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Abstract 17 

Fine-mode particulate matter (PM2.5) is a highly detrimental air pollutant produced in large 18 
quantities from wildfires, which are increasing with climate change. Leveraging advanced 19 
chemical measurements in conjunction with source apportionment and health risk assessments, we 20 
quantified the stark pollution enhancements during Canadian wildfire smoke transport to New 21 
York City at its peak over June 6-9, 2023. Interestingly, we also observed lower-intensity, but 22 
frequent, multi-day wildfire smoke episodes during May-June 2023, which risk exposure 23 
misclassification as generic aged organic PM2.5 given its extensive chemical transformations 24 
during 1-6+ days of transport. This smoke-related organic PM2.5 showed significant associations 25 
with asthma exacerbations, and estimates of in-lung oxidative stress demonstrate the health risks 26 
of increasingly-frequent smoke episodes and potential enhancements with chemical aging. 27 
Avoiding underestimated contributions of aged biomass burning PM2.5, especially outside of peak 28 
pollution episodes, necessitates real-time chemically-resolved monitoring to enable next-29 
generation health studies, models, and policy under far-reaching wildfire impacts. 30 

Introduction 31 

Air quality has substantially improved in cities and other downwind areas across the U.S. over 50+ 32 
years of policies targeting anthropogenic sources (Parrish et al., 2011). Among air pollutants, fine 33 
particulate matter (PM2.5) has the largest effects on premature mortality (Murray et al., 2020) with 34 
contributions from both direct emissions and secondary production following the oxidation of gas- 35 
and particle-phase precursors (Palm et al., 2020). Given its health effects, the U.S. PM2.5 annual 36 
standard was recently lowered to 9 µg m-3 but remains above the World Health Organization 37 
guideline of 5 µg m-3. Simultaneously, due to climate change, wildfires have emerged as 38 
increasingly important sources of PM2.5 as well as other air pollutants and reactive 39 
compounds (Burke et al., 2023; Bourgeois et al., 2021). The composition of wildfire and other 40 
biomass burning smoke has been increasingly investigated, including laboratory combustion 41 
experiments (Koss et al., 2018; Hatch et al., 2015), oxidation chamber studies (Coggon et al., 42 
2019; Lim et al., 2019; Joo et al., 2019; Joo et al., 2024), and aircraft-based measurements of 43 
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emissions and their downwind evolution (Xu et al., 2022; Hayden et al., 2022; Jolleys et al., 2012; 44 
Permar et al., 2021), using techniques spanning from bulk characterization of chemical and 45 
physical properties to detailed chemical speciation (Hodshire et al., 2019b; Liang et al., 2022; Palm 46 
et al., 2020).  47 

Wildfires have increased in intensity and burned acreage over the past four decades, with projected 48 
climate scenarios heightening the risk of more frequent and larger scale fires (Abatzoglou and 49 
Williams, 2016; Burke et al., 2023). The impacts of biomass burning events, such as wildfires, are 50 
more often exerting continental influence, with evident, but uncertain, public health risks (Rogers 51 
et al., 2020; Wu et al., 2018; O’dell et al., 2021). The June 6-9, 2023 wildfire transport event 52 
brought record-setting PM2.5 levels to New York City (NYC), the largest and most densely 53 
populated city in the U.S., with evident visual effects on air quality. However, the stark nature of 54 
this event overshadowed other more frequent, though less dramatic, wildfire smoke effects.  55 

To better understand the extent of wildfire smoke transport and its impact on public health, we use 56 
chemically-detailed real-time data on PM composition to examine a series of five wildfire smoke 57 
events that influenced air quality in the Eastern U.S. during May-June 2023. This includes 58 
advancing source apportionment using a combination of speciated PM data from multiple 59 
instruments to better identify and quantify the impacts of such events and avoid exposure 60 
misclassification. We then evaluate key metrics of PM composition that may modify its health 61 
effects, while also comparing the results of our chemical analysis to asthma-related hospital 62 
admissions rates across the study period to inform critical avenues of inquiry at the intersection of 63 
atmospheric chemistry and public health science. 64 

Results  65 

Observations and analysis of far downwind wildfire smoke in New York City 66 

Using in-situ PM2.5 chemical composition data from the newly installed ASCENT (Atmospheric 67 
Science and Chemistry mEasurement NeTwork) site in Queens, NY (40.74N, 73.82W, 16m above 68 
sea level), we examined five different major smoke transport events of varying intensity and 69 
chemical composition during May 15 to June 13, 2023. PM analysis occurred in real-time with 3-70 
60 min resolution measurements of organic and inorganic aerosol components via mass 71 
spectrometry and spectroscopy, metals via energy dispersive X-ray fluorescence, and aerosol 72 
sizing via scanning particle mobility, as well as complimentary gas-phase pollutant and 73 
meteorological measurements (see Methods). The identity, origin, and impacts of the five events 74 
were examined using these new multi-instrument measurements and further supported by 75 
meteorological modeling and satellite imagery. Key statistical analyses included source 76 
apportionment via positive matrix factorization of aerosol mass spectrometry data while leveraging 77 
online metals data, as well as black/brown carbon data, to quantify the chemically-speciated 78 
contributions of transported smoke—enabling component-specific comparisons to regional health 79 
data and potential oxidative stress enhancements due to each event.  80 
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June 6-9, 2023 smoke transport from the Quebec wildfire 81 

Smoke transport from the Quebec wildfire was greatest during June 6-9, 2023, with stark regional 82 
changes in visibility extending well beyond the metro NYC area with record-setting, reported peak 83 
PM2.5 concentrations exceeding 24-hr EPA standards in NYC (Fig. 1a, b)—even approaching the 84 
prior wildfire-induced daily averaged PM2.5 levels in major California cities over the 21st century 85 
(e.g., San Diego, San Francisco; Fig. S1). This 3-day concentrated plume led to increased levels 86 
of many, but not all air pollutants, including 2000%, 1140%, 686%, and 511% increases in average 87 
organic aerosols, black carbon, formaldehyde, and total metal concentrations, respectively (Fig. 88 
1a, c; Table S1). The PM2.5 in the plume was predominantly comprised of organic aerosols with 89 
varying enhancements in non-carbonaceous inorganic aerosol components (215%-2240%; Fig. 1c; 90 
Table S1) with a pronounced bimodal particle diameter distribution (Fig. 1d), including sizes that 91 
enable deep lung penetration (Hinds, 1999).  92 

Capturing the broader influence of aged wildfire smoke 93 

While the June 6-9 smoke transport event brought the most striking deterioration in air quality, our 94 
high temporal resolution observations show that there were several other pollution episodes 95 
attributed to smoke transport over the study period with average PM2.5 concentrations ranging 7.9-96 
20 μg m-3 (Fig. 1a and 2a). The location of these wildfires spanned from Northwestern Canada to 97 
Quebec with average transport times (i.e., ages) ranging 2-4 days (Fig. S2, S4 and Table S2).  98 

As urban air is influenced by a complex mix of sources and chemical processes, accurately 99 
estimating the contribution of biomass burning to urban pollution presents a challenge but is 100 
critical for air quality research and policy to protect public health. Source apportionment analysis 101 
via positive matrix factorization of aerosol mass spectrometry data is frequently used to quantify 102 
contributions from organic aerosol source types (e.g., cooking, biomass burning, hydrocarbon 103 
combustion-related) based on their distinct mass spectral features and temporal trends (Fig. 104 
S5) (Joo et al., 2021; Jimenez et al., 2009; Ng et al., 2010; Hass-Mitchell et al., 2024).  105 

However, in this study, outside of the major Quebec smoke transport episode, aerosol mass 106 
spectrometry alone loses its ability to identify the extent of wildfire smoke after long-distance 107 
oxidative aging diminishes the characteristic spectral peaks of biomass burning organic aerosols 108 
(i.e., m/z 60 and 73, mass fragments of levoglucosan) (Hodshire et al., 2019b) and renders biomass 109 
burning organic aerosols less distinguishable from other oxygenated organic aerosols with elevated 110 
signal at m/z 44 (Fig. S6) (Cubison et al., 2011; Vasilakopoulou et al., 2023). The air quality 111 
impacts of smoke transport to NYC were observed across four organic aerosol types (two less-112 
oxidized biomass burning organic aerosol types and two oxygenated organic aerosol types in Fig. 113 
2a, b), with the majority of the PM2.5 enhancements (109-560%) appearing as generic oxidized 114 
organic aerosols. Enhancements in less-oxidized and more-oxidized oxygenated organic aerosols 115 
ranged 160-237% and 112-592%, respectively, across the four relatively smaller smoke transport 116 
events, with their chemical composition varying with plume age (Fig. 2a and Table S3). For 117 
example, over June 6-9, the main plume consisted of 46% “typical” biomass burning-related 118 
organic aerosols. Then, several days later, meteorological conditions brought more aged Quebec 119 
wildfire smoke from over the Atlantic Ocean (Fig. S2) with a greater extent of aged biomass 120 
burning-related organic aerosols and more generic oxidized organic aerosols (Fig. 2). Furthermore, 121 
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a comparison of the smoke events studied here demonstrates that the smoke episodes which were 122 
more dilute during transit (i.e., 1st-3rd events) had a greater extent of oxidation despite having a 123 
similar range of transport times as the less oxidized 5th event (Figs. 2a and Fig. S4). This is 124 
consistent with prior work showing the rate of wildfire plume photochemical aging can accelerate 125 
as the plumes continue to dilute during transportation, enhancing exposure to atmospheric 126 
radicals (Xu et al., 2022), and diminishing semivolatile biomass burning tracers in organic 127 
aerosols (Cubison et al., 2011).    128 

Due to the photochemically-aged features of the smoke reaching NYC, our real-time trace metal 129 
measurements were key to identifying and constraining wildfire influences, especially for low-130 
intensity or long-range transported aged smoke episodes (Vasilakopoulou et al., 2023). Potassium 131 
is often one of the most abundant metals in biomass burning aerosol emissions (Reid et al., 2005), 132 
and it has been used to ascribe PM2.5 enhancements to wildfire smoke (Andreae, 1983; Li et al., 133 
2003; Vasilakopoulou et al., 2023). In this study, we specifically estimated the non-dust potassium 134 
associated with smoke transport via linear regression of potassium with other mineral dust species 135 
(Ca, Fe, Ti, Cu, Ba) during background periods to quantify the fraction of potassium from other 136 
sources (i.e., mineral dust) and resolve wildfire-associated potassium with greater certainty, similar 137 
to the approach by Pachon et al. (2013) (see Methods for the detailed estimation). Elemental ratios 138 
of dust established in past literature were used to validate the calculated site-specific ratios used 139 
for dust corrections (Liu et al., 2022).  140 

This non-dust potassium exhibited the strongest correlations with smoke-related organic aerosols 141 
(r=0.98) (Fig. 2c) compared to other biomass burning-related pollutants (e.g., black carbon, CO 142 
and NOx in Fig. S7) and demonstrated consistent enhancements during periods where air mass 143 
trajectories confirmed wildfire influences. While other pollutants are also associated with wildfire 144 
smoke, the results of this study exemplify dust-corrected potassium’s pronounced utility as a 145 
reliable indicator of transported smoke across diverse spatial scales, combustion conditions, and 146 
age. This is not only due to the loss of key biomass burning organic aerosol mass spectral features 147 
with aging, but also as black/brown carbon, CO, or NOx can be outweighed by larger contributions 148 
from other urban sources or incur losses due to photobleaching (i.e., for brown carbon), which 149 
varies with plume age (Hems et al., 2021).  150 

The composition of wildfire emissions has been shown to vary with fuel type, combustion 151 
efficiency (e.g., smoldering vs flaming), pyrolysis temperature, fire size, and interactions with 152 
background aerosol conditions (Hecobian et al., 2011; Sekimoto et al., 2018; Hodshire et al., 153 
2019a; Jen et al., 2019). Yet, non-dust potassium captures contributions from fresh biomass 154 
burning-related organic aerosols through highly-oxidized biomass burning organic aerosols, 155 
exhibiting stronger correlations (r≥0.82) compared to the other biomass burning-relevant 156 
pollutants (Fig. S7) with an overall slope of 83.1±0.7 μg μgK-1 and ratios with a 2σ range of 63.5-157 
253.3 μg μgK-1 (Fig. 2c). Thus, real-time metals data provide powerful opportunities to identify, 158 
validate, and quantify less evident biomass burning transport events in tandem with aerosol mass 159 
spectrometry data. Nevertheless, we note that potassium also has other sources (e.g., mineral dust, 160 
coal combustion) that should be considered when using it to quantify wildfire influence. Other 161 
elements characteristic of biomass burning emissions (e.g., S, Cl, Mn, Zn, Br) were also enhanced 162 
during wildfire events here and were well-correlated with potassium during the June 6-9, 2023 163 
event, providing additional points of confirmation (Fig. 1c and Table S4).  164 
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Downwind health risks of dilute and aged wildfire smoke  165 

Over the wide range of 1-6+ days of oxidative aging during transport (Fig. S4 and Table S2), the 166 
organic aerosols underwent considerable transformations (Fig. 2 and Fig. S6), which can have 167 
important implications for understanding its health risks. First, the depletion of the molecular 168 
signatures of biomass burning organic aerosols outside of the major Quebec fire plume (i.e., June 169 
6-9) poses the risk of exposure misclassification of far downwind smoke as generic oxidized 170 
organic aerosols without valuable non-reactive covariate data to confirm its contributions, 171 
specifically non-dust potassium.  172 

Epidemiological analysis using chemically-speciated aerosol data for the May 15 - June 13, 2023 173 
study period with repeated wildfire smoke transport events identified statistically-significant 174 
associations between daily emergency department (ED) visits for asthma and concentrations of all 175 
smoke-related organic aerosols, and also with non-dust potassium (Fig. 3a and Table S5). For 176 
example, an interquartile increase in non-dust potassium was associated with a 2.23% increase in 177 
risk of asthma ED visits (95% CI: 0.40%-4.08%). While prior analyses have observed effects when 178 
looking at the major smoke event (i.e., June 6-8) with PM2.5 alone (Table S6) (Chen et al., 2023; 179 
Mcardle et al., 2023; Meek et al., 2023; Thurston et al., 2023), in Fig. 3a, we now show associated 180 
health effects specifically with the mix of smoke-related organic aerosols (i.e., sum of 4 factors; 181 
Fig. 2a) as well as non-dust potassium as a well-correlated independent marker of wildfire smoke 182 
(Fig. 2c), regardless of plume age. Moreover, the sum of smoke-associated organic aerosols 183 
contributions had greater health effects estimate than fresh biomass-burning organic aerosols alone 184 
(i.e., BBOA factor; Table S5).    185 

Second, while overall PM2.5 mass concentrations remain an important metric for evaluating health 186 
risks, multiple laboratory and epidemiological studies have presented growing evidence for the 187 
greater health effects of secondary organic aerosols compared to other aerosol components (e.g., 188 
(NH4)2SO4, NH4NO3, primary organic aerosols). This includes cardiovascular risks for premature 189 
mortality (Pye et al., 2021) and enhanced potential oxidative stress of secondary organic aerosols 190 
observed via cellular and acellular assays (Liu et al., 2023; Daellenbach et al., 2020; Zhou et al., 191 
2019; Tuet et al., 2017; Yu et al., 2022; Verma et al., 2015). There is also clear evidence for 192 
increased potential oxidative stress from more-aged, oxidized aerosols with greater reactive 193 
oxygen species (ROS) production in the respiratory track (Liu et al., 2023). Across the five major 194 
smoke transport episodes studied here, our Monte Carlo analysis consistently showed pronounced 195 
increases in potential oxidative stress of 124-1631% (median enhancements) with variations 196 
constrained using available literature data while considering uncertainties (Fig. 3b and Fig. S8). 197 
This enhancement in potential oxidative stress was recently confirmed by Vasilakopoulou et al. 198 
(2023) who observed 470-3730% enhancements in dithiothreitol (DTT) assays relative to urban 199 
background sites, concurrent with downwind wildfire-associated enhancements in aged 200 
oxygenated organic aerosols and potassium in Europe. Furthermore, while the smoke plumes 201 
transported to NYC often lost their molecular signatures (Fig. 2), the more-aged particulate matter 202 
presents a greater potential oxidative stress per unit mass on average (Fig. 3b, right axis), which 203 
could be further exacerbated by coincident wildfire- and dust-related enhancements of redox-204 
active metals (i.e., Mn, Fe, Cu) across the smoke transport events (Table S4) (Liu et al., 2023; 205 
Lakey et al., 2016; Verma et al., 2015).  206 
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Discussion 207 

Increased wildfire activity and its emissions are anticipated to worsen air quality thereby impacting 208 
human health over the coming decades under a changing climate. However, its effects on human 209 
health remain uncertain and potentially underestimated, which is further complicated by 210 
downwind oxidation and potential exposure misclassification of less-evident smoke-related 211 
aerosol enhancements. The acute effects of the smoke were observed in epidemiological 212 
associations (Fig. 3a). Yet, the chronic effects of increasingly frequent low-level exposures to 213 
more-aged, dilute smoke represent a major potential concern and a clear priority for future research 214 
given the enhanced potential for oxidative stress with highly-aged smoke (Fig. 3b) and repeated 215 
exposures, even far downwind.   216 

There are multiple areas where cross-disciplinary research linking atmospheric sciences and public 217 
health communities is necessary to address pressing issues. This includes accurately categorizing 218 
the pollutant contributions, especially PM2.5, from wildfires relative to other sources to empower 219 
next-generation epidemiological studies that advance our understanding of source-specific and 220 
speciated PM-specific health effects. 221 

With a greater fraction of future PM2.5 likely attributed to wildfires (and intentional biomass 222 
burning such as prescribed fires) and multi-day oxidation depleting biomass burning-related 223 
organic aerosols of key identifying mass spectral features, the PM2.5 source apportionment 224 
strategies employed here to identify the extent of oxidation and use non-dust potassium as a 225 
confirmational analysis are key to avoid undercounting biomass burning contributions across the 226 
continuum of plume ages—both of which can be used in epidemiological studies (e.g., Fig. 3a). 227 
Thus, future studies across broader spatial scales, necessitate real-time metals measurements with 228 
corrections for other source types (e.g., dust) to effectively attribute low-level wildfire influences 229 
that appear as generic aged aerosols. Such measurements will also facilitate model validation to 230 
accurately attribute biomass burning influences, especially its likely increasing contributions to 231 
background aerosol levels, (Vasilakopoulou et al., 2023) which are increasingly important to 232 
accurately constrain with recent revisions to the PM2.5 annual U.S. standard.  233 

Currently, PM is the only air pollutant worldwide regulated without regard to chemical form. 234 
Epidemiological research clearly demonstrates that the chemical composition of PM impacts its 235 
risk to human health (Masselot et al., 2022). However, the characteristics of particles that are most 236 
harmful are not well established, though secondary, more-oxidized organic aerosols present likely 237 
exacerbating factors (Pye et al., 2021; Liu et al., 2023; Tuet et al., 2017). Moreover, the existing 238 
regulatory monitoring network typically used in epidemiological studies, which primarily 239 
measures PM2.5 total mass—with many PM2.5 components measured only via filters at 240 
approximately weekly or semi-weekly sampling frequency—does not fully capture PM’s chemical 241 
or spatiotemporal complexities. Although a growing number of health studies use modelled 242 
exposure estimates, the lack of speciated measurements in some areas hinders the full validation 243 
of such methods.  244 

While previous health studies differentiated source-specific events via PM2.5 concentration 245 
changes (e.g., Table S6), here, chemical composition measurements allowed us to exclusively 246 
target wildfire organic aerosols and evaluate source-based health effects. This can be further 247 
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enabled by long-term, continuous, and accurate monitoring of the speciated PM2.5 measured here 248 
(e.g., ASCENT network) in major populated areas to enable future epidemiological studies across 249 
different populations and health outcomes. The ensuing scientific evidence on which sources and 250 
chemical/physical particle characteristics (e.g., age, oxidation) are most harmful could aid 251 
effective decision-making to protect public health, especially as PM2.5 reductions have largely 252 
stagnated at levels with continued health risks (Hass-Mitchell et al., 2024; Weichenthal et al., 253 
2022). In addition to real-time PM speciation like that leveraged here, characteristics such as 254 
potential oxidative stress are not routinely measured in large-scale regulatory networks, further 255 
demonstrating the need for additional monitoring and subsequent health analysis. 256 

Additional pressing health-focused research needs include the effects of different fire types (e.g., 257 
fuel type, combustion conditions), downwind plume transformations (e.g., oxidation conditions, 258 
formation of secondary organic aerosols), key hazardous gas-phase co-pollutants (e.g., 259 
formaldehyde; Fig. S9), the impacts of multiple stressors (i.e., repeated exposure to wildfire smoke 260 
over multiple events), and different lag times (e.g., same day, weeks or months later). 261 

In all, these observations in summer 2023 clearly established a prominent role for wildfire smoke 262 
transport to NYC and other cities largely insulated from wildfire’s air quality impacts, with 263 
increases in exposure to be expected well beyond the populous Eastern U.S. Therefore, effectively 264 
achieving co-benefits for air, climate, and health during ever-expanding wildfire seasons that 265 
threaten to setback urban air quality necessitates holistic science and policies to capture the 266 
complex multipollutant emissions from wildfires. This includes its relative contributions to air 267 
pollution in the context of other sources, oxidative transformations in chemical composition, and 268 
multidisciplinary understanding of how these multifaceted pollutant mixtures, including aged 269 
aerosols, impact human health over the coming decades. 270 

Methods 271 

Study period selection 272 

The May 15 to June 13, 2023 study period included the major Quebec wildfire smoke transport 273 
episode (i.e., June 6-9), as well as several other smoke transport events spanning Western to 274 
Eastern Canada. Yet, equally important, this study period allowed us to focus on smoke-related 275 
contributions to less- and more-oxidized organic aerosol components prior to the onset of hotter 276 
summertime temperatures with more secondary organic aerosol contributions from other 277 
temperature-dependent sources and processes, as shown in prior work at the site (Hass-Mitchell et 278 
al., 2024). By using this study period, we were able to better isolate the contributions of oxidized 279 
transported smoke to the generic oxidized organic aerosol factors across the 5 different smoke 280 
events with reduced temperature-related influences compared to during the summer.  281 

Instrumentation, measurement, and field site details 282 

The ASCENT site is located at Queens College (40.74°N, 73.82°W, 16.2-16.6 m above sea level), 283 
in one of the New York State Department of Environmental Conservation (NYS DEC) air quality 284 
monitoring stations. It is situated on a college campus that is located near an interstate highway 285 
and surrounded by a mix of residential and commercial neighborhoods. ASCENT is a new, long-286 
term, advanced aerosol measurement network in the U.S. for advancing knowledge on the impacts 287 
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of aerosols on air quality, climate, human health, visibility, and ecosystems 288 
(https://ascent.research.gatech.edu/).  289 

The Aerodyne Time-of-Flight Aerosol Chemical Speciation Monitor (ACSM) equipped with a 290 
standard vaporizer PM2.5 aerodynamic lens was deployed to measure the mass concentration and 291 
chemical composition of organic, nitrate, ammonium, sulfate, and chloride aerosol 292 
components (Fröhlich et al., 2013; Ng et al., 2011b). The time resolution was set to 10 min per 293 
data point, switching between ambient and the filter sampling every 20 sec. Data was processed 294 
and analyzed with Tofware v3.3.0, operated in IgorPro 9.0.2.4 (Wavemetrics). The ionization 295 
efficiency (IE) for nitrate and relative ionization efficiency (RIE) for sulfate and ammonium were 296 
determined by atomizing ammonium nitrate and ammonium sulfate solutions into the ACSM.  297 

The Magee Scientific AE33 aethalometer was used to measure black carbon (BC) and brown 298 
carbon (BrC) concentrations. Optical absorption at wavelengths of 370, 470, 520, 590, 660, 880 299 
and 950 nm were measured at the time resolution of 1 min. Absorption at 880 nm was used to 300 
determine the BC mass concentrations, assuming a mass absorption cross-section coefficient of 301 
7.77 m2 g-1. BrC mass concentrations were estimated by subtracting BC from the total absorption 302 
at 370 nm and a mass absorption cross-section coefficient of 18.47 m2 g-1 is applied for the 303 
conversion. The Sailbri Cooper Xact 625i Ambient Continuous Multi-metal Monitor was used to 304 
measure trace metal concentrations at 1-hour resolution. 24 elements (Si, S, Cl, K, Ca, Ti, V, Cr, 305 
Mn, Fe, Co, Ni, Cu, Zn, As, Se, Cd, Sn, Sb, Ba, Pt, Hg, Pb, Bi) were measured via X-ray 306 
fluorescence (EDXRF) analysis. Scanning Mobility Particle Sizer (SMPS) was used to monitor 307 
size-dependent particle number and volume concentrations. The SMPS consists of an Electrostatic 308 
Classifier (EC, TSI 3082) and a water-based Condensation Particle Counter (WCPC, TSI 3789). 309 

The ACSM and SMPS shared an inlet and the AE33 and Xact each had dedicated inlets (5.2-5.6 310 
m above ground). ACSM, SMPS, and AE33 were outfitted with PM2.5 cyclones (3 and 5 lpm, 311 
respectively) and 1/2” OD stainless steel inlets with Nafion dryers to dry the particles (RH<35%). 312 
The Xact was equipped with a PM2.5 cyclone (16.7 lpm) and 1.25” ID aluminum inlet, followed 313 
by a heater to dry particles before the instrument. 314 

In addition to ASCENT instrumentation, a range of criteria pollutants were measured at the Queens 315 
College monitoring station. Ozone was measured via Teledyne API T400 ozone analyzer. Nitrogen 316 
oxides were measured using total nitrogen oxides (i.e., NOy) with an inlet mounted catalyst 317 
(Thermo Scientific Model 42i-Y NOy Analyzer) and NOx (i.e., NO + NO2) (Thermo Scientific 318 
Model 42i-TL TRACE Level NOx Analyzer). SO2 was measured via a Thermo Fisher analyzer 319 
(TEI 43i - TLE). Carbon monoxide (CO) was measured via a Thermo Fisher analyzer (TEI 48i - 320 
TLE). Formaldehyde was unavailable at the Queens College but was measured at the NYS DEC 321 
Bronx site via a Picarro G2307 Gas Concentration Analyzer. NYS Mesonet provided 322 
meteorological data collected via a Lufft V200A sonic anemometer (Brotzge et al., 2020).  323 

Identification of wildfire-influenced events and background periods 324 

Locations of active fires were identified using the Fire Detection and Characterization (FDC) 325 
product from NOAA’s Geostationary Operational Environmental Satellite (GOES) system. This 326 
system provides 10 min observations over the entire western hemisphere, with an automated active 327 
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fire product (at 2 km nominal spatial resolution) built primarily from mid-wave infrared and long-328 
wave infrared data.   329 

Smoke maps were retrieved from the NOAA/NESDIS Satellite Analysis Branch’s Hazard 330 
Mapping System (HMS), where analysts use GOES true-color imagery available during the sunlit 331 
period of orbit to outline smoke polygons. The system assigns qualitative labels of light, medium, 332 
and heavy based on the apparent opacity of smoke in the satellite images.  333 

144-hr long backward air-mass trajectories were calculated using the HYSPLIT model at a starting 334 
height of 500 m above sea level (Stein et al., 2015). Trajectories were calculated at 1 hr intervals 335 
between May 10, 2023 to June 16, 2023 using meteorological data from the GDAS (Global Data 336 
Assimilation System) archive, which has global, 3-hr, 1° latitude/longitude meteorological data at 337 
23 pressure surfaces between 1000 hPa and 20 hPa.  338 

For the purposes of enhancement calculations, two distinct background periods were chosen when 339 
there were no evident wildfire influences in the speciated PM data or from Hybrid Single Particle 340 
Lagrangian Integrated Trajectory (HYSPLIT) backward trajectories and smoke maps (Fig. S10). 341 
Still, the backward trajectories cover a broad regional background with similar back trajectories to 342 
several of the other smoke events, include similar local urban influences, and were not affected by 343 
rain events.  344 

Estimation of wildfire smoke plume transport times 345 

In addition to backward trajectory analysis, we performed forward trajectory analysis using GDAS 346 
meteorological data with the HYSPLIT model to estimate the distribution of transport times of the 347 
5 major wildfire smoke transport events (Fig. S2). 144-hr long forward trajectories were initialized 348 
from GOES fire detection points at three different heights (500, 1500, and 2500 m) to account for 349 
the effect of variabilities in burning conditions and meteorology on plume injection heights (Val 350 
Martin et al., 2010), following the methodology from Brey et al. (2018) For each wildfire smoke 351 
transport event window, points detected between 144 hr before the start of the event to the end of 352 
the event with fire radiative power (FRP) ≥ 250 were selected to construct a list of starting points. 353 
Trajectories were initiated at multiple start times to include forward trajectories over the day as 354 
burning conditions shift and to account for the influence of sunlight on fire detection. The start 355 
time of each trajectory was set to the nearest hour of fire detection time as well as every hour 356 
within ±12 hr of the fire detection time (i.e. 25 starting times per fire detection). Duplicate (latitude, 357 
longitude, start time) points were then removed from this expanded list of starting points before 358 
computing forward trajectories.  359 

Due to the physical, computational, and measurement limitations of the HYSPLIT model, the error 360 
in trajectory point location can range from 15% to 30% of the trajectory travel distance (Draxler 361 
and Rolph, 2007). To account for this error and retrieve the atmospheric age distribution of 362 
transported smoke reaching the measurement site, we included the transport time of trajectory 363 
points that distanced within 500 km from the site during the wildfire event window. This approach 364 
allowed us to capture both “fresh” and aged smoke reaching the site during each event window. 365 
The filtering and plotting of trajectory points was performed using the ‘simple features’ R 366 
package (Pebesma and Bivand, 2023).  367 
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Identification of dust and non-dust potassium 368 

While potassium is one of the most abundant metals in biomass burning emissions (e.g., 2-5% by 369 
particle mass) (Reid et al., 2005) and thus has been previously used as a tracer of wildfire 370 
events, (Andreae, 1983; Li et al., 2003; Sullivan et al., 2008; Pachon et al., 2013) it can also 371 
originate from mineral dust or coal combustion (if used in the study region). (Finkelman, 1999; 372 
Chow et al., 2003; Thorpe and Harrison, 2008) To apportion potassium from biomass burning, we 373 
performed linear regressions on potassium with other trace metals during background periods to 374 
estimate mineral dust potassium and subtract it. Five metals (Ca, Fe, Ti, Cu, Ba), which were 375 
confirmed to have weak correlations with potassium during the extreme smoke event (June 6-9 376 
Quebec wildfire smoke episode) (Fig. S11), were investigated as possible candidates for resolving 377 
mineral dust potassium. The ratios of these metals to potassium have also been utilized to identify 378 
different sources of mineral dust elsewhere (Liu et al., 2022; Apeagyei et al., 2011; Yu et al., 2018; 379 
Pachon et al., 2013).  380 

For all points measured during the background period, linear regression analysis was performed 381 
on potassium against each of the five selected metals to obtain unique site-specific prediction 382 
equations for the concentration of potassium from mineral dust (Fig. S12). Mean values of 383 
predictor metal species during each event were then used to estimate the corresponding mean 384 
amount of mineral dust potassium. The results of this approach in Fig. S13 show that when using 385 
the different predictor metals, the predicted concentration of mineral dust potassium remains 386 
similar across both the wildfire smoke events as well as the average potassium concentration 387 
measured during the background events. Contributions from coal combustion in our study region 388 
are expected to be minimal as U.S. coal combustion has undergone steep declines since 2008, and 389 
furthermore particle lead concentrations, which can be a coal combustion tracer (Yu et al., 2018), 390 
was only detected in 5.1% of hourly data points during the study period (MDL: 0.22 ng m-3). 391 

We note that trace metal species utilized for the background mineral dust estimation can be 392 
affected by other factors: resuspension of trace metals in soil by wildfires (Isley and Taylor, 2020), 393 
local activities, and other emission sources. Thus, the proper identification of background periods 394 
using meteorology and gas-phase/aerosol measurements alongside a comprehensive understanding 395 
regarding sources of metal emissions upwind of the measurement site is imperative for applying 396 
this approach.  397 

Source apportionment of organic aerosols via positive matrix factorization  398 

Positive matrix factorization (PMF) analysis was performed on the organic aerosol spectral matrix 399 
(m/z 12-100) obtained from the ACSM, using the PMF Evaluation Toolkit (PET v.3.08) to 400 
determine the source contributions of organic aerosol source types. PMF solves bilinear unmixing 401 
problems via a least-squares approach, which is based on a receptor-only multivariate factor 402 
analytic model. PMF deconvolves the organic aerosol data matrix as a linear combination of 403 
multiple factors with constant mass spectra while varying concentrations. PMF solutions are 404 
examined following the procedures in Zhang et al. (2011) The optimal solution was determined 405 
after examining the residuals of PMF fits, diurnal trends of each factor, known-tracer ion 406 
signatures of factor mass spectra, and correlations with external tracers. The rotational ambiguity 407 
of PMF solutions was examined by changing FPEAK. An FPEAK value of -0.2 was chosen based 408 
on the tracer ion signatures and correlation with external tracers. This solution resolved an aged 409 
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biomass burning organic aerosol (BBOA) factor that significantly contributed to organic aerosols 410 
from June 10 to 13, when the aged Quebec wildfire plume arrived after being transported over the 411 
Atlantic Ocean (Fig. S2). Using this solution, the aged BBOA factor included biomass burning 412 
tracer ions (m/z 60, 73) but with a greater extent of aging (e.g., higher f44 and OSc) than the fresh 413 
biomass burning factor (BBOA).  Additionally, the FPEAK = -0.2 solution better resolved HOA 414 
and COA factors with improved separation from the other factors, and a more typical COA and 415 
HOA temporal variation (e.g., diurnal patterns) and mass spectra for COA (i.e., f55/f57). Key 416 
diagnostic plots were shown in Fig. S14. 417 

We resolved six factors from the organic aerosols: more-oxidized oxygenated organic aerosols 418 
(MO-OOA), less-oxidized OOA (LO-OOA), BBOA, aged-BBOA (aBBOA), hydrocarbon-like 419 
organic aerosols (HOA), and cooking organic aerosols (COA) (Fig. S5). MO-OOA and LO-OOA 420 
were relatively more oxidized compared to the other factors and were differentiated by relative 421 
fractions of m/z 43 and 44 (Ng et al., 2011a). BBOA and aBBOA have enhanced signals at m/z 60 422 
and 73. HOA includes a morning commute maxima and enhanced signals at m/z 55 and 57. COA 423 
is determined by prominent signals at m/z 41 and 55 with a higher f55-to-f57 ratio than that of HOA 424 
with elevated concentration at around lunch and dinner times. Other than BBOA and aBBOA, the 425 
types of organic aerosol factors apportioned in this study are consistent with a previous study 426 
performed at the same location during the previous summer (without major wildfire 427 
activity) (Hass-Mitchell et al., 2024).   428 

Monte Carlo estimates of potential oxidative stress enhancements  429 

Potential oxidative stress enhancements for each of the five major wildfire smoke transport events 430 
were estimated via a Monte Carlo analysis (N=1×106) with input values adopted from multiple 431 
prior studies that utilized assay-based observations of oxidative stress associated with PMF-432 
derived source factors and/or degree of oxidation. Relative enhancements (%) for each event were 433 
determined by estimating the potential oxidative stress resulting from PM2.5 during each smoke 434 
episode (Eqn. 1) in comparison to that estimated during the average of the two background periods 435 
(Eqn. 2). We adopted a series of coefficients (αi,k) based on the findings of six different studies in 436 
the literature that attributed observed oxidative stress across organic aerosol source types or based 437 
on degree of oxidation (Table S7) (Liu et al., 2023; Daellenbach et al., 2020; Zhou et al., 2019; 438 
Tuet et al., 2017; Yu et al., 2022; Verma et al., 2015), and we employed them in the following 439 
equations.   440 

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 𝑂𝑂𝑥𝑥𝑃𝑃𝑥𝑥𝑃𝑃𝑃𝑃𝑃𝑃𝑥𝑥𝑃𝑃 𝑆𝑆𝑃𝑃𝑡𝑡𝑃𝑃𝑡𝑡𝑡𝑡𝑥𝑥,𝑖𝑖 =  ∑ (𝛼𝛼𝑖𝑖,𝑘𝑘𝑘𝑘 ∗ 𝑔𝑔𝑃𝑃𝑃𝑃𝑃𝑃𝑡𝑡𝑃𝑃(0.2) ∗ 𝑆𝑆𝑘𝑘)  (Equation 1) 441 

𝛥𝛥𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 𝑂𝑂𝑥𝑥𝑃𝑃𝑥𝑥𝑃𝑃𝑃𝑃𝑃𝑃𝑥𝑥𝑃𝑃 𝑆𝑆𝑃𝑃𝑡𝑡𝑃𝑃𝑡𝑡𝑡𝑡 =  𝑃𝑃𝑃𝑃𝑃𝑃𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝑆𝑆𝐸𝐸𝑆𝑆 #−𝑃𝑃𝑃𝑃𝑃𝑃𝐵𝐵𝐵𝐵𝐵𝐵𝑆𝑆𝐵𝐵𝐵𝐵𝑆𝑆𝐵𝐵𝐵𝐵𝐸𝐸
𝑃𝑃𝑃𝑃𝑃𝑃𝐵𝐵𝐵𝐵𝐵𝐵𝑆𝑆𝐵𝐵𝐵𝐵𝑆𝑆𝐵𝐵𝐵𝐵𝐸𝐸

  (Equation 2) 442 

Where Eqn. 1 sums the potential oxidative stress resulting from each smoke episode-averaged 443 
PMF factor (Sk) for each factor type k (e.g., MO-OOA), and i represents the randomly chosen (i.e., 444 
L’Ecuyer with added Bayes-Durham shuffle in IgorPro) literature scenario from Table S7, which 445 
contains the weighting coefficients for each PMF factor (αi,k) based on scenarios from each of the 446 
applicable studies. In each iteration of the Monte Carlo analysis, the potential oxidative stress for 447 
each PMF factor was estimated by multiplying the oxidative stress coefficients of each organic 448 
aerosol factor (αi,k) with uncertainty fitting ±20% Gaussian-distributed noise (gnoise(0.2)), which 449 
was multiplied by the episode-averaged organic aerosol contribution for each source factor 450 
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obtained via PMF analysis (Sk) (Table S3). Then, these values are summed (Eqn. 1) for both the 451 
smoke event and the background period and the relative difference was determined via Eqn. 2. 452 
Other uncertainty ranges spanning from ±10% to ±50% were tested and are shown in Fig. S8. 453 

This analysis was designed to be as inclusive of prior work and as possible, noting that prior studies 454 
on PM toxicity of organic aerosol source types/factors use different oxidative stress estimation 455 
methods and contain a varying mix of source factors. For example, the adopted literature 456 
coefficients from the literature used two different methods to measure the indicators of oxidative 457 
stress from PM exposure: acellular and cellular assays. Acellular (chemical-based) assays were 458 
used to measure oxidative potential (via dithiothreitol, ascorbic acid, and dichlorofluorescin 459 
assays) (Daellenbach et al., 2020; Yu et al., 2022; Verma et al., 2015) or intracellular/particle-460 
bound reactive oxygen species (via dichlorofluorescin assay) (Zhou et al., 2019). Meanwhile, 461 
cellular assays were used to measure both chemically and biologically generated reactive oxygen 462 
species (via alveolar macrophage assay) (Tuet et al., 2017; Liu et al., 2023). Furthermore, in prior 463 
work using ambient data (Daellenbach et al., 2020; Liu et al., 2023; Yu et al., 2022; Zhou et al., 464 
2019; Verma et al., 2015), multiple linear regression models were used (in those studies) to 465 
quantify associations (i.e., α) between observed oxidative stress and PM composition (e.g., PMF 466 
source factors derived from AMS data). Whereas, Tuet et al. (2017) examined oxidative stress as 467 
a function of degree of oxidation. They are all used here in Table S7 to provide the αi,k coefficients, 468 
which are normalized to avoid bias when cross-comparing across studies (i.e., secondary approach 469 
below). While the specific assays and methods vary across these studies, the units of αi,k represent 470 
quantity of oxidative stress per µg m-3 of a given PMF source factor (Sk). 471 

A Monte Carlo approach is specifically employed here given the uncertainties associated with 472 
estimating the potential oxidative stress from each of the smoke episodes based on the available 473 
studies. It is focused on the oxidative stress associated with the organic aerosols and does not 474 
include coincident enhancements of redox-active metals (i.e., Mn, Fe, Cu) (Table S4), which 475 
would likely increase estimates of the generation or reactive oxygen species (Liu et al., 2023; 476 
Lakey et al., 2016). Given the varying methods employed across the applicable prior work, the 477 
results of Monte Carlo analysis are presented as the percentage (%) enhancements and not as 478 
absolute enhancements. In a sensitivity analysis, we tested two different approaches for choosing 479 
potential oxidative stress coefficients across the studies. In the first and main approach (Fig. 3), 480 
the potential oxidative stress calculated in Eqn. 1 for background and wildfire periods were 481 
determined using the same scenario i in each Monte Carlo iteration. In the secondary approach, 482 
the potential oxidative stress for background and wildfire periods used randomly varying scenarios 483 
i in each Monte Carlo iteration. This second approach yielded consistent results with similar 484 
median values across the varying uncertainty cases (Fig. S8), and an expectedly broader spread in 485 
results given the study-to-study variations in methods, assays, and study designs.  486 

In all, the Monte Carlo analysis captures the enhancements in oxidative stress across the five 487 
wildfire events by mapping the cellular or acellular results from prior work to the observed source 488 
factors in this study. We acknowledge the prior studies have PM2.5 compositional differences 489 
relative to this work as most of the studies were not predominantly focused on oxidized biomass 490 
burning related organic aerosols and all were at different locations. Yet, our findings highlight the 491 
key role that oxidation plays in enhancing oxidative stress (consistent with Tuet et al. (2017) and 492 
Liu et al. (2023)) and emphasizes the uncertainty and important future reach priorities around the 493 
relative impacts of fresh vs. highly-aged biomass burning organic aerosols.     494 
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Epidemiological Analysis 495 

We evaluated the risks associated with the wildfire events over the course of the study period via 496 
investigating changes in the number of daily emergency department (ED) visits of asthma in NYC 497 
against the chemically-resolved PM data and source apportionment results. Temporal variations 498 
in biomass burning organic aerosols, the sum of smoke-related organic aerosol contributions 499 
(BBOA + aBBOA + LO-OOA + MO-OOA), and potassium were assessed as the exposures. The 500 
outcome variable was the daily asthma ED visits in NYC obtained from the EpiQuery – Syndromic 501 
Surveillance data, which provided data reported by 53 emergency departments in NYC to the New 502 
York Health Department (New York City Department of Health and Mental Hygiene. Epiquery - 503 
[Syndromic Surveillance Data 2023]. [Accessed on September 26, 2023). For each day, this 504 
surveillance provided nearly real-time data on the daily number of ED visits for target acute 505 
diseases until 2 prior days. The number of daily ED visits for asthma-related symptom (asthma, 506 
wheezing, complaint in airway, or chronic obstructive pulmonary disorder) from May 15 to June 507 
13, 2023 was classified into six age groups: all ages, 0–4 years, 5–7 years, 0–17 years, 18–64 508 
years, and ≥65 years. We applied a time-dependent model based on a generalized additive model 509 
as follows (Zeger et al., 2006; Bhaskaran et al., 2013): 510 

𝑃𝑃𝑃𝑃[𝐸𝐸(𝑌𝑌𝑡𝑡)]  = 𝛽𝛽0 + 𝛽𝛽1𝑃𝑃𝑡𝑡 + 𝛽𝛽2𝐷𝐷𝑂𝑂𝐷𝐷𝑡𝑡 + 𝛽𝛽3𝐹𝐹𝐸𝐸𝐷𝐷𝑡𝑡 + 𝑡𝑡(𝑇𝑇𝑃𝑃𝑇𝑇𝑃𝑃𝑡𝑡 , 4)  (Equation 3) 511 

Where ln[E(Yt)] is the expected number of age-specific asthma ED visits on day t, β0 is the model 512 
intercept, and Pt is concentration of the input parameter (i.e., separate models for K, BBOA only, 513 
and BBOA + aBBOA + LO-OOA + MO-OOA) on day t. The models considered potential 514 
confounding effects from temporal trends (Timet), day of the week (DOWt), and federal holidays 515 
(Fedt). A natural spline function with 4 degrees of freedom (df) was applied for the temporal trend. 516 
The risk estimation was represented as the estimated percent change of daily number of ED visits 517 
for an interquartile range (IQR) increase in concentration of exposure (i.e., [exp(IQR*β1)-1]*100). 518 
The models were also separately applied for each age group.  519 
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 1066 

 1067 
Fig. 1. Air quality impacts from smoke transport to New York City. (A) Hourly fine particulate matter (PM2.5) 1068 
concentrations (i.e., sum of organic, inorganic, black carbon, and trace metals), with organic aerosols and black carbon 1069 
concentrations shown across five major smoke transport events, including the June 6-9, 2023 transport of Quebec 1070 
wildfire smoke. (B) Summary of plumes from May 15 to June 13, 2023, with more detailed descriptions of each 1071 
episode’s origin, arrival, and wind roses in Fig. S2 and S3. (C) June 6-9, 2023 enhancements of organic and inorganic 1072 
(i.e., nitrate (NO3), sulfate (SO4), ammonium (NH4), black carbon) particulate matter components and associated trace 1073 
metals, relative to non-fire influenced periods (Note: total mass fraction in yellow wedge of left pie chart is speciated 1074 
in the right pie chart). (D) Submicron size distributions of particle number concentrations during June 6-9, 2023, 1075 
compared to non-wildfire periods. 1076 
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 1078 

Fig. 2. Transported smoke observed predominantly as generic aged organic aerosols with the fraction of evident 1079 
biomass burning-related organic aerosols varying between fire events. (A) The influence of transported smoke 1080 
detected across different aerosol types (i.e., factors) observed as both directly-emitted biomass burning organic 1081 
aerosols and oxidized organic aerosol types with (B) increasing average oxygen-to-carbon ratios (O:C) and oxidation 1082 
states (OSc), which together capture the contributions of organic aerosols from transported smoke during the study 1083 
period. (C) The sum of smoke-related enhancements in these four organic aerosol types were best correlated with non-1084 
dust potassium, during June 6-9, 2023 and the other smoke events. Black dashed lines signify the 2σ range of μg μgK-1085 
1 ratios during all wildfire smoke transport episodes. Contributions of cooking- and hydrocarbon-related organic 1086 
aerosols can be found in Fig. S5. 1087 
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 1090 
Fig. 3. Observed health effects associated with smoke transport and potential oxidative stress enhancements 1091 
across study period. (A) Observed association between asthma emergency department (ED) visits and smoke-related 1092 
organic aerosols (i.e., sum of 4 factors) as well as non-dust potassium as a confirmational marker of both “fresh” and 1093 
aged smoke. Epidemiological results shown as the % change in ED visits for an interquartile range increase in 1094 
concentrations with vertical lines displaying 95% confidence intervals. (B) Estimates of potential oxidative stress 1095 
enhancements (left axis) for each of the 5 smoke transport events compared to background conditions, determined via 1096 
Monte Carlo analysis (N=1×106) using available studies. Shown alongside the concentration-normalized potential 1097 
oxidative stress enhancement (right axis) with more-aged smoke showing greater potential oxidative stress per organic 1098 
aerosol mass, on average, for the episodes outside of June 6-9. 1099 
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