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Abstract 
Designing organic molecules lies at the heart of solving numerous chemistry-related challenges, 
necessitating effective collaboration between human intuition and computational power. This study 
demonstrates how general-purpose Large Language Models (LLMs) such as GPT-4 can facilitate the 
design of potent molecules, leveraging feedback from experiments and empirical knowledge through 
natural language. We used this approach to design organic structure-directing agents (OSDAs) that guide 
the crystallization of zeolites. A computational workflow was developed, wherein the LLM proposed 
novel OSDAs to stabilize targeted zeolites. The suggested candidates underwent evaluation through 
empirical screening criteria and atomistic simulation. Feedback was then provided to the LLM in natural 
language to refine subsequent proposals, thus progressively enhancing the proposed OSDAs and 
promoting the exploration of chemical space. The predicted candidates encompassed experimentally 
validated OSDAs, structurally analogous ones, and novel ones with superior affinity scores, underscoring 
the robust capability of the LLM. The collaborations between humans and machines, utilizing natural 
language as the communication interface, hold potential for application in other molecular design tasks, 
including drug design. 

Introduction 
Designing organic molecules is the fundamental approach to solving many chemistry-related problems1,2. 
This involves identifying the optimal point within the vast expanse of chemical space, sometimes called 
a needle-in-a-haystack problem3, balancing multiple parameters, including chemical activities or physical 
properties4. Traditionally, the design of organic molecules has been the exclusive domain of experimental 
scientists5. The complexity of the molecular design often necessitates costly trial-and-error methodologies 
and typically requires the expertise of seasoned organic chemists6. To resolve this issue with the leverage 
of big data, various de novo molecular design methodologies have been developed7,8. While these 
algorithms can process a lot of molecules that are unachievable by experiments, human intuition still 
surpasses computationally generated molecules9,10. The ideal story would be the effective collaboration 
of human and de novo molecular design workflow, which has been gathering attention recently11. 

One promising platform to realize effective human-machine collaboration would be large language 
models (LLMs)12–14. LLMs are machine learning models that have been trained on a diverse range of 
internet text. They are proficient in generating human-like text based on the given text15. Some of the most 
advanced LLMs, such as GPT-3 and GPT-4 developed by OpenAI15 as well as Bard or Gemini developed 
by Google16,17, have shown remarkable performance in a wide array of tasks, including translation, 
question answering, and even generating creative content15. These models have gained considerable 
attention due to their capacity to engage in diverse discussions with humans, ranging from general topics 
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to specialized subjects18. The application of LLMs presents a significant opportunity to propel scientific 
research forward, providing innovative techniques for exploring and interpreting complex data and 
theoretical concepts19,20. Because LLMs allow users to interact easily via natural language, it is natural to 
assume that they have the potential to become a great platform for realizing human–machine collaboration 
for designing targeted molecules. 

The implementation of LLMs in the fields of materials science and chemistry has already begun. Recent 
studies have demonstrated the application of LLMs in guiding the synthesis of metal–organic frameworks, 
circumventing costly trial-and-error experimentation19,20. This highlights the potential of LLMs in 
materials synthesis. Bajorath et al. have developed a generative chemical language model to predict highly 
potent compounds from less potent ones as input for drug discovery21. Priyakumar et al. enabled a 
transformer-decoder model named MolGPT inspired by GPT models to generate drug-like molecules22. 
While their studies employed highly customized language models specifically trained to generate 
chemical compounds, we postulated that general-purpose LLMs such as GPT and Gemini would perform 
well in designing potent molecules, without further extensive training. 

Our target for molecular design is organic structure-directing agents (OSDAs) for zeolites. OSDAs, 
typically quaternary ammonium cations, facilitate the crystallization of zeolites23. Zeolites are porous 
crystalline aluminosilicates with diverse polymorph structures, each with unique channels and cavities. 
OSDAs can stabilize the specific shape of the inner structure of zeolites24,25, enabling the crystallization 
of zeolites, including previously unknown ones26,27. Furthermore, the replacement of OSDAs with cheaper 
ones is also an interesting topic to study28, as a significant fraction of the cost of the production of zeolites 
is occupied by OSDAs29. 

There are molecular design algorithms for the prediction of potent OSDAs for zeolites30–34 and some of 
them are confirmed experimentally. One of the first de novo molecular design algorithms of OSDAs was 
reported by Lewis et al., where a stochastic algorithm lets compounds grow in the cages of CHA and MFI 
zeolites30. To predict the synthesizable OSDAs, Deem et al. used a genetic algorithm for purchasable 
reagents and well-documented chemical reactions31. Recently, a nature-inspired meta-heuristic approach 
was employed to perform multi-objective optimization for affinity and cost of OSDAs for syntheses of 
targeted zeolites32. A generator based on a self-attention mechanism and long and short-term memory 
networks was used to design potent OSDAs33. 
In this study, we developed a workflow using a general-purpose, pre-trained LLM, GPT-4. Our 
methodology involves feedback to GPT-4 based on the affinity scores and empirical screening criteria to 
mimic the human-machine collaboration using the natural language, fostering improved subsequent 
suggestions, and ultimately achieving the prediction of highly potent OSDAs. This workflow 
demonstrates the possibility of the human-machine collaboration of the molecular design, which could 
open new avenues in developing pharmaceuticals and other complex molecular compounds.  

Results & Discussion 
GPT-4 in Molecular Design 
Previous research has encountered challenges in facilitating effective collaboration between humans and 
machines in the realm of molecular design. Addressing this issue, our study explores using LLMs to 
narrow this gap through natural language. We first assessed the capability of LLMs to comprehend and 
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manipulate chemical structures. To this end, we asked GPT-4—a leading-edge LLM created by OpenAI—
to generate new OSDAs from the basic OSDA, tetraethylammonium (TMA) via natural language and 
SMILES notation35 (see Table S1 for the exact conversation). GPT-4 responded by generating five 
SMILES strings representing TMA derivatives, each adorned with additional functional groups, thereby 
demonstrating its potential as a tool for molecular generation. To further explore how we can guide the 
LLM to the desired direction of the molecular design, we instructed GPT-4 to incorporate a carbon ring 
into its outputs. In response, GPT-4 provided five different candidates with carbon rings. This confirmed 

that GPT-4 can not only generate molecular 
structures but also refine them based on 
guidance provided via natural-language 
dialogue, showcasing its value in human-
machine collaborative efforts in molecular 
design. 

GPT-4 determines the likelihood of the 
subsequent token based on the prompt or the 
preceding token it generated during text 
production36. If it only opts for tokens with 
high probability, the result is deterministic and 
not stochastic, which means that the generated 
texts become precise but not very far away 
from the given texts. Conversely, if it opts for 
tokens with low probability, the result 
becomes more stochastic37,38. More “creative” 
text is generated in this case, while information 
and even grammar become far away from the 
given texts. This deterministic-stochastic 
tradeoff is regulated by temperature, which is 
a common parameter in related text generation 
models. Selecting the right temperature is thus 
crucial for controlling the operation of GPT-4 
as desired.   

To examine how GPT-4 behaves differently 
with temperature when dealing with molecular 
data, we provided GPT-4 with a few OSDAs 
using a notation called SMILES and asked it to 
generate new molecules. This was repeated to 
obtain a total of 100 molecules. The exact 
prompt is shown in Figure S1. Shape and/or 
size descriptors on OSDAs are useful tools to 
predict the structure-directing ability39. We 
applied shoebox algorithm40 (Figure 1a) to the 
input OSDAs and output OSDAs. Figure 1b‒e 
visualizes the input and output OSDAs using 
them being D1, the maximum distance in each 

Figure 1. Shoebox parameters of input OSDAs and 
candidates generated by GPT-4 with different 
temperatures. a. Shoebox parameters can be calculated 
by putting an OSDA to a cuboid so that the longest 
distance of the OSDA becomes D1. D2 is the longer 
distance orthogonal to D1. D3 is orthogonal to D1 and D2. 
b–e. Input OSDAs (orange) were supplied to GPT-4 to 
generate new OSDAs (grey) at temperatures of 0.3 (b), 
0.7 (c), 1.1 (d), and 1.5 (e). 
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molecule, and D2, the longer distance diagonal to the first axis. When the temperature was set to 0.3, GPT-
4 generated molecules slightly different from input molecules, as shown in Figure 1b and Figure S2. A 
noticeable number of duplicated molecules were generated in this case. When the temperature was 
increased to 0.7, more diverse molecules were generated from the identical inputs, as apparent from the 
spread data points in Figure 1c. As the temperature increased further to 1.1 and 1.5, more and more diverse 
outputs were obtained (Figure 1d, e and Figure S2). This observation is consistent with the fact that the 
higher temperature leads to more stochastic responses42. 

Upon the above test, we observed that some 
SMILES strings produced by GPT-4 could not 
be parsed, particularly at elevated 
temperatures. A similar phenomenon, so-
called hallucination, has been documented in 
text generation by GPT-4: as the temperature 
escalates, the text becomes excessively 
nonsensical and approaches a random 
character sequence43. To quantitatively 
examine how temperature affects the 
correctness of the syntax of SMILES, we 
measured the fraction of parsable SMILES in 
100 texts generated by GPT-4 under different 
temperatures, across three independent trials. 
We further calculated the average and 

standard error of each temperature. As shown in Figure 2a, more than 80% of generated strings obey the 
syntax of SMILES at temperatures up to 1.3. As the temperature increased further, the fraction of parsable 
SMILES dramatically decreased. At the temperature of 2.0, we frequently observed nonsensical texts. 
These results suggest that low temperatures are required to obtain reliable results. 

Another observation in the preliminary experiment in Figure 1 was that too low temperature led to a 
significant number of SMILES duplicating with inputs or outputs, which can lead to inefficient exploration 
of the chemical space. To examine how temperature affects the uniqueness of the generated molecules, 
we counted the number of unique molecules from the three runs. As shown in Figure 2b, only 20% of the 
generated molecules were unique at temperatures less than 0.3. As the temperature increased, the fraction 
of unique entries increased (Figure 2b). The peak of the unique rate was the temperature of 1.5. Above 
that, the number of unique entries started to decrease, due to the hallucination effect observed in Figure 
2b.  

Collectively, we chose the temperature range from 0.7 to 1.1 for developing our de novo molecular design 
workflow, considering the tradeoff between the correctness and the novelty of the generated texts shown 
in Figure 1 and Figure 2, which resembles the exploration-exploitation trade-off44.  

De novo molecular design workflow 
Figure 3 provides the overview of our de novo molecular design workflow, which incorporates elements 
such as GPT-4, prescreening filters, atomistic simulation, and a database. The data stored within the 
database encompasses the SMILES notation for the molecule and the corresponding stabilization energy 
for a specific zeolite. The algorithm retrieves the top 10 entries among 100 recent records from the 

Figure 2. a. The fraction of parsable SMILES generated 
by GPT-4 with different temperature values. b. The 
fraction of unique OSDAs generated by GPT-4 with 
different temperature values. The error bars represent 
the standard errors among three independent runs. 
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database and formulates a prompting text to instruct GPT-4 to generate potential molecules. The precise 
prompt is depicted in Figure S3. The formulated text is then submitted to GPT-4. To initiate the workflow, 
tetramethylammonium (TMA), one of the simplest OSDAs, and its stabilization energy were prepared as 
the first input data. 

In response, GPT-4 generates candidate SMILES-like strings as requested. These strings are parsed and 
subjected to a series of empirical filtering criteria to eliminate candidates unsuitable as OSDAs for zeolites. 
The criteria check rigidity/flexibility, stability, and hydrophobicity/hydrophilicity. It has been found that 
the rigidity/flexibility influences the structure-directing ability. In particular, OSDAs with an excessive 
number of degrees of freedom may adopt multiple configurations during the hydrothermal synthesis of 
zeolites, thereby reducing the selectivity45. To avoid them, we precluded the molecules containing many 
rotatable bonds and too large rings. Zeolites are typically synthesized under hydrothermal conditions46–48 
so that OSDA needs sufficient stability. Molecules containing a N-ring with triple bonds may be unsuitable 
for hydrothermal synthesis. If the compounds contain rings with fewer than five members, the steep bond 
angle could potentially break the ring. We exploited these properties to assess chemical stability. It is 
established that a balance of hydrophobicity and hydrophilicity is vital for OSDA to promote the 
crystallization of zeolites in aqueous media. This is because OSDA requires sufficient hydrophilicity to 
be dissolved in water, and they also need to interact with the relatively hydrophobic aluminosilicate 
species that ultimately form zeolites49. C/N ratio is an experimentally established metric to evaluate the 
hydrophobicity and hydrophilicity of OSDA50. We limit the C/N ratio from 4 to 20. We restrict the 

Figure 3. Schematic illustration of the computational workflow. TMA (C[N+](C)(C)C) is chosen as the 
first input data. GPT-4 generates new OSDAs based on the input OSDAs and corresponding stabilization 
energies. Some of the generated OSDAs are rejected by the screening, and their reasons are fed to 
GPT-4. Screened molecules are docked in the inner space of a specific zeolite for calculation of their 
affinity. If the structure of the zeolite–OSDA complex is reasonable, the OSDA and the calculated 
stabilization energy are stored in a database. 10 molecules and corresponding stabilization energies out 
of 100 recent records in a database are used to update the input data. 
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permissible elements in OSDA candidates to those typically observed—hydrogen, carbon, nitrogen, and 
oxygen. This is done to ensure the effectiveness of the C/N ratio in evaluating 
hydrophobicity/hydrophilicity (see details in Table S2).  

The rejected entries by the above screening criteria along with the reasons for the rejection are then sent 
back to GPT-4. This process mimics the human-machine interaction in molecular design. GPT-4 is then 
asked to generate new candidates based on the feedback. This step is repeated up to five times according 
to the preliminary testing (Figure S4).  

Molecules that meet the prescreening criteria undergo atomistic simulation to assess their affinity against 
the targeted zeolite. We use stabilization energy as the metric to evaluate this affinity, a common indicator 
for assessing potential OSDAs for targeted zeolites51–53.  

ES = Ecomplex − Ezeolite − nEOSDA 

Ecomplex represents the energy of complex of the zeolite with the OSDA inside of its cages, Ezeolite and 
EOSDA are the energy of the vacant zeolite and the isolated OSDA respectively, and n is number of OSDAs 
in the unit cell of the zeolite. We set 𝑛 = 3 in this study. The “frozen pose” method54, as recommended 
by a previous study55, is utilized, where the structure of relaxed zeolite–OSDA complex was directly used 
to calculate Ecomplex, Ezeolite, and EOSDA to assess the stabilization energy. This method, however, 
occasionally distorts the zeolite frameworks unrealistically, leading to significant under- or over-
estimation of the stabilization energy. To avoid this, we dismiss any zeolite–OSDA complexes with 
excessive atomic displacement (see the Methods section for details). Candidates that passed this criterion 
were stored in the database for subsequent runs. 

Designing OSDAs for AEI, CHA, and ITE 
The trajectory of the optimization 

Our de novo molecular design methodology was applied to three cage-type zeolites: CHA, AEI, and ITE 
(Figure S6), which are frequently used structures in demonstrating de novo molecular design for 
OSDAs31,32,56–58.  

Figure 4. The representative trajectories of best stabilization energy from the runs at fixed temperatures 
of 0.7, 0.9, 1,1 and random temperature settings. a. AEI zeolite. b. CHA zeolite. c. ITE zeolite. 
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Temperatures play a crucial role in balancing the deterministic and stochastic behavior of GPT-4, as 
discussed earlier. We evaluated our workflow at three temperatures: 0.7, 0.9, and 1.1. Figure 4a shows the 
lowest stabilization energy at each step of the runs for AEI. A temperature of 0.7 yielded a slower 
improvement in stabilization energy, likely due to the deterministic nature of lower temperatures. 
Increasing the temperature to 0.9 resulted in a steep initial improvement in stabilization energy, likely due 
to the increased stochastic nature of GPT-4. The most negative stabilization energy for the entire run at a 
temperature of 0.9 was more negative than that of 0.7, indicating that the higher temperature improved 
the results. At the higher temperature of 1.1, a steep initial improvement was observed akin to the 
temperature of 0.9. This temperature resulted in the OSDA with more negative stabilization energy than 
the other temperatures. 

Higher temperatures do not necessarily yield OSDAs with higher affinity. For CHA, all three temperature 
runs exhibited similar initial profiles (Figure 4b), with the best OSDA achieved at 0.9, neither the highest 
nor the lowest temperature. The sensitivity towards temperatures of GPT-4 was more evident with ITE 
(Figure 4c). At temperatures of 0.7 and 0.9, the trajectories were similar, achieving stabilization energies 
around −10 kJ molSi−1. Increasing the temperature to 1.1 generated OSDAs with more negative 
stabilization energies of approximately −20 kJ molSi−1, indicating that temperature effects are highly 
system-dependent. 

While the optimal temperatures vary among targeted zeolites, the necessity for parameter tuning to achieve 
optimal results can be disadvantageous. To address this, we randomly selected a temperature from 0.7, 
0.9, and 1.1 each time we asked queries to GPT-4. The grey solid lines in Figure 4 show the trajectory of 
the best stabilization energies. This stochastic scheme, as shown in the figure, demonstrated comparable 
or superior performance to the other conditions, effectively balancing exploration, and exploitation by 
GPT-4 at different temperatures. 

Suggested OSDA candidates 
Figure 5 shows some OSDAs predicted by our de novo molecular design workflow under varying 
temperature conditions. GPT-4 successfully generated several OSDAs that are identical or closely 
resembling experimentally validated OSDAs. OSDAs 1, 8, and 3 are identical to those known from 
experimental studies of corresponding zeolites58–60. Predicted candidates 2, 3, 4, 9, 10, 11, 15, and 16 
demonstrate structural similarities to known OSDAs 20, 21, 22, 23, 24, 25, 26, and 27, respectively50,56,58 
(see Figure S5). For example, OSDAs 2 and 9 possess an extra methyl group compared to 20 and 23 
(Figure S5); 3 and 11 have fewer methyl group than 21 and 25 with similar chemical structures (Figure 
S5). 

Some generated candidates exhibited superior stabilization energies compared to experimentally proven 
OSDAs. 5, 6, and 7 showed sufficiently negative stabilization energies for AEI compared with 
experimentally proven OSDA and candidates having resembling structures to them (1, 2, 3, and 4 in Figure 
5). For CHA, 12, 13, and 14 displayed stabilization energies better than known ones, likely due to their 
slightly larger size. While the runs of ITE successfully predicted piperidine-based OSDAs including 
experimentally verified ones such as 1 and 3, it also identified promising candidates exhibiting more 
negative stabilization energies. Particularly, it expanded its exploration to include OSDAs containing 
benzene rings such as 17, 18, and 19. Despite the lack of benzene rings in the experimentally validated 
OSDAs, the relatively large cavity in ITE seems to have great compatibility with OSDAs with benzene 
rings. This compatibility merits future experimental investigation. We presume this contributed to the 
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difference in the trajectory of best stabilization energies (Figure 4). While under lower temperatures, the 
probability of generating OSDAs with benzene rings seems to be low, at a higher temperature of 1.1, such 
OSDAs can easily be generated to achieve more negative stabilization energy. 

A limitation of the current prediction regarding the experimental validation is the potential synthesizability 
of OSDA candidates because prescreening criteria did not consider it, and GPT-4 was not asked to take it 
into account. The difficulty in computer-aided synthesis planning is well-established within the scientific 
literature, even when utilizing specialized algorithms61,62. To ascertain if LLMs could aid in computer-
aided retrosynthesis, we asked GPT-4 to estimate the synthesis pathways for experimentally validated 
OSDAs, as depicted in Table S3. While GPT-4 correctly identified a synthesis pathway of the simplest 
OSDA, TMA, it did not successfully estimate the pathway for 1. This may be attributed to the dearth of 
information on the organic synthesis pathway in the training data of GPT-4. It would be interesting to 
study LLMs for data-driven retrosynthesis through the specialized LLMs or by more general-purpose 
models with post-training. 

Dimensionality reduction   
To better understand the nature of explored OSDAs, we performed principal component analysis (PCA) 
for descriptors of OSDAs for all of the suggested molecules as well as experimentally known OSDAs39 
that pass our prescreening criteria, as shown in Figure 6. Considering that the shape, size, and 

Figure 5. Computationally predicted OSDAs for CHA, AEI, and ITE zeolites, along with their associated 
stabilization energy (ES), temperature (T), and the methods employed for temperature settings (random, 
fixed, or both). Experimentally validated OSDAs for each zeolite type are marked with an asterisk. The 
first three on the left for each zeolite type correspond to known or highly similar OSDAs, while the 
remaining candidates exhibit favorable stabilization energies. 
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rigidity/flexibility of OSDAs significantly affect zeolite crystallization23,63, we calculated molecular 
descriptors including volume, number of atoms (N), number of rotatable bonds, number of rings, number 
of benzene rings, number of atoms creating branches, and geometrical parameters (D1, D2, D3, and (D1 × 
D2 × D3) × N) derived from the shoebox algorithm (Figure 1a)40. The explained variance values of the 
principal components (PCs) confirm that PC1, PC2, and PC3 adequately captured most of the variance in 
data (Figure S6a). After carefully examining the elements of the PCs as detailed in Figure S6b, we found 
that PC1 describes the overall size of OSDAs; OSDAs with larger PC2 show high aspect ratios; OSDAs 
with larger value of PC3 is closely related to rigid property. 

As shown in Figure 6a, our de novo molecular design workflow using GPT-4 explored a vast chemical 
space covering the plots of experimentally proven OSDAs for AEI, CHA, and ITE. We extracted top 
15% of the generated OSDAs in terms of the stabilization energy for each zeolite. The distributions of 
PCs for these OSDAs with high affinity is highly consistent with the experimentally proven OSDAs, 
suggesting the validity of our approach. The capability of the LLM pretrained against a large number of 

Figure 6 a. PCA for suggested and experimentally proven OSDAs for CHA, AEI, and ITE zeolites 
together with Gaussian kernel density estimates of PCs. All suggested OSDA candidates are scattered 
in grey color on the PCA maps. TMA, the starting OSDA in our workflow is also plotted. The top 15% of 
suggested candidates based on stabilization energy are denoted as circles with respective colors. 
Experimentally proven OSDAs are represented as triangles, with each color corresponding to a specific 
zeolite. Two kinds of gaussian kernel density estimates of distributions are depicted. One describes the 
top 15% of explored OSDA candidates, and the other shows experimentally proven OSDAs. b. Cages in 
ITE, CHA, and AEI, with boxes representing their size and shape based on interatomic distances. 
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internet texts and provided feedback informed by empirical screening criteria and stabilization energies 
effectively enable the workflow to produce reasonable candidates using only the structure of the simplest 
OSDA as a starting point. The adaptive exploration and exploitation process can be visualized using the 
PCA map as shown in Figure S7. At first, GPT-4 predominantly sampled points close to the initial OSDA, 
TMA. As the process advanced, GPT-4 increasingly explored more diverse regions of the chemical space, 
as depicted in Figure S7. 

A noticeable point in Figure 6a is that PC2 is divided into two clusters. The figure shows that the cluster 
with high PC2 was explored to generate effective OSDAs for ITE. The thorough investigation of the 
constituting OSDAs reveals that this cluster is for benzene-containing OSDAs characterized by high 
aspect ratios, such as 17, 18, and 19 in Figure 6. These points are sampled at the later stages of the runs 
for ITE, as depicted in Figure S7 and Figure 4. Furthermore, promising OSDAs for ITE tend to have 
larger PC1 and PC3 (Figure 6a), indicating that bulkier and more rigid OSDAs are effective for ITE. To 
fill and stabilize relatively large cages in ITE, depicted in Figure 6b, OSDAs need to be bulkier and more 
rigid, as suggested earlier58,64.  

OSDAs effective for CHA and AEI overlap in the PCA map (Figure 6a), presumably due to the similar 
size of cages in the two zeolites65 (Figure 6b). For both the top 15% of the generated OSDA candidates 
and experimentally proven OSDAs, OSDAs for CHA exhibit marginally elevated values in PC1 and PC3, 
alongside reduced values in PC2, compared to AEI counterparts (Figure 6a). This suggests that the cage 
for AEI favors smaller, flatter, and more flexible OSDAs, while CHA favors bulkier, more spherical, and 
more rigid ones. To effectively fill the avocado-like uneven cages in AEI (Figure 6b), OSDAs with more 
rotational freedom can be advantageous56.  

These results confirm that the general-purpose LLM successfully sampled the chemical space covering 
existing OSDAs with similar distribution, recommending the candidates with properties and affinity 
tailored to each zeolite. 

Conclusion 
Prior studies documented de novo molecular design algorithms tailored for diverse applications. Despite 
the advanced development of algorithms and the vast amount of data available, the effective integration 
of computationally generated data by chemists remains a significant challenge. Consequently, molecular 
design continues to rely heavily on experimental trial and error. In this study, we focused on general-
purpose LLMs to demonstrate the potential human-machine collaboration through natural language and 
chemical notation to design novel molecules, specifically OSDAs for synthesizing zeolites. 

Our de novo molecular design framework using an LLM can efficiently explore the chemical space for 
OSDAs under appropriate temperature parameters. The feedback provided in natural language, stemming 
from empirical knowledge, along with affinity scores derived from atomistic simulations, effectively 
steers the LLM toward identifying more viable candidates. This highlights the strong capability of LLM 
to design novel molecules. Owing to the extensive pretraining of the general-purpose LLM, it can propose 
to add various functional groups not in the starting OSDA. This feature will benefit from transferring 
chemical knowledge across various domains documented in diverse texts used during the pretraining of 
LLMs. 
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Although the current study is limited to designing OSDAs for synthesizing zeolites, this approach can be 
applied to drug design and other molecular design problems. This paves the way for future collaborations 
between humans and machines in molecular design, utilizing natural language as the communication 
interface. 

Methods 
Dataset 
Structures of pure silica zeolites were obtained from the International Zeolite Association66. The 
experimentally verified OSDAs for the AEI, CHA, and ITE zeolites were acquired from the OSDB 
database39. 

LLM 
We utilized GPT-4 via an API developed by OpenAI. The queries were performed between June 26th 
2023 and March 11th 2023. The exact prompts are shown in Figure S1, S3, and S4 and Table S2 

Prescreening 
GPT-4 sometimes produces candidates that are not as viable as OSDAs. We rejected such candidates by 
applying empirical screening criteria. The properties of OSDAs were calculated by RDKit software67. The 
complete list of screening criteria is presented in Table S2. To avoid too flexible candidates, the number 
of rotatable bonds was restricted to less than 5, and bridge-free rings larger than the nine-membered ring 
were rejected. To avoid candidates unstable under hydrothermal conditions, we rejected the candidates 
with rings smaller than the five-membered ring, NH+ group, NH3+ group, and rings having nitrogen and 
triple bonds. Furthermore, if rings with N possessed bonds in conjugated systems (one-and-a-half bonds) 
and/or double bonds, it would not be included if it met the empirically determined equation32.  

3n2 + 4.5n3 ≥ n1 

Where n1, n2, and n3 represent the count of single bonds, one-and-a-half bonds, and double bonds in the 
ring, respectively. We also rejected candidates with unconventional atoms and restricted C/N ratio as 
described above. 

Atomistic modeling 
Proposed OSDA candidates were optimized by means of the universal force field (UFF) as implemented 
in RDKit software67. The location and rotation of OSDAs in a zeolite were determined by Bayesian 
optimization with the following objective function. 

θ = n1.1 × 1017 + n1.3 × 1014 + n1.5×1012 + n1.7 × 1010 

n1.1, n1.3, n1.5, and n1.7 represent the number of interatomic distances between zeolite and OSDAs under 
specific distance thresholds of 1.1, 1.3, 1.5, and 1.7 Å, respectively. The resulting zeolite–OSDA complex 
underwent structure optimization with the GULP program68 using the charge-less DREIDING force field69, 
which is used and verified in various zeolite–OSDA systems32,55,56.   
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We dismissed zeolite–OSDA complexes exhibiting stabilization energy smaller than −20 kJ molSi−1. 
Zeolite frameworks in zeolite–OSDA complexes after structure optimization were evaluated by Structure 
Matcher implemented in pymatgen70. If the algorithm is unable to determine that a zeolite in an optimized 
complex is equivalent to its corresponding zeolite before optimization, it is subsequently rejected. 

Cheminformatics 
Three-dimensional coordinates of a candidate OSDA, as obtained by UFF, were subjected the shoebox 
algorithm40 to calculate D1, D2, D3, and the size descriptor, (D1 + D2 + D3) × N, where N is the number of 
atoms. First, maximum interatomic distances in a candidate OSDA were found and defined as distance 
D1. The candidate was rotated to define a new plane perpendicular to the axis along with D1. On the new 
plane, the two atoms of maximum distance were obtained to define the distance D2. From these two axes 
along with D1 and D2, we created a new axis, which we defined as D3, denoting the maximum interatomic 
distance along with it. RDKit calculated the other molecular descriptors. The molecular descriptors 
underwent standard scaling and PCA as implemented in the scikit-learn package. 

Data availability 
The data of this study are available from the corresponding author upon request. 
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