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The popularity of data-driven approaches and machine learning (ML) techniques in the field of organic
chemistry and its various subfields has increased the value of structured reaction data. Most data
in chemistry is represented by unstructured text, and due to the vastness of the organic chemistry
literature (papers, patents), manual conversion from unstructured text to structured data remains a
largely manual endeavor. Software tools for this task would facilitate downstream applications such as
reaction prediction and condition recommendation. In this study, we leverage the power of fine-tuned
large language models (LLMs) to extract reaction information from organic synthesis procedure text
into structured data following the Open Reaction Database (ORD) schema, a comprehensive data
structure designed for organic reactions. The fine-tuned model produces syntactically correct ORD
records with an average accuracy of 91.25% for ORD “messages” (e.g., full compound, workups,
or condition definitions) and 92.25% for individual data fields (e.g., compound identifiers, mass
quantities), with the ability to recognize compound-referencing tokens and to infer reaction roles.
We investigate its failure modes and evaluate performance on specific subtasks such as reaction role
classification.

1 Introduction
Data-driven methods are now routinely employed in the physical
sciences. A trend toward the use of supervised machine learn-
ing (ML) techniques has increased the need for structured data,
i.e., data represented using a standardized data schema. In most
scientific communities, however, data is stored and communi-
cated predominantly via unstructured documents and prose, with
only a few exceptions.1 Synthetic organic chemistry is no excep-
tion. Reaction procedures and details are commonly recorded as
free text in journal publications, patents, or electronic lab note-
books (ELNs). Manual information extraction and curation are
still widely used to construct structured datasets from unstruc-
tured texts.2,3 An automated method to extract structured reac-
tion data from unstructured texts would accelerate efforts to use
historical reaction data for data-driven discovery.

As an information extraction task, structured data extraction
from text can be considered as a combination of named entity
recognition (NER) and relation extraction (RE) between named
entities. Challenges in chemical NER include the pervasive usage
of abbreviations and aliases, deviations from standard nomen-
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clature, and the ambiguous boundaries between which a chemi-
cal entity is defined (e.g., when multiple words describe a single
species).4,5 A variety of methods have been applied for chemi-
cal NER tasks. Rule-based or dictionary-based methods, such as
LeadMine6 and ChemicalTagger7, have been used to annotate
reaction procedure texts or in the text parsing pipeline for con-
structing synthesis datasets such as SureCHEMBL8, Pistachio9,
and ZeoSyn10. While these algorithms are usually computation-
ally efficient, the scope of rules and dictionary items limits their
generalizability to new datasets. Various statistical model-based
NER algorithms have also been proposed, often as a sequence la-
beling problem where the tokens in a sentence are assigned most
likely tags based on token features. A popular strategy is the
use of conditional random fields11 in combination with expert-
selected features12 or contextualized word embeddings from neu-
ral networks (recurrent networks13–15, or transformers16–19).

Traditionally, RE is formulated as a downstream task to NER
and is solved as an ensemble of classification problems for en-
tity pairs.20,21 More recent efforts aim to solve NER and RE
simultaneously by building end-to-end models.22–25 This trend
has persisted as pretrained large language models (LLMs) have
become more accessible. LLMs have been used for NER/RE
tasks in biomedicine,26 materials,27 and clinical trials,28 show-
ing promise as tools for structured data extraction. For exam-
ple, Dagdelen et al. developed a training pipeline for GPT-3 to
extract information from scientific texts about crystalline mate-
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rials as structured JSON29 and Walker et al. present an itera-
tive scheme to fine-tune LLMs for extracting structured data of
gold nanorods synthesis.30 Recent studies by Zhong et al. ex-
plored fine-tuned LLMs for reaction data extraction from litera-
ture in PDF format.31,32 The output of these models provides a
reasonable coverage of reaction information, with the exception
of quantity information. Pretrained LLMs can also be used for this
task directly without fine-tuning. For example, a recent preprint
by Patiny and Godin explores extracting analytical experiment re-
sults from literature solely through prompt engineering.33 While
this method can extract structured data by including in-prompt
data schema, it relies on closed-source LLMs and performs poorly
when numerical values are involved.

One important use case for extracting structured reaction data
is the production of procedural instructions to be used for re-
producing experiments. For example, Vaucher et al. devel-
oped a transformer-based model to translate sentences of experi-
ment procedures into action sequences.34 While these action se-
quences contain detailed information for execution, their eval-
uations focus more on the type of action than the parameters
or objects of that action. SynthReader,35 a rule-based transla-
tor developed by Mehr et al., converts natural language proce-
dures to χDL, a data schema designed for chemical operations.
Such a rule-based method, despite being computationally effi-
cient, has to be expanded/modified to adapt to a different dis-
tribution, e.g., a change in writing style. Various submissions to
Cheminformatics Elsevier Melbourne University (ChEMU) evalu-
ation lab36–38 also aim to solve the NER/RE tasks including re-
action/workup steps. Since these campaigns aim at evaluating
individual NER/RE tasks, they do not constitute an end-to-end
solution for structured data extraction into a specific output data
schema.

In this study, we fine-tune an open-source large language model
to extract structured reaction information from unstructured text
from US patents (Figure 1). To structure the desired outputs,
we adopt the Open Reaction Database (ORD) data format, a
comprehensive data schema tailored to organic reactions.40 The
100,000-reaction dataset we use for fine-tuning is part of a col-
lection originally published by Lowe et al. in Chemical Markup
Language (CML) format,39 so the fine-tuned model essentially
pursues the same goal as Lowe’s expert natural language pro-
cessing pipeline, albeit using a different data schema. Extracted
records cover information on reactants, products, conditions, and
workup steps. We demonstrate that the fine-tuned model pro-
duces syntactically correct ORD records with an average accuracy
of 91.25% for chemical messages (compounds, workups, condi-
tions) and 92.25% for individual data fields. We also investigate
its failure modes and evaluate performance on reaction role clas-
sification. We note that a preliminary version of this study was
previously disclosed as part of a Perspective article on opportuni-
ties for LLMs in chemistry.42
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I can convert unstructured text...
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Isobutylamine (7.3 g, 0.1 mol) was
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Fig. 1 Overview of this study’s approach to structured reaction data ex-
traction from text. A 100k reaction subset of the United States Patent
and Trademark Office (USPTO) reaction data 39 as represented in the
Open Reaction Database (ORD) 40 is used to fine-tune and evaluate
LLaMa-2-7B. An example of the structured ORD record is included in
section 2.1. The data pipeline (top left) is detailed in section 2.2. The
fine-tuning procedure is described in section 2.3. The llama with a cap
was generated using Craiyon AI. 41

2 Methods

2.1 Introduction to the Open Reaction Database (ORD)
schema

A reaction record in the ORD is structured as a Reaction message
using Google’s Protocol Buffers, which can be faithfully converted
to and from JSON format without loss of information. For a spe-
cific Reaction, we focus on four chemically important fields: in-
puts, conditions, workups, and outcomes, each of which is also
a message or a list of messages defined in ORD schema. An ex-
ample reaction record is shown in Figure 2 with representative
fields populated. There are more than 600 fields defined in ORD
schema, some of which are size-mutable, and an ORD record typ-
ically includes many nested messages. There are also strict rules
on types and values admitted by data fields. For example, the type
field of ReactionWorkup is an enum field that only accepts specific
strings, and assigning out-of-vocabulary strings to this field leads
to a syntactically invalid ORD record. The full definition of the
Reaction message used in this study is available on GitHub.43

2.2 Dataset preparation from patents and the ORD
Reaction records from the United States Patent and Trademark
Office (USPTO) were collected from the ORD, sharded across 489
datasets. The link to a complete list of dataset IDs can be found in
the Supporting Information. These records were originally pub-
lished by Lowe in Chemical Markup Language (CML) format39

and were imported into the ORD using a custom CML-to-ORD
translation script.45 A reaction record is admitted to our dataset
if it satisfies the following conditions:
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Structured ord.Reaction Record

Unstructured Text
A suspension of 2-cyano-2-(3,4-dichloro-5-oxo-2,5-dihydrofuran-2-yl)acetamide (0.48

g), 2-(aminomethyl)-N-cyclopropyl-4-fluorobenzenesulfonamide obtained in Step 2 (0.60 g)
and potassium carbonate (0.85 g) in ethanol (20 ml) was stirred overnight at 70° C. The
reaction solution was filtered through celite, and concentrated under reduced pressure.

The residue was purified by basic silica gel column chromatography (ethyl
acetate:hexane=7:3→1:0). The obtained residue was dissolved in methanol, 4N hydrogen

chloride-ethyl acetate solution (1 ml) was added, and the mixture was crystallized from
methanol-ethyl acetate. The precipitated crystals were collected by filtration, and
recrystallized from methanol-ethyl acetate to give the title compound (0.06 g).

    Example Compound message

{"identifiers": [{"type": "NAME",  
                  "value": "ethanol"}],
 "amount": {
     "volume": { "value": 20.0, 
                 "units": "MILLILITER"}},
 "reaction_role": "SOLVENT"}

ReactionConditions message
 

{"temperature": {
     "setpoint": {"value": 70.0,
                  "units": "CELSIUS"}},
     "stirring": {
         "type": "CUSTOM",
         "details": "was stirred overnight at 70° C"}},

Example ReactionWorkup message

{"type": "DISSOLUTION",
 "input": {
     "components": [{
         "identifiers": [{"type": "NAME","value": "methanol"}],
         "reaction_role": "WORKUP"}]}} 

ReactionOutcome message 

{"reaction_time": {"value": 8.0,"precision": 8.0,"units": "HOUR"},
 "products": [{"identifiers": [{"type": "NAME",
                                "value": "title compound"}],
               "measurements": [{
                   "type":"AMOUNT",
                   "amount": {"mass": {"value": 0.06,
                                       "units": "GRAM"}}}],
                             "reaction_role": "PRODUCT"}]}]}

Fig. 2 (Top) The original text description of a reaction procedure and (bottom) the structured ORD reaction record. 44

Journal Name, [year], [vol.],1–10 | 3

https://doi.org/10.26434/chemrxiv-2024-979fz ORCID: https://orcid.org/0000-0002-5487-2539 Content not peer-reviewed by ChemRxiv. License: CC BY 4.0

https://doi.org/10.26434/chemrxiv-2024-979fz
https://orcid.org/0000-0002-5487-2539
https://creativecommons.org/licenses/by/4.0/


• Each of its ReactionInput messages has non-empty values
for its components field. This usually means this reaction
input is not the crude product of another reaction and that
the chemical information of this reaction’s inputs are present
in reaction procedure text.

• The reaction includes an associated procedure text, i.e., the
notes.procedure_details field of this reaction is a para-
graph describing the reaction.

Reaction records satisfying these criteria were exported
to JSON and deduplicated using OpenAI’s data preparation
tools (openai tools fine_tunes.prepare_data) to produce
1,339,260 unique records. The procedure text and structured
JSON are combined using a prompt template (see Supporting In-
formation) modified from Stanford Alpaca.46 A sequence length
limit of 2048 tokens based on LLaMA tokenizer, is imposed due
to memory considerations in fine-tuning the language models.
This sequence limit reduces the number of records to 1,300,613
(97.11%) of 1,339,260. The cumulative distribution function of
sequence lengths is shown in Figure S1. A subset of 100K records,
hereinafter referred to as USPTO-ORD-100K, is randomly se-
lected from the 1,300,613 records. Unless otherwise specified,
a random 8:1:1 train:validation:test split is applied to USPTO-
ORD-100K to train/evaluate models throughout this study. This
data pipeline is schematically shown in Figure 1.

The information in a structured ORD record is not guaranteed
to be a proper subset of its free text description, as some infor-
mation in the structured ORD record is derived from elsewhere,
and in this work denoted “implicit information”. For example,
the reaction roles of compounds are rarely stated in a reaction’s
text description. As another example, the text description may
indicate a filtration step (mapping to a ReactionWorkup of type
FILTRATION in its ORD record) but does not include “filter” or
“filtration” explicitly, e.g., “passing through celite”. We consider
this kind of implicit information learnable and therefore do not
exclude them from ORD records. On the other hand, some im-
plicit information is considered unlearnable and thus excluded
from the ORD records. Specifically,

• Unspecified outcome: If the name of a product is present
in the ORD record and is not explicitly stated in the reac-
tion text, this name is removed from the ORD record. This
could happen when the product name is defined only in the
title of the corresponding patent and not mentioned explic-
itly in the procedure text. This can also happen for reactants
when they are referred to by compound identifiers or generic
names.

• Calculated yield: If the yield value of a product is present in
the ORD record and its integer value is not explicitly stated
in the reaction text, this value is removed from the ORD
record. This can occur when the calculated yield is different
from the yield reported in the procedure text.

2.3 LLaMA fine-tuning procedure
LLaMA is a collection of decoder-only models first released in
February 2023 by Meta AI,47 with an updated version LLaMA-2

(released in July 2023),48. LLaMA models emerge as ideal foun-
dational models for scientific communities because they are pre-
trained using publicly available data only, have parameter sizes
ranging from 7 billion to 70 billion, and are distributed with both
model weights and training code under an open-source license.
We select LLaMA-2-7B in this study for fine-tuning due to mem-
ory considerations.

To avoid tuning the entire 7 billion parameters in LLaMA-2,
we adopt LLaMA-Adapter in our fine-tuning procedure.49 LLaMA-
Adapter achieves parameter-efficient fine-tuning using learnable
adaption prompts: for each of the topmost L transformer layers,
a learnable prompt of length K is prepended to the (embedded)
word tokens. This procedure reduces the total number of train-
able parameters to K × L×C, where C is the token embedding
dimensions, set to 4096 by default in LLaMA. Throughout this
study, K = 10 and L = 30, giving 1.2 million trainable parameters
that can fit in a GPU of 24 GB memory in half precision.

The train and validation datasets from the aforementioned
random split are used for fine-tuning LLaMA-2-7B. Fine-tuning
LLaMA-2-7B for 15 epochs with an initial learning rate of 7e-5
was completed in approximately 70 hours using 2 NVIDIA RTX
4090 GPUs. This model is referred to as “the fine-tuned model”
throughout this study.

2.4 Evaluation protocol and metrics

Text descriptions of reaction records from the test set of USPTO-
ORD-100K are passed to the fine-tuned LLaMA-2-7B to generate
structured data as text completions for model evaluation. Because
a Reaction message consists of nested sub-messages (or “objects”
in JSON terminology), such as Compound and ReactionWorkup,
we can define evaluation tasks based on the comparison be-
tween the ground truth and LLM-inferred Reaction at the mes-
sage level: Evaluation Metric 1. For a given message type, how
many messages of this message type are accurately extracted or er-
roneously added, removed, or altered?

Figure 3 shows an example of Evaluation Metric 1 when com-
paring two ReactionInput messages given the message type of
Compound messages. To distinguish the three failure modes, we
first define a distance function for the given message type based
on DeepDistance,50 an edit distance similar to Levenshtein dis-
tance designed for nested objects. When comparing two lists of
messages (the shorter list is padded with empty messages such
that two lists are of equal sizes), a bijective mapping between
messages from two lists is found by minimizing the distance sum
of all pairs, which is then used to identify the aforementioned
failure modes.

Since a message always has a tree structure, we can also define
evaluation tasks at the leaf level, where a leaf corresponds to an
unstructured, literal field: Evaluation Metric 2. For a given mes-
sage type, how many leaf fields of messages of this message type are
accurately extracted or erroneously added, removed, or altered?

We note that Evaluation Metric 1 is defined at a lower granu-
larity and is more stringent than Evaluation Metric 2. For exam-
ple, in the case shown in Figure 3, an entire compound message
(blue) is marked as altered, while only two leaf fields (under-
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"identifiers": [{ 
    "type": "NAME", "value": "NaCl"}], 
"amount": { 
    "mass": {"value": 0.22, "units": "GRAM"}}, 
}},

"identifiers": [{ 
    "type": "NAME", "value": "KCl"}], 
"amount": { 
    "mass": {"value": 1.2, "units": "GRAM"}}},

 
 

"components": [

{ 

]

 
 

"components": [

{ 

]

LLM GeneratedGround Truth

"identifiers": [{ 
    "type": "NAME", "value": "KCl"}], 
"amount": { 
    "mass": {"value": 1.2, "units": "GRAM"}}},

"identifiers": [{ 
    "type": "NAME", "value": "NaCl"}], 
"amount": { 
    "mass": {"value": 0.32, "units": "GRAM"}}, 
"reaction_role": "REACTANT"}},

"identifiers": [{ 
    "type": "NAME", "value": "NH4Cl"}], 
"amount": { 
    "mass": {"value": 2.1, "units": "GRAM"}}},

...

...

...

...

Add

Remove

Alter

Fig. 3 An example of Evaluation Metric 1 for when comparing two lists of Compound messages. Three failure modes at the Compound message level,
“Addition”, “Removal”, and “Alteration” are colored green, yellow, and blue, respectively. Underscored fields denote failures at the leaf fields level
(Evaluation Metric 2, vide infra). Data shown is for illustration purposes only.

scored) are considered as “Alteration” (value), and “Addition”
(reaction_role), respectively. Assigning “Addition” and “Re-
moval” to leaf fields also depends on the assignment at the mes-
sage level, for example, when a message is assigned “Removal”,
all of its fields are assigned “Removal”.

3 Results and Discussion

3.1 Quantitative model evaluation

The fine-tuned LLaMA-2-7B model is evaluated against the test
set from the random 8:1:1 train-validation-test split of USPTO-
ORD-100K. Out of the 10K model outputs (completions), only
42 (0.42%) of them are invalid JSON records, and 59 (0.59%)
of them are invalid ORD records. Note the former is a sufficient
condition for the latter. All of the 42 syntactically JSON invalid
completions can be “repaired” by heuristic string operations , such
as adding missing quotes or commas, using jsonrepair.51 After
repairing, 9,963 (99.63%) valid ORD records are collected. These
results indicate that the fine-tuned model successfully learns the
syntax of the ORD’s structured data schema during training.

Table 1 summarizes the evaluation results at the message level
(Evaluation Metric 1). The fine-tuned model is able to extract
compound information for ReactionInput entries reliably with
an accuracy of 85.58%. Compared with missing compound in-
formation in ReactionInput (4.99%, failure mode “Removal”),
it is relatively rare (2.26%) for the model to include excess com-
pounds (failure mode “Addition”), and almost all of the excess
compounds come from misplacement (e.g., a ProductCompound
is placed in ReactionInput) instead of hallucination.

Errors in extracting ProductCompound entries are more fre-
quent, as indicated by a lower accuracy of 71.29%. Upon in-
spection, we noticed the errors mainly originate from implicit in-
formation: Some fields of a ProductCompound message are not

explicitly stated in the text description and are instead derived
or inferred. One example is the “calculated” reaction yield, in
contrast to the “reported” reaction yield which the model can
capture successfully (Table S2). To alleviate this effect, we also
report the accuracy using a more lenient routine for identify-
ing equivalent ProductCompound messages that considers two
ProductCompound messages identical if all of their identifiers and
amount fields are identical. These fields often capture all im-
portant chemical information about reaction outcomes. After ap-
plying this less strict equivalence definition, the accuracy for ex-
tracting ProductCompound messages increases from 71.29% to
87.12%, indicating that the model is capable of chemical en-
tity/relation extraction even if it struggles with implicit calcula-
tion of yields. This routine also results in an increased accuracy
(91.51%) for Compound messages in ReactionInput by excluding
errors in reaction role identification (vide infra).

High accuracies of 95.65% and 90.72% are measured for
ReactionConditions and ReactionWorkup, respectively. Since
the ORD schema defines ReactionConditions as one single mes-
sage rather than a list of messages, no "Addition" or "Removal" of
this type of message is applicable.

To further understand how the fine-tuned model performs
in extracting different types of chemical information, the com-
pletions are examined with finer granularity at the leaf level
(Evaluation Metric 2), as shown in Table 2. The fine-tuned
model shows excellent recognition capability for chemical entities
such as compound identifiers (accuracy 93.47%) and amounts
(95.21%), and it can infer reaction roles that are usually not ex-
plicitly stated in procedure texts (section 3.3). Errors at the field-
level mainly come from implicit information in ProductCompound
messages, such as calculated yields (Table S1).

As an alternate approach and point of comparison, we explored
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Table 1 Evaluation results at the message level (Evaluation Metric 1) for structured records extracted using the fine-tuned LLaMA-2-7B model. The
“Path” column denotes the root path of the corresponding messages in a Reaction message.
* These values were calculated using a more lenient routine detailed in the main text.

Message type Path Accurate Removal Addition Alteration Total

Compound inputs
38470

(85.58%) 2242
(4.99%)

1015
(2.26%)

4242
(9.44%) 44954

41138*
(91.51%)

1574*
(3.50%)

ProductCompound outcomes
7450

(71.29%) 345
(3.30%)

58
(0.55%)

2656
(25.41%) 10451

9105*
(87.12%)

1001*
(9.58%)

ReactionConditions conditions 9524
(95.65%) N/A N/A 433

(4.35%) 9957

ReactionWorkup workups 44165
(90.72%)

1713
(3.52%)

1719
(3.53%)

2807
(5.77%) 48685

Table 2 Evaluation results at the leaf field level (Evaluation Metric 2) for structured records extracted using the fine-tuned LLaMA-7B model.
* These fields do not belong to any of the five field types (identifiers, amount, reaction role, condition, workup). In this dataset, all of them are leaf
fields of ProductCompound, including texture, isolated_color, and yield-related measurements.

Message type Field type Accurate Removal Addition Alteration Total

ProductCompound & Compound
identifiers 100958

(93.47%)
5490

(5.08%)
2590

(2.40%)
1566

(1.45%) 108014

amount 74209
(95.21%)

3434
(4.41%)

2182
(2.80%)

300
(0.38%) 77943

reaction role 48262
(89.31%)

2797
(5.18%)

1264
(2.34%)

2978
(5.51%) 54037

ReactionConditions condition 26782
(98.26%)

298
(1.09%)

391
(1.43%)

176
(0.65%) 27256

ReactionWorkup workup 178733
(93.95%)

8360
(4.39%)

10189
(5.36%)

3156
(1.66%) 190249

other* 31794
(84.80%)

5261
(14.03%)

2240
(5.97%)

439
(1.17%) 37494

extracting structured data with pretrained LLMs directly using
the chain-of-thought prompting method,52 a few-shot training
method by engineering the prompts such that they mimic the
thought processes of a human when solving a complicated task.
This method is easier to deploy compared to the fine-tuning meth-
ods; however, it could only produce syntactically correct ORD
data in 408 out of 500 cases after repairing with accuracies of
61.19% and 31.28% for Compound and ProductCompound, respec-
tively, indicating that chain-of-thought prompting without fine-
tuning is likely insufficient for this task. This prompting method
is also limited by human-crafted instructions and the context win-
dow of the model, and, considering there are more than 600
different fields defined in ORD schema, preparing examples and
steps to extract a full Reaction record seems impractical. Details
of our implementation and evaluation can be found in Support-
ing Information.

3.2 Comparison to previous studies

As a smart chemical NER tool, the fine-tuned model learned to
recognize cross-referencing tokens and to ignore unwanted chem-
ical entities. This is reflected in the comparison (Table 3) be-

tween the fine-tuned model and ChemDataExtractor (version
2.1.0),53,54 a toolkit for extracting chemical information mainly
from scientific literature. While ChemDataExtractor is capable of
recognizing many chemical entities, it frequently fails to identify
referencing tokens, such as “desired product” or “compound 322”
(the “Removal” column). It also captures excess chemical entities,
such as “1H” from NMR reports (“the “Addition” column). These
errors are at least partially attributable to the distribution shift in
how procedures are described in our source text paragraphs.

We further test the fine-tuned model on uniproduct reactions
from the ChemRxnExtractor16 dataset, a set of 123 records with
labeled tokens for compound names. All records from this dataset
were collected from individual literature passages. These pas-
sages can be considered an out-of-distribution challenge to our
fine-tuned model: They tend to be defined by general chemical
transformations (e.g., “oxidation of A gave B” or “cyclization of
A afforded B”) instead of specific actions in synthesis procedures,
chemical amount information is rarely present, and named en-
tities in these passages are frequently represented by externally
referencing tokens. As expected, the fine-tuned model performs
poorly on this dataset, with an accuracy of 62.61% and a ten-
dency to include unwanted tokens (Table S1). Such a tendency
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Table 3 Comparison between the fine-tuned model and ChemDataExtractor for compound names.

Model Accurate Removal Addition Alteration Total

Fine-tuned 94.92% 4.05% 2.15% 1.03% 78408
ChemDataExtractor 76.06% 15.97% 22.69% 7.98%

often results from prioritizing chemical entities above referencing
tokens. For example, in “by heating tryptophan methyl ester (9)
at 140 ◦C for 3 h” the token “9” is the correct token to extract,
while the fine-tuned model only recognizes “tryptophan methyl
ester” which is a chemical entity in a more general sense.

3.3 Reaction role classification

Reaction role assignments that distinguish reactants, reagents,
catalysts, and solvents are sometimes used in downstream tasks
such as reaction condition recommendation.55–57 The reaction
role of a compound is context-dependent, e.g., a chemical can
serve as a solvent or a reactant in different reactions, and not
explicitly stated in procedure text, so this is also not a pure infor-
mation extraction task. However, since this implicit information
is included in fine-tuning, the fine-tuned model learns the con-
ventions about role assignment in a generalizable way, and the
inferred assignment is directly available in the reaction_role
field. Since each Compound message is allowed to have only one
reaction_role, the reaction role assignment is a standard classi-
fication problem. While the ORD data schema has more than 10
types of reaction roles defined to cover a variety of situations, in
this dataset only three are used for input compounds (CATALYST,
REACTANT, SOLVENT). We exclude ProductCompound messages
in this section because they always have a reaction_role of
PRODUCT in this dataset. We also evaluate a popularity baseline
that makes classification decisions based on the role frequency of
compounds in the training dataset; roles are uniformly randomly
assigned in the case of ties or unseen compounds.

Figure 4A shows the confusion matrix of reaction role as-
signment from the fine-tuned model for all compounds in
ReactionInput from the test dataset. The classification accuracy
decreases from REACTANT to SOLVENT to CATALYST, with a ten-
dency to mislabel SOLVENT or CATALYST as REACTANT, as expected
based on class populations. Compared to extracting compounds
of other roles (2.58% for REACTANT, 1.37% for SOLVENT), the
model failed more frequently (4.2%) when extracting catalysts.
Figure 4B shows the results from the popularity baseline with sim-
ilar accuracies for SOLVENT and CATALYST, and lower accuracy for
REACTANT compared to the fine-tuned model. A macro-average F1
score of 86.06% is calculated for the fine-tuned model, while the
popularity baseline gives 63.51%. For compounds whose reaction
role in the dataset varies from reaction to reaction, the difference
between the fine-tuned model (Figure 4C) and the popularity
baseline (Figure 4D) becomes more pronounced: the former ex-
hibits better performance for both REACTANT and CATALYST. These
results suggest through fine-tuning the model learned to make
role classifications based on reaction context.

Recorded reaction role
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Fig. 4 Confusion matrices of reaction role classification for the com-
pounds in the test dataset using (A) the fine-tuned model and (B) the
popularity baseline. The results for compounds whose role in the dataset
varies from reaction to reaction are shown for (C) the fine-tuned model
and (D) the baseline model. Percentage values were normalized using
the number of true instances. In addition to three reaction role classes,
prediction results can also be labeled as “MISSING” – when the corre-
sponding compound is absent in the extracted ORD record, and “ER-
ROR” – when the name of the extracted compound is incorrect.

4 Conclusion
We have demonstrated the application of a fine-tuned LLaMA
model for the extraction of structured reaction information from
unstructured reaction texts from the USPTO. The fine-tuned
model can consistently (99.63%) produce JSON records comply-
ing with the highly structured ORD data schema. The fine-tuned
model exhibits average accuracies of 91.25% for message level,
and 92.25% for field-level extractions. The fine-tuned model can
also infer reaction roles that are not explicitly stated in texts,
modestly beating the popularity baseline for role classification.
While the model may not be accurate enough to be directly used
in dataset preparation, it may greatly accelerate information ex-
traction compared to manual extraction, and simplify the job of
human curators, especially for detailed, nested data schemas.
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As reaction data can include additional non-textual ele-
ments, such as reaction schemes and tables for reporting con-
ditions/yields, multi-modality models will be needed to fully or-
ganize unstructured data. For reaction schemes, recent develop-
ments in the field of optical chemical structure recognition have
enabled open-source tools to accurately capture chemical enti-
ties from raster images. Notable examples include MolScribe58

and RxnScribe59 developed by Barzilay and coworkers, as well
as ReactionDataExtractor60,61 by Wilary and Cole. Table pars-
ing/extraction tools have also been developed for chemistry lit-
erature, such as the table parsing module in ChemDataExtrac-
tor54 and OpticalTable-SQA62, a fine-tuned question-answering
language model for table extraction. As multimodal foundation
models become increasingly available in fields beyond chemistry,
it will be worth exploring their suitability for reaction data extrac-
tion.

The obvious use of the fine-tuned model is to support reaction
data import to ORD with proper expert validation of the LLM-
generated output. For example, as a postprocessing tool to con-
vert unstructured ELN reports to structured data, or a review-
ing/proofreading tool to expose as structured data what would
otherwise be unsearchable, such as the procedure details buried
in supplementary materials of a journal article. Tools presented
in this study should contribute to answering the call for standard-
ization in reaction informatics.1,63 As aligning reaction text with
molecular representation has been demonstrated to be helpful in
prediction tasks, the tool developed in this study could also serve
as an auxiliary to inform reaction predictive models.64
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Sanders, P. Schwaller, M. Schwarting, J. Shi, B. Smit, B. E.
Smith, J. V. Herck, C. Völker, L. Ward, S. Warren, B. Weiser,
S. Zhang, X. Zhang, G. A. Zia, A. Scourtas, K. J. Schmidt,
I. Foster, A. D. White and B. Blaiszik, Digital Discovery, 2023,
2, 1233–1250.

43 Open Reaction Database, ord-schema, https://github.
com/open-reaction-database/ord-schema/blob/
ec1ac7965e79e0165ecc3549af7ee8a31c2725a0/proto/
reaction.proto.

44 R. H. Jr, Apparatus detachably attachable to fishing poles for
holding and dispensing semi-liquids, 1993, https://patents.
google.com/patent/US5242088A/en?oq=US07985863B2A.

45 S. Kearnes, CML to ORD parser, https://github.
com/open-reaction-database/ord-schema/blob/
81ff0943538364722c4ca82d66b24c4361644b56/ord_
schema/scripts/parse_uspto.py.

46 R. Taori, I. Gulrajani, T. Zhang, Y. Dubois, X. Li, C. Guestrin,
P. Liang and T. B. Hashimoto, Stanford Alpaca: An
Instruction-following LLaMA model, 2023, https://github.
com/tatsu-lab/stanford_alpaca, Publication Title: GitHub
repository.

47 H. Touvron, T. Lavril, G. Izacard, X. Martinet, M.-A. Lachaux,
T. Lacroix, B. Rozière, N. Goyal, E. Hambro, F. Azhar, A. Ro-
driguez, A. Joulin, E. Grave and G. Lample, LLaMA: Open and
Efficient Foundation Language Models, 2023, http://arxiv.
org/abs/2302.13971, arXiv:2302.13971 [cs].

48 H. Touvron, L. Martin, K. Stone, P. Albert, A. Almahairi,
Y. Babaei, N. Bashlykov, S. Batra, P. Bhargava, S. Bhosale,
D. Bikel, L. Blecher, C. C. Ferrer, M. Chen, G. Cucurull, D. Es-
iobu, J. Fernandes, J. Fu, W. Fu, B. Fuller, C. Gao, V. Goswami,
N. Goyal, A. Hartshorn, S. Hosseini, R. Hou, H. Inan, M. Kar-
das, V. Kerkez, M. Khabsa, I. Kloumann, A. Korenev, P. S.
Koura, M.-A. Lachaux, T. Lavril, J. Lee, D. Liskovich, Y. Lu,
Y. Mao, X. Martinet, T. Mihaylov, P. Mishra, I. Molybog, Y. Nie,

Journal Name, [year], [vol.],1–10 | 9

https://doi.org/10.26434/chemrxiv-2024-979fz ORCID: https://orcid.org/0000-0002-5487-2539 Content not peer-reviewed by ChemRxiv. License: CC BY 4.0

http://arxiv.org/abs/1601.00770
http://arxiv.org/abs/1601.00770
http://arxiv.org/abs/2312.11690
http://arxiv.org/abs/2312.11690
https://figshare.com/articles/dataset/Chemical_reactions_from_US_patents_1976-Sep2016_/5104873
https://figshare.com/articles/dataset/Chemical_reactions_from_US_patents_1976-Sep2016_/5104873
https://figshare.com/articles/dataset/Chemical_reactions_from_US_patents_1976-Sep2016_/5104873
https://www.craiyon.com/
https://www.craiyon.com/
https://github.com/open-reaction-database/ord-schema/blob/ec1ac7965e79e0165ecc3549af7ee8a31c2725a0/proto/reaction.proto
https://github.com/open-reaction-database/ord-schema/blob/ec1ac7965e79e0165ecc3549af7ee8a31c2725a0/proto/reaction.proto
https://github.com/open-reaction-database/ord-schema/blob/ec1ac7965e79e0165ecc3549af7ee8a31c2725a0/proto/reaction.proto
https://github.com/open-reaction-database/ord-schema/blob/ec1ac7965e79e0165ecc3549af7ee8a31c2725a0/proto/reaction.proto
https://patents.google.com/patent/US5242088A/en?oq=US07985863B2A
https://patents.google.com/patent/US5242088A/en?oq=US07985863B2A
https://github.com/open-reaction-database/ord-schema/blob/81ff0943538364722c4ca82d66b24c4361644b56/ord_schema/scripts/parse_uspto.py
https://github.com/open-reaction-database/ord-schema/blob/81ff0943538364722c4ca82d66b24c4361644b56/ord_schema/scripts/parse_uspto.py
https://github.com/open-reaction-database/ord-schema/blob/81ff0943538364722c4ca82d66b24c4361644b56/ord_schema/scripts/parse_uspto.py
https://github.com/open-reaction-database/ord-schema/blob/81ff0943538364722c4ca82d66b24c4361644b56/ord_schema/scripts/parse_uspto.py
https://github.com/tatsu-lab/stanford_alpaca
https://github.com/tatsu-lab/stanford_alpaca
http://arxiv.org/abs/2302.13971
http://arxiv.org/abs/2302.13971
https://doi.org/10.26434/chemrxiv-2024-979fz
https://orcid.org/0000-0002-5487-2539
https://creativecommons.org/licenses/by/4.0/


A. Poulton, J. Reizenstein, R. Rungta, K. Saladi, A. Schelten,
R. Silva, E. M. Smith, R. Subramanian, X. E. Tan, B. Tang,
R. Taylor, A. Williams, J. X. Kuan, P. Xu, Z. Yan, I. Zarov,
Y. Zhang, A. Fan, M. Kambadur, S. Narang, A. Rodriguez,
R. Stojnic, S. Edunov and T. Scialom, Llama 2: Open Founda-
tion and Fine-Tuned Chat Models, 2023, http://arxiv.org/
abs/2307.09288, arXiv:2307.09288 [cs].

49 R. Zhang, J. Han, C. Liu, P. Gao, A. Zhou, X. Hu, S. Yan,
P. Lu, H. Li and Y. Qiao, LLaMA-Adapter: Efficient Fine-tuning
of Language Models with Zero-init Attention, 2023, http://
arxiv.org/abs/2303.16199, arXiv:2303.16199 [cs].

50 S. Dehpour, seperman/deepdiff, 2024, https://github.com/
seperman/deepdiff, original-date: 2014-09-26T03:21:47Z.

51 J. d. Jong, josdejong/jsonrepair, 2024, https://github.
com/josdejong/jsonrepair, original-date: 2020-11-
02T16:05:02Z.

52 J. Wei, X. Wang, D. Schuurmans, M. Bosma, B. Ichter, F. Xia,
E. Chi, Q. Le and D. Zhou, Chain-of-Thought Prompting Elicits
Reasoning in Large Language Models, 2023, http://arxiv.
org/abs/2201.11903, arXiv:2201.11903 [cs].

53 M. C. Swain and J. M. Cole, Journal of Chemical Information
and Modeling, 2016, 56, 1894–1904.
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