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Abstract 

Modern materials design strategies take advantage of the increasing amount of materials 

property data available and increasingly complex algorithms to take advantage of that data. 

However, viscoelastic materials resist this trend towards increased data rates due to the very 

material time-dependence that should be measured. Therefore, viscoelasticity measurements 

present a roadblock for data collection in an important aspect of material design. 

For thermorheologically simple materials, time-temperature superposition (TTS) has for many 

years provided a method to accelerate relaxation spectrum measurements relative to, for 

example, very long creep experiments. However, TTS itself currently faces a speed limit 

originating in the common logarithmic discrete frequency sweep (DFS) mode of operation. In 

DFS, measurement time is proportional (by a factor much greater than one) to the lowest 

frequency of measurement. This state of affairs has not improved for TTS for half a century or 

more. 

We utilize recent work in experimental rheometry on windowed chirps to collect three decades 

of complex modulus data simultaneously. Furthermore, the three-decade chirp response is 

recorded in the time it would take to collect only the lowest frequency data point of a traditional 

DFS experiment, resulting in a 500% speedup in data collection. In BOTTS, we superpose 

several isothermal chirp responses to produce a master curve in a fraction of the time of the 

traditional DFS-TTS technique. The chirp responses have good, albeit nontrivial, signal-to-noise 

properties. We use linear error propagation and a noise-weighted least squares approach to 

automatically incorporate all the data in a reliable shifting method. Using model thermoset 

polymers, we show DFS-TTS and BOTTS results are comparable, and therefore BOTTS data 

represent a first step towards a fast, reproducible method for master curve generation from 

existing rheological measurement instruments. 
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Introduction and Background 

To “Harness the Power of Materials Data” is a primary goal of the 2021 Materials Genome 

Initiative Strategic Plan.1 This goal includes the application of data hungry methods to ever-

larger data sets for the purpose of extracting new insights about material structure-processing-

property relationships and thereby accelerating material development. However, datasets for 

some fundamental material properties – including viscoelastic properties – remain 

simultaneously (i) sparsely scattered throughout the literature and (ii) difficult and time-

consuming to produce, which creates a bottleneck that hinders wide-spread consistent archival 

of FAIR materials data. In this paper we provide an improved pathway towards resolving 

obstacle (i) and address obstacle (ii) directly. 

Realistic simulations of property and performance for polymer-based materials and composites 

are essential for current industries2–6 and also are poised to enable a revolution of application-

oriented material design ranging from aerospace structures to energy storage materials to 

implant customization.7–9 A robust and reliable library of the core time- and temperature-

dependent polymer material properties is urgently needed to ensure sufficient accuracy of 

integrated multi-scale simulations for data driven material design.10,11  

For example, Iyer, et al.12 pursue optimization of a nanocomposite maximizing dielectric 

breakdown strength while minimizing dielectric permittivity and dielectric loss using finite 

element simulations and Bayesian optimization via Gaussian process regression. To undertake 

the simulations, the frequency dependent properties of polymers are required as one key input. 

Their work used only 3 polymers for the machine learning models, limited by the availability of 

sufficiently accurate data for both polymer and composite properties. This and similar other 

studies would be able to cover a much larger design space if a full suite of robust viscoelastic 

properties were readily available for polymers and their composites.13,14   

For the most common polymer materials, simple scalar properties such as room temperature 

elastic modulus, or glass transition temperature can be found in collected works15,16 and 

databases,17–19 but the vast majority of material data is held in unstructured papers and 

manuscripts many of which are not in machine-readable form. For many subfields, useful data 

may not even exist at all,20 or if it does exist, it rarely contains complete and reproducible 

descriptions of the experimental and computational methods used to collect those properties. 

Time- or frequency-dependent polymer mechanical property measurement is an especially 

egregious example of such a subfield, as these properties are essential for engineering 

components in key applications such as structural aerospace components, medical implants, 

and energy storage. 

A viscoelastic master curve, created by superposing complex modulus data collected by 

rheometry (for liquids) or dynamic mechanical analysis (DMA, for solids) at several 

temperatures,21 is the usual form that frequency-dependent polymer behavior is included in 

engineering component design. The best and most completely specified master curves we have 

identified in the literature22–24 are from scientific papers focused narrowly on the process of 

generating master curves themselves. In the general literature, there are significant limitations 
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on the reported viscoelastic properties for polymers and composites in (a) the limited time or 

frequency range of isothermal measurement and (b) the apparent drift of material properties 

over time due to instrumental and experimental issues, both of which are a consequence of 

slow data acquisition. This paper addresses these shortcomings by directly tackling the time 

consuming, error prone and often highly manual generation of high-quality viscoelastic property 

data for polymers and composites. Specifically, we introduce a rapid method that can be 

implemented on standard laboratory instrumentation to collect the temperature-dependent 

complex modulus data for thermorheologically simple materials. This work will enable collection 

an extensive set of viscoelastic data for a range of polymers and composites for archival into an 

accessible materials data resource such as MaterialsMine,17 opening the doors to other 

researchers to access the array of thermomechanical property data for their own design studies. 

TTS and current limitations 

Traditionally, time- and temperature-dependent mechanical properties of a polymeric solid are 

obtained using DMA which has two fundamental operating modes: i) a temperature sweep at 

fixed frequency and ii) a frequency sweep at fixed temperature.25 The temperature-dependent 

properties are the fastest to obtain, but are valid only at the specific frequency of measurement. 

It has long been observed that curves of the instantaneous modulus as a function of time or 

frequency for many polymers retain their shape as the temperature is changed, simply shifting 

left or right along the log time or log frequency axis. This observation forms the core principle of 

the time-temperature superposition (TTS) principle.  

TTS is typically implemented in practice as a frequency-temperature superposition using DMA 

frequency sweeps (over ~2-3 decades of frequency) that yield the storage and loss moduli over 

a range of fixed temperatures that span the glass transition temperature. These curves at each 

temperature can be superposed, for thermorheologically simple materials, via shifting on the 

logarithmic frequency axis, to obtain shift factors, aT, defining the “master curve” of the 

properties over a large frequency/time domain, spanning from rubbery to glassy behavior of the 

polymer (tens of decades of frequency).25 Such master curves are an invaluable input for large 

scale design and optimization of new polymers and composites for applications with targeted 

design parameters. Details on TTS theory can be found in Honerkamp and Weese.22 While TTS 

provides a powerful method to accelerate attainment of full spectral viscoelastic response, it 

remains still a very time consuming and manual process.  

The limiting factor of master curve generation is in the collection of the “frequency sweep” data, 

which in practice consists of many sequential, discrete frequency steps, with a finite residence 

time at each oscillation frequency (Figure 1, top). The ensemble discrete frequency sweep 

(DFS) data is collected at a constant temperature, and then the collection is repeated for many 

specific temperatures to perform TTS (collectively, DFS-TTS). A typical mode of operation is to 

capture log-spaced sinusoidal data at each frequency for 1.5 cycles or 5 seconds, whichever is 

longer. Accordingly, a frequency sweep from 0.01 Hz to 10 Hz at 10 points per decade will take 

~17 minutes, with the lowest 3 frequencies consuming almost half the running time. In contrast 

with this slow data acquisition rate, the force and strain transducers sample at perhaps 500 Hz. 

This drastic reduction of information (500 Hz to ~1/30 Hz on average) is the natural 
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consequence of the traditional, single-frequency (“narrowband”) methods. However, there are 

some techniques that have been deployed to achieve mechanical spectroscopy at multiple or 

even many simultaneous frequencies (“broadband”) and thereby reach the information 

collection potential of advanced rheometers and DMAs. (Figure 1, bottom) 

 

Figure 1. Synthetic stress strain response from a Maxwell material with relaxation time 0.5 s. Strain 

curves are blue and use the left y-axis. Stress curves are orange and use the right y-axis (Top) Sinusoidal 

strain response at 0.1, 0.2, 0.5 Hz (left to right.) (Bottom) Exponential chirp response from 0.05 Hz to 5 

Hz. Information from shaded chirp regions approximately corresponds to the sine response indicated by 

arrows. 

Broadband DMA techniques 

Optimal Fourier Rheometry26 (OFR) is a method which is broadly suitable for broadband 

mechanical spectroscopy and improved over earlier broadband techniques like Fourier 

Transform Mechanical Spectroscopy27 (FTMS or MultiWave (MW)) and I-Rheo28 because it 

uses a broadband mechanical strain impulse (a “chirp”) with (a) a consistent maximum 

mechanical strain input to avoid escaping the linear regime and (b) a 1/fɑ power spectrum 

(sometimes called a “pink” spectrum) to maintain signal-to-noise ratio (SNR) at low 

frequencies.26,29 The OFR method has been used to measure the linear viscoelastic (LVE) 

properties of alginate during the process of gelation, minimizing interference in the 

measurement of the material’s property changes (“mutation”) over time.  Optimally Windowed 

Chirps29 (OWCh) minimize error from both signal attenuation and spectral leakage due to abrupt 
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strain changes at the ends of rectangular windowed chirp, the latter being particularly relevant in 

the context of TTS as the periodic structure of the leakage artifact29 makes it hard to identify a 

single best shift factor. OWCh has been deployed for the measurement of viscoelasticity during 

casein gelation.29 OFR and OWCh represent a significant improvement in viscoelastic property 

characterization over other approaches because they provide a platform for time-optimal 

complex modulus measurements although only in fluids and only for time limited applications. 

To our knowledge, optimally windowed chirps have yet not been implemented with DMA for the 

purpose of rapidly acquiring master curves of solids by TTS. Therefore, an enormous potential 

exists to adapt this approach to improve and accelerate master curve generation for 

thermorheologically simple solid viscoelastic materials. 

BOTTS 

In the present work, we outline our new approach, Broadband Optimized Time-Temperature 

Superposition (BOTTS), which adapts broadband excitations to fully utilize the capabilities of 

existing rheological measurement instruments for the rapid collection of viscoelastic material 

properties from macroscale solid specimens in standard DMA instrumentation. We show that 

our method accelerates master curve data acquisition in DMA for viscoelastic solid polymers by 

500%. We demonstrate on a model material that superposition of storage and loss moduli 

recorded via broadband chirps at different temperatures is achievable in theory and in practice. 

Using mutually consistent experimental protocol and superposition algorithm, we compare and 

contrast master curves and shift factors as generated by DFS-TTS and BOTTS for our model 

material, to show the output of both techniques are comparable, and therefore BOTTS is 

comparable to the existing methods while being five-fold faster. 

Materials and Methods 

Photopolymer Resin PT 

Oxygen-tolerant thiol-ene resins with narrow loss tangent peaks were synthesized according to 

Nair.30 All components were purchased from Milipore-Sigma and used as received. Thiol 

crosslinker pentaerythritol tetrakis(3-mercaptopropionate) (PETMP) was mixed in stoichiometric 

ratio with allyl crosslinker 1,3,5-triallyl-1,3,5-triazine-2,4,6(1H,3H,5H)-trione (TATATO) or 

pentaerythritol allyl ether (APE). The PETMP-TATATO resin (PT) was stabilized with 0.1% 4-

Methoxyphenol (MEHQ) by mass, which was mixed on a 40 °C stirrer plate until dissolved. The 

stabilized resin was photosensitized by mixing 1% 2-Hydroxy-4′-(2-hydroxyethoxy)-2-

methylpropiophenone (D2959) by mass on a 40 °C stir plate, protecting from ambient light by 

wrapping the vial in foil, overnight or until fully dissolved. 

PT resin was poured into a Sylgard 184 (Dow) silicone mold for 8x2x40 mm bar specimens and 

cured in air under 256 nm light for 30 minutes in an Asiga Flash curing oven and post-cured at 

65 °C overnight in a Shel Lab vacuum oven to maximize photosensitizer conversion. 

https://doi.org/10.26434/chemrxiv-2024-ws426 ORCID: https://orcid.org/0000-0002-8944-8076 Content not peer-reviewed by ChemRxiv. License: CC BY-NC-ND 4.0

https://doi.org/10.26434/chemrxiv-2024-ws426
https://orcid.org/0000-0002-8944-8076
https://creativecommons.org/licenses/by-nc-nd/4.0/


Epoxy Resin DI 

All components were purchased from Milipore-Sigma and used as received. Epoxy monomer 

2,2-Bis[4-(glycidyloxy)phenyl]propane (Diglicydyl ether of bisphenol A, DGEBA) with epoxide 

equivalent weight 172-176 g/mol was mixed in stoichiometric ratio with 5-Amino-1,3,3-

trimethylcyclohexanemethylamine (Isophorone Diamine, IPDA) having amine hydrogen 

equivalent weight 42.5 g/mol to form DGEBA-IPDA resin (DI).  

DI resin was poured into a Sylgard 184 (Dow) silicone mold for 8x2x40 mm bar specimens. The 

mold and resin were placed in a Shel Lab vacuum degassed for 10 minutes under vacuum at 80 

°C, then allowed to cure at ambient pressure according to the following automatic temperature 

profile: soak 1 h at 80 °C, ramp to 180 °C over 1 h, soak for 2 h at 180 °C, end (disable heater 

and passively return to ambient temperature). 

DMA 

All dynamic mechanical analyses were performed on an RSA-G2 (TA Instruments) with forced 

convection oven using the 25 mm 3-point bend geometry. Bar specimens were trimmed and 

shaped with 180 grit sandpaper where necessary. Autotension was used to adjust the gap to 

maintain a static “compression” force of 0.2 N. Strain sweeps were performed in the rubbery, 

glassy, and glass transition regimes of all materials to verify linear viscoelastic (LVE) behavior. 

Prior to any DFS or BOTTS temperature sweep, a temperature ramp was performed using the 

oven attachment with air, at -5 °C/min measuring cyclic response at 1 Hz with Autostrain 

maintaining an oscillation force of 0.01 N to 0.015 N across the glass transitions. This was done 

to reset specimens to a consistent thermal history and collect (or double check) approximately 

optimal strains for good signal-to-noise ratios at all temperatures of interest. Strains varied from 

0.001 to 0.1. 

Discrete Frequency Sweeps 

All frequency sweeps were performed within a single “Temperature sweep” step in TRIOS 

software, which is a combined step that automatically holds a sequence of evenly spaced (we 

consistently selected 5 °C apart) temperatures. Between each step, we use an isothermal, 

static, Autotension-active delay (pre-soak) time set to 120 seconds to allow for heat transfer to 

the specimen and three-point bend tooling. The pre-soak is followed by the main isothermal 

frequency sweep step, a sinusoidal (i.e., DFS) measurement of complex modulus across 

frequencies from 0.014 Hz to 14 Hz at 10 discrete frequencies per decade.   

Windowed Chirps 

The broadband mechanical impulse (or “chirp”) is a finite time, non-sinusoidal applied strain that 

causes mechanical deformation at many effective frequencies simultaneously. For information 

on the properties of chirps and the importance of windowing functions, we refer readers to 

Ghiringhelli26 and Geri29, respectively. The definition for the padded, inverse-Gaussian-

windowed, exponential strain chirp used in the rest of this work is: 
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 (1) 

Here, ε0 is the requested nominal strain amplitude, t is the time from the start of the overall 

arbitrary wave, p is the time of the zero strain padding before and after the chirp, T is the total 

length of the windowed chirp steps (i.e., 2p less than the total data collection time), r is the width 

parameter of the gaussian window function, ⍵1 is the lowest requested frequency in radians per 

second, and ⍵2 is the highest requested frequency in radians per second.  The Tukey-

windowed chirp of Geri, et al.29 is not used here due to technical software constraints as 

explained in the next section. 

BOTTS Implementation 

These chirps are implemented in the TRIOS (TA Instruments) “Arbitrary wave” step, being 

careful to observe an intrinsic 80-character limit on the length of the equation string. To achieve 

constant temperature experiment, the temperature field for each equation was set to the overall 

step temperature setpoint. The exact input strings are: 

Wave 1: 0 1.0 

Wave 2: X.Ye-Z*(1-EXP(-(((t-1)/210*62.832)^2)))*SIN(.71821*(EXP(.04166*(t-1))-1)) 105.0 

Wave 3: X.Ye-Z*(1-EXP(-((((t-1)/210-1)*62.832)^2)))*SIN(.71821*(EXP(.04166*(t-1))-1)) 105.0  

Wave 4: 0 1.0 

and should be compared to Eq. 1 with the values p = 1 s, T = 210 s, r = .05, ⍵1 = .03 rad/s, and 

⍵2 = 188.5 rad/s, which we use consistently in this work. The new “variables” x, y, and z are 

single digits that form a “scientific notation” encoding for ε0 which varies by temperature and 

material. The sampling rate is set to 500 Hz in all cases, although the TRIOS software 

automatically reduces the sampling rate when the number of points per “arbitrary wave” would 

exceed an intrinsic limit of 32768, so we observe an effective sampling rate of 156.78 Hz. This 

also caps our theoretical dynamic range at 4.2 decades of frequency. 

Because there is an intrinsic 4-piece limit to the piecewise function definition slots available in 

the TRIOS Arbitrary Wave step, the padding steps before and after the chirp require our chirp to 

be completely defined within the remaining two available steps. However, the 80-character limit 

prevents us from including multiple windowing factors in a single step leading to our two-part 

piecewise definition here. These limits prevent us from using the Tukey window as in Geri, et 

al.29 as the definition of that chirp requires three of the four available steps. 

Data Processing and Fitting 

We exported data from Trios in `.xls` format and read it using Python packages Pandas and 

xlrd. DFS data needed no further processing. For BOTTS, we used the padding steps to reliably 

detrend the chirp response before Fourier analysis. Detrending is a common signal processing 
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technique to suppress noise and ringing artifacts from low frequency drifts,31 and in this 

application we used it to mitigate spurious strain drift – apparently originating in thermal drift due 

to finite temperature soak delay. Due to an instrumental artifact, we discard the first 0.5 s of 

data. The second 0.5 s and the last 0.5 s of stress and strain data are fit to determine and 

subtract a linear detrending function for each. The detrended data from 0.5 s to 212 s were 

transformed using rfft provided by NumPy.32 The ratio of the resultant complex stress and strain 

arrays formed the complex Young's modulus used for TTS. 

We used the bounded version of Brent’s method for scalar minimization33 to optimize the shift 

factor between each adjacent pair of isothermal data series. For the objective function, we used 

the variance weighted sum of squared residuals from independent 10th order weighted 

polynomial fits to storage and loss moduli against log(frequency). This is comparable to the 

method of Honerkamp and Weese22 except we estimate shifts pairwise and do not apply the 

logarithmic transform to the modulus data. 

We performed Prony series regressions against master curves at two relaxation modes per 

decade plus an extra plateau modulus mode with ElasticNetCV from scikit-learn34 using 

parameters  

ElasticNetCV(cv=RepeatedKFold(n_repeats=3), l1_ratio=.02, n_alphas=10, eps=1e-30, positive=True, 

fit_intercept=False, max_iter=10000, selection='random') 

which produced Prony coefficients practically comparable to sign-controlled Tikhonov-

regularized fits,21,35,36 but with additional L1 regularization and an interface which automatically 

selects the regularization hyperparameters through cross-validation. 

Data and Code Availability 

DMA data (TRIOS “.tri” and “.xls” formats) and code to generate the plots in this work from that 

DMA data or your own data generated from appropriately configured TRIOS experiments are 

available at github.com/richardsheridan/ChirpPy. 

Results and Discussion 

In this section, we first demonstrate, using data from two different polymers, both the traditional 

DFS data acquisition method for viscoelastic moduli and the new broadband BOTTS approach, 

highlighting the acceleration of data acquisition. This data acquisition acceleration occurs as the 

frequency dependent modulus data is obtained at each independent temperature. We then 

review the traditional method for TTS using DFS and present how TTS is performed in the 

BOTTS approach, where a consistent weighting of the chirp data is utilized. Finally, we compare 

the data sets for the complete viscoelastic master curve products of the traditional DFS-TTS 

and BOTTS approaches, showing that the new accelerated method achieves high quality 

consistent VE modulus data.  
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Comparing Broad- and Narrowband Modulus Data Acquisition 

To demonstrate the relative data quality of our new chirp-based BOTTS technique to that of 

traditional DFS-TTS (narrowband), we compare three decades of isothermal frequency data at 5 

°C intervals from 30 °C to 90 °C obtained from the traditional DFS technique and the new 

technique on the same PT polymer specimen (Figure 2). The experimental settings were 

deliberately chosen to be as similar as possible for the DFS and BOTTS methods; identical 

specimens, quench rates, temperature steps, soak times, and strain amplitudes. Since the DFS 

data is collected one frequency at a time, the constant temperature measurement process at 

each step lasts 1038 seconds. In comparison, the strain chirp induces a material response at 

many frequencies simultaneously, and our instrument collects three decades of frequency data 

in only 212 seconds, a five-fold improvement in throughput during the data collection step. As 

can be seen in Figure 2, the resultant storage and loss modulus data from DFS and exponential 

chirps are very similar at each temperature, although they have important quantitative 

differences. 

 

Figure 2. Comparison of log-spaced direct frequency sweep (DFS) (Left) and broadband chirp (Right) 

approaches to temperature-dependent modulus measurement. While storage and loss moduli match 

between approaches in terms of magnitude and frequency trend at each TM, data density and variance 

differ. 

The first difference is that the modulus data from the BOTTS method is linearly, and much more 

densely, sampled in frequency. While this dense sampling is an inevitable consequence of 

capturing more information from the experiment, it also increases computational requirements 

for data storage and viscoelastic analysis. It may be practical to create logarithmically spaced 

bins to represent average complex modulus behavior more efficiently in the case of high 
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dynamic range chirps, but in this work, we never reach a dataset size where this step was 

necessary, and working with the unbinned data makes handling uncertainty more 

straightforward.  

The second difference is the significant spread in the data for measurements at high frequency 

in the broadband data. While at first blush the spread in the data seems to add uncertainty, in 

fact we can use the dense data sampling together with a high-quality estimate of the noise 

variance to create a precise estimate of the true underlying complex modulus. DFS data is often 

treated as having a constant relative error,24 and often with an arbitrary scaling factor. 

Broadband data is derived from a Fourier transform, so the noise floor can be estimated through 

the power at frequencies well above the highest requested chirp frequency ⍵2. Then, a linear 

propagation of a theoretical frequency-independent noise through the complex modulus 

calculation produces an estimate of the noise spectrum. The ratio of storage modulus to error is 

always above 10, but the ratio of loss modulus to error at high frequencies in the elastic cases 

can drop well below that threshold, as shown in Figure 3. Consequently, scatter appears in the 

loss modulus while storage modulus remains tight. Details of the data sampling and error 

propagation are in the Appendix. Despite the presence of this scatter, we will demonstrate in 

upcoming sections that the presence of this scatter need not interfere with the generation of 

master curves and shift factors. 

 

Figure 3. Complex Young’s modulus magnitude over propagated error “Signal-to-Noise Ratio” (SNR) for 

chirps on PT resin at each temperature. 
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Superposition of Broadband and Narrowband Modulus Data 

The graphical superposition on a logarithmic plot of modulus data from different temperatures is 

essentially an assertion of the statement 

𝐸𝑇
∗(𝜔) = 𝑏𝑇𝐸𝑅

∗(𝑎𝑇𝜔),  (2) 

where 𝐸𝑇
∗(𝜔) is the frequency dependent complex modulus at temperature 𝑇 and 𝑎𝑇 and 𝑏𝑇 are 

the horizontal and vertical shift factors, respectively. If the statement holds, the material is 

considered thermorheologically simple (TRS). 𝐸∗can be generally described by a sum of 

Maxwell elements, sometimes called a Prony series 

𝐸∗(𝜔) = ∑ 𝐸𝑘𝑖𝜔𝜏𝑘
1−𝑖𝜔𝜏𝑘

1+(𝜔𝜏𝑘)
2𝑘 ,  (3) 

which is valid in the linear viscoelastic (LVE) regime. Importantly, combining the shift factors 

with this Prony series representation shows 

𝐸∗(𝜔) = ∑ 𝑏𝑇𝐸𝑘𝑖𝑎𝑇𝜔𝜏𝑘
1−𝑖𝑎𝑇𝜔𝜏𝑘

1+(𝑎𝑇𝜔𝜏𝑘)
2𝑘 , (4) 

meaning each individual Maxwell element experiences uniformly a factor of 𝑏𝑇 more apparent 

strain and a factor of 𝑎𝑇 higher apparent frequency at 𝑇 compared to the reference temperature 

when subjected to the same actual sinusoidal strain. TRS materials can be thought of as having 

a one-to-one correspondence of a molecular-scale relaxation and a Maxwell element. 

In the case of the DFS technique, the application of the above is straightforward. A constant 

temperature is held, a sinusoidal strain is driven at each frequency 𝜀(𝜔), the initial unsteady 

state is discarded, and the lagged sinusoidal stress is recorded, containing the sum of the 

influence of each Maxwell element at that frequency. The complex modulus is calculated by 

measuring the phase lag, 𝛿(𝜔), and stress magnitude, 𝜎(𝜔), to further calculate |𝐸∗| = 𝜎/𝜀 and 

converting to its real and imaginary components, 

𝐸∗(𝜔) = |𝐸∗|𝑐𝑜𝑠(𝛿) + 𝑖|𝐸∗|𝑠𝑖𝑛(𝛿) = 𝐸′(𝜔) + 𝑖𝐸′′(𝜔),  (5) 

where 𝐸′(𝜔) and 𝐸′′(𝜔) are the storage and loss moduli respectively.25  At the next temperature, 

this is all repeated and, for TRS materials, all the elements experience shift factors at each 

temperature that are frequency independent. This renders the curves for 𝐸′(𝜔) and 𝐸′′(𝜔) 

superposable, and the superposition of these curves via the shift factor, 𝑎𝑇(𝑇), yields the master 

curve for the polymer at the chosen reference temperature. 

In the case of a broadband excitation as in BOTTS, there is an arbitrary strain function that 

obscures the connection of the stress function to the Prony series representation. Fortunately, 

we have already assumed LVE above, so we can rely on its property of frequency orthogonality. 

Therefore, taking the Fourier transform of the stress and strain, we generate a representation of 

all the component sines and cosines that compose our broadband impulse and response. Then, 

as the waves form an orthogonal basis, we can consider each of the components individually, 

applying the same logic as in DFS when interpreting the data and when superposing two 
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curves. The only difference here is that we have digitally isolated the response at each 

frequency instead of through our choice of driving function.  

To demonstrate the practical superposition of broadband frequency response data, the storage 

modulus 𝐸′ of PT resin obtained by Fourier transform of a windowed chirp and its response at 

both 55 °C and 60 °C are displayed along with a shifted display of the 60 °C data in Figure 4. 

The shifted modulus data overlaps well over the entire two decades of frequency the series 

have in common. This overlap is empirical evidence suggesting that BOTTS will work as a basis 

to form a master curve. 

 

Figure 4. Broadband Storage Young’s Modulus of PT resin at 55 °C (blue) and 60 °C (orange) and 60 °C 

data shifted by a factor of 10 (green). Overlap of the green and blue data indicates a high-quality shift. 

Although it is straightforward to superpose the broadband curves “by eye,” we wish to provide a 

consistent basis to compare the performance of the BOTTS and DFS-TTS in recovering shift 

factors and master curves. Therefore, we follow the method of Honerkamp and Weese22 to fairly 

and reproducibly shift the data. Our specific implementation optimizes only horizontal shifts 

pairwise between adjacent isothermal measurements by minimizing the χ2 score of weighted 

polynomial fits of E’ and E’’ simultaneously (see Methods for details). A joint optimization of 

horizontal and vertical shifts is possible, but global optimization of the 2D system is fraught and 

slow,24 and was unnecessary to produce satisfactory results for the purposes of this work. 

Quantifying the joint uncertainty of BOTTS-derived horizontal and vertical shift factors will be the 

subject of future research.  
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Master Curves from BOTTS and DFS-TTS  

The result of performing BOTTS on PT resin data from Figure 2 and Figure 3 is a master curve 

spanning 12 orders of magnitude in frequency with a single, relatively sharp, glass transition. 

Heeding Winter’s admonishment to check that master curves are Kramers-Kronig consistent,21 

we overlay the BOTTS master curve with a Prony series fit in Figure 5, observing good 

agreement between the fit and the data, supporting the physical validity of BOTTS. The large 

number of data points we obtain from transforming chirps means the uncertainty of the model fit 

is substantially smaller than the spread of the data. 

 

Figure 5. BOTTS of PT resin data shifted horizontally by the pairwise polynomial strategy. Prony series fit 

(with bootstrapped central 90th percentile band) overlays well, showing the resulting master curve is 

physically reasonable. 

To compare master curves and shift factors produced from BOTTS and DFS-TTS, we collected 

PI viscoelastic response from both techniques over the same range of frequencies and 

temperatures (see Figure 2) and subjected them to our automatic shift algorithm. As a baseline, 

we also generated shifts and a master curve from the same DFS data using the closed, 

commercial TRIOS TTS feature. The superposed storage moduli and shift factors from each are 

visualized together in Figure 6. 
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Figure 6. (A) Storage modulus curves and (B) horizontal shift factors for master curves from pairwise 

BOTTS (blue circles), pairwise DFS-TTS (orange plus), and DFS-TTS derived from the commercial 

TRIOS software. The reference temperature 55 °C is indicated with a dashed line. 

BOTTS and DFS-TTS seem to have a similar range of validity, as the high and low frequency 

tails of the data in the glassy and rubbery regimes have increasing scatter between techniques 

with distance from the reference temperature Tref=55 °C. (As with any superposition, the shift 

factors are unity at the reference temperature.) To shift the tail regions is an intrinsically ill-

posed problem, as the storage moduli plateau and the loss moduli approach the noise 

threshold, limiting the detectable differences between curves. Therefore, for PT resin with our 

experimental parameters, we would suggest only relying on shift factors in Figure 6 from about 

40 °C to 80 °C, or equivalently, moduli from 4x10-4 to 8x104 Hz at Tref.  

We selected PT resin as a platform to develop BOTTS as it has a very narrow, reproducible, 

and stable glass transition due to its ideal network structure.30 As a demonstration of the broad 

applicability of BOTTS, we applied the technique to DI epoxy resin without first obtaining DFS-

TTS data. The DI master curve, displayed in Figure 7, shows a broader glass transition 

indicative of typical heterogeneous chemical structures in epoxy thermosets.37–39 
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Figure 7. Master Curve for DI epoxy resin, showing good overlap and a broader glass transition than PT 

photopolymer resin. 

Beyond producing a reasonable master curve, we emphasize that this data, from 100 °C to 180 

°C in 5 °C increments, was collected in just under 100 minutes, including soak time. A 

comparable DFS-TTS experiment would take over 500 minutes. The speedup of BOTTS 

provides a unique additional advantage beyond the obvious time savings: the resin spends 

much less time at high temperatures, avoiding thermal side reactions and property drift common 

in amine-epoxy and other engineering thermosets.  

Conclusion 

We have presented BOTTS, a DMA technique that utilizes broadband chirps to take full 

advantage of the data acquisition capabilities of modern DMA hardware to accelerate the 

collection of frequency data for time-temperature superposition by 5x. Given such an increase in 

data collection rate, BOTTS could enable the curation of vast quantities of high quality 

thermorheological data and derived master curves, shift factors, WLF parameters, and 

relaxation spectra. A higher instrumental bandwidth would increase the speedup to as much as 

10x, and further gains could be realized in the choice of temperatures and soak times before 

measurement. This would decrease the cost of performing and curating data including 

composition, processing, and aging parameters and their uncertainties from large designs of 

experiments for a broad range of advanced materials. Broad uptake of this technique would 

lead to increased availability of reliable high-bandwidth time/frequency/temperature property 

data for polymers and their composites and could dramatically accelerate and increase 

accuracy of design loops for new material applications. We also developed a data analysis 

pipeline to incorporate the unique complex modulus data output from BOTTS. Our ongoing 

research will seek to further improve the BOTTS strategy (including temperature steps, chirp 

duration, and other parameters) to minimize shift factor uncertainty given instrumental 

constraints and time allotment, or inversely to minimize experiment time while meeting a 

prescribed uncertainty of the shift factors. That optimal strategy combined with the data analysis 
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pipeline presented in this work would unlock the possibility for a more hands-free and 

reproducible experience for master curve generation, eventually including fully autonomous 

experimentation. 

Appendix 

Noise level estimation and linear error propagation 

The raw data of a strain chirp and its response may be expressed a stress timeseries 𝜎(𝑡) and a 

stress timeseries 𝜀(𝑡). The Fourier transform of these, 𝜎∗(𝜔) = 𝜎′ + 𝑖𝜎′′ and 𝜀∗(𝜔) = 𝜀′ + 𝑖𝜀′ 

have a magnitude |𝜎∗| and |𝜀∗| respectively that follow a “pink” 1/fɑ power law spectrum 

between the lowest and highest requested frequencies ⍵1 and ⍵2. Between ⍵2 and the Nyquist 

frequency ⍵N, any measured signal can be assumed to originate in noise or interference. 

Assuming additive white Gaussian noise, the noise power can be estimated from this region: 

𝑁0,𝜎 =
1

𝜔𝑁 −𝜔2
∫ |𝜎∗|2𝑑𝜔
𝜔𝑁

𝜔2

 

and similarly for 𝜀∗. The square root of 𝑁0 can serve to estimate of the uncertainty at each 

frequency, ∆𝜎 and ∆𝜀. In practice, additional resonant noise and interference spikes appear 

throughout the spectrum, and so we use the median noise amplitude as a more robust 

estimator. 

The complex stress 𝜎∗ and strain 𝜀∗ can be used to calculate the complex modulus through 

straightforward complex division: 

𝐸∗ =
𝜎∗

𝜀∗
=
𝜎′ + 𝑖𝜎′′

𝜀′ + 𝑖𝜀′
 

𝐸′ =
𝜎′𝜀′ + 𝜎′′𝜀′′

|𝜀∗|2
 

𝐸′′ =
𝜎′′𝜀′ − 𝜎′𝜀′′

|𝜀∗|2
 

Our goal is to find the uncertainty in the real and imaginary components of the modulus, given 

our estimated uncertainty in the inputs, ∆𝜎 and ∆𝜀.  Assuming linear, Gaussian, independent 

errors, linear error propagation can be applied: 

∆𝑓2 =∑(
𝜕𝑓

𝜕𝑥𝑖
∆𝑥𝑖)

2

𝑖

 

Assuming ∆𝜎′ = ∆𝜎′′ = ∆𝜎,   ∆𝜀′ = ∆𝜀′′ = ∆𝜀: 

∆𝐸′2 = (
𝜕𝐸′

𝜕𝜎′
∆𝜎)

2

+ (
𝜕𝐸′

𝜕𝜎′′
∆𝜎)

2

+ (
𝜕𝐸′

𝜕𝜀′
∆𝜀)

2

+ (
𝜕𝐸′

𝜕𝜀′′
∆𝜀)

2
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and similarly for 𝐸′′. Taking partial derivatives and substituting, we obtain 

∆𝐸′
2
= (

𝜀′

|𝜀∗|2
∆𝜎)

2

+ (
𝜀′′

|𝜀∗|2
∆𝜎)

2

+ (
𝜎′ − 2𝜀′𝐸′

|𝜀∗|2
∆𝜀)

2

+ (
𝜎′′ − 2𝜀′′𝐸′

|𝜀∗|2
∆𝜀)

2

 

∆𝐸′′2 = (
𝜀′′

|𝜀∗|2
∆𝜎)

2

+ (
𝜀′

|𝜀∗|2
∆𝜎)

2

+ (
𝜎′′ − 2𝜀′𝐸′′

|𝜀∗|2
∆𝜀)

2

+ (
−𝜎′ − 2𝜀′′𝐸′′

|𝜀∗|2
∆𝜀)

2

 

which retains complex components. These can be eliminated by gathering terms and applying 

simplifications originating in the definitions of 𝐸′, 𝐸′′, |𝜀∗| and |𝐸∗|: 

(
𝜀′

|𝜀∗|2
∆𝜎)

2

+ (
𝜀′′

|𝜀∗|2
∆𝜎)

2

= (
∆𝜎

|𝜀∗|2
)
2

(𝜀′
2
+ 𝜀′′

2
) = (

∆𝜎

|𝜀∗|
)
2

 

(
𝜎′ − 2𝜀′𝐸′

|𝜀∗|2
∆𝜀)

2

+ (
𝜎′′ − 2𝜀′′𝐸′

|𝜀∗|2
∆𝜀)

2

⟹ (|𝐸∗|
∆𝜀

|𝜀∗|
)
2

 

(
𝜎′′ − 2𝜀′𝐸′′

|𝜀∗|2
∆𝜀)

2

+ (
−𝜎′ − 2𝜀′′𝐸′′

|𝜀∗|2
∆𝜀)

2

⟹ (|𝐸∗|
∆𝜀

|𝜀∗|
)
2

 

Thus, we obtain: 

∆𝐸′
2
= ∆𝐸′′2 = (

∆𝜎

|𝜀∗|
)
2

+ (|𝐸∗|
∆𝜀

|𝜀∗|
)
2

 

which only contains the magnitude of any complex function, and leads directly to the results in 

Figure 3. 
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