good agreement

with those of Sirohiwal et al.55, with the exception of the vertical excitation energy of the Bx state,

which we predict to lie 0.24 eV higher in energy. However, given the increased level of agreement

with the experimental spectrum, we are lead to favour our vertical excitation energy estimates.

Finally, we briefly consider the role of vibronic coupling effects in both the Q and B bands.

This is most clearly seen by re-computing the spectrum using a modified Hamiltonian in which

all interstate coupling coefficients τ
(I,J)
pα , I 6= J are set to zero. The result is shown in Figure 5. As

is expected from the conclusions of previous work54, the Q band is described incorrectly in the

absence of non-adiabatic coupling, both in terms of the band origin and structure. Additionally,

we find that the B band is also significantly affected when these coupling terms are ignored. In

particular, the peak at around 3.5 eV is found to shift down in energy by around 0.2 eV and increase

appreciably in intensity. We thus conclude that there exist hitherto unreported vibronic coupling

effects that are operative within the B band of chlorophyll a. A full analysis of this is beyond the

scope of the current work, but will be the focus of future work within our group.
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State QD-DFT/MRCI(2) DLPNO-STEOM-CCSD Previous best estimate Current best estimate

Qy 2.07 1.75 1.99 1.94

Qx 2.37 2.24 2.30 2.21

Bx 3.18 3.17 3.12 3.36

By 3.36 3.40 3.38 3.40

CT 3.28 3.51 - -

TABLE II. QD-DFT/MRCI(2)/def2-SVP vertical excitation energies (in units of eV) for the five excited

states included in the ChlA model Hamiltonian. DLPNO-STEOM-CCSD and previous best estimate values

taken from Reference 55. Experimental estimates are taken from Reference 55.

FIG. 2. Experimental action spectrum of cholorophyll a of Gruber et al.51 across the energy range encom-

passing the Q and B bands.

V. CONCLUSIONS

To conclude, we have presented a new procedure for the calculation of diabatic potentials and

couplings within the DFT/MRCI(2) framework. The method, termed QD-DFT/MRCI(2), exploits

the intimate links between block diagonalisation, diabatisation and effective Hamiltonian theo-

ries to directly yield quasi-diabatic potential matrices and wave functions of high quality at low

computational cost. Furthermore, the procedure is entirely black box in nature, and rendered
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FIG. 3. Geometry of the chlorophyl a model used, corresponding to the replacement of the phytyl chain

with a methyl group.
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FIG. 4. Chlorophyll a absorption spectrum simulated using ML-MCTDH wave packet propagations em-

ploying a model Hamiltonian parameterised via fitting the QD-DFT/MRCI(2)/def2-SVP diabatic potentials

and couplings.
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FIG. 5. Chlorophyll a absorption spectrum simulated using ML-MCTDH wave packet propagations em-

ploying a modified model Hamiltonian with all interstate coupling coefficients set to zero.

problem-free via the application of a simple yet robust root-following procedure; all that a user

need input is: (i) the number of roots of interest, and; (ii) paths along which the quasi-diabatic

potentials are to be computed.

To test the proposed method, absorption spectra for two prototypical vibronic coupling systems

were computed: the first band in the absorption spectrum of furan, and the Q and B bands in chloro-

phyll a. For furan, the small system size permitted the application of both QD-DFT/MRCI(2) and

the formally more rigorous P-BDD approach, to which QD-DFT/MRCI(2) can be viewed as an

approximation. The vibronic spectra furnished by these two methods are essentially indistin-

guishable, and in excellent agreement with experimental spectrum, providing validation of the

QD-DFT/MRCI(2) method. For chlorophyll a, the P-BDD approach becomes prohibitively ex-

pensive, whilst QD-DFT/MRCI(2) remains eminently tractable, demonstrating the reach of the

method to large molecular systems. Moreover, the simulated spectrum is found to be in excellent

agreement with experiment, allowing for the extraction of revised best estimates of the vertical

excitation energies of the Q and B states. In addition, the results presented here suggest that there

exist significant, previously unidentified vibronic coupling effects that are operative within the B

band, challenging previous interpretations of this region of the spectrum.
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