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Abstract 
 
Nanobodies, the smallest functional antibody fragment derived from camelid heavy-chain-only 

antibodies, have emerged as powerful tools for diverse biomedical applications. In this 

comprehensive review, we discuss the structural characteristics, functional properties, and 

computational approaches driving the design and optimisation of synthetic nanobodies. We 

explore their unique antigen-binding domains, highlighting the critical role of 

complementarity-determining regions in target recognition and specificity. This review further 

underscores the advantages of nanobodies over conventional antibodies from a biosynthesis 

perspective, including their small size, stability, and solubility, which make them ideal 

candidates for economical antigen capture in diagnostics, therapeutics, and biosensing. We 

discuss the recent advancements in computational methods for nanobody modelling, epitope 

prediction, and affinity maturation, shedding light on their intricate antigen-binding 

mechanisms and conformational dynamics. Finally, we examine  a direct example of how 

computational design strategies were implemented for improving a nanobody-based 

immunosensor, known as a Quenchbody. Through combining experimental findings and 

computational insights, this review elucidates the transformative impact of nanobodies in 

biotechnology and biomedical research, offering a roadmap for future advancements and 

applications in healthcare and diagnostics. 

 

Abbreviations 
 
VH               Heavy chain 

VL                      Light chain 

CH                                Constant heavy 

CL                      Constant light 

FAB                   Fragment-of-antigen-binding 
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CDR                  Complementarity-determining region 

scFv                   Single-chain variable fragment 

VHH                             Variable domain of the heavy chain of heavy-chain-only antibodies 

MW                   Molecular weight 

INDI                  Integrated Database of Nanobodies for Immunoinformatics 

SAbDab             Structural antibody database 

MD                    Molecular dynamics 

Tm                      Melting temperature 

Q                        Fraction of native atomic contacts 

GaMD                Gaussian accelerated molecular dynamics 

GPCR                 G-protein-coupled receptor 

PD                      Programmed death 1 

PD-L1                Programmed death ligand 1 

PC                      Principal component 

RMSD                Root-mean-squared displacement 

MM/PBSA         Molecular Mechanics/Poisson Boltzmann Surface Area 

MM/GBSA        Molecular Mechanics/Generalised Born Surface Area 

DSMBind          Denoising score matching for binding energy prediction 

Q-body              Quenchbody 

CQ-body            Coiled quenchbody 

NanoBRET        NanoLuciferase-based bioluminescence resonance energy transfer 

SARS-CoV-2     Severe acute respiratory syndrome coronavirus 2 

Tm                      Melting temperature 

VIMAS              Venn-intersection of multi-algorithms screening 

Introduction 
 
Conventional antibodies, found in humans and other mammals, are Y-shaped molecules 

consisting of multiple domains (Fig. 1). The arms of the Y-shaped structures consist of two 

identical heavy chains (VH), two identical light chains (VL), and two constant regions (CH1 and 

CL) that are called Fragment-of-antigen-binding (Fab) regions. The antigen-binding site, also 

referred to as the paratope, is situated at the tips of the antibody arms, within a pocket or groove 

created by the variable domains of the heavy and light chains. These binding sites consist of 

six hypervariable loops characterised by differing lengths and amino-acid compositions, 

commonly referred to as complementarity-determining region (CDR) loops. Recombinant 

antibody fragments, such as Fab and single-chain variable fragments (scFv), as well as 

nanobodies (Fig. 1) and polyvalent engineered variants [1], are gaining recognition as effective 

antigen binders [2]. These fragments maintain the targeting specificity of complete monoclonal 

antibodies while offering distinctive and superior properties suitable for various diagnostic and 

therapeutic applications [2-4]. They are used as tracers for diagnostic in vitro imaging [3] and 

diagnosis [5], biosensors [6] as well as developing therapeutics targeting various diseases 

including cancers [2, 7, 8] and SARS-CoV-2 [9].  

 

Nanobodies, also referred to as VHH or single-domain antibodies due to lacking light chains, 

are small antibody fragments derived from heavy-chain-only antibodies. They were first 

reported in 1993 in camel serum [10], but they are also found in other camelids such as llamas 

and alpacas, as well as sharks [11]. They only have three CDR loops and their variable single 

domains alone are sufficient for binding to antigens, with binding affinities comparable to those 

of monoclonal antibodies [10]. Nanobodies are even capable of interacting with hidden 

epitopes buried in clefts on protein surfaces that are inaccessible to conventional VH-VL pairs 
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[12], such as those found in enzyme active sites [13] and in the SARS-CoV-2 spike protein 

[14]. Like antibodies, nanobodies contain immunoglobulin-like β-sandwich scaffolds that 

consist of antiparallel β-strands arranged into two sheets and held together by an internal 

disulphide bond (Fig. 1). This structural framework provides stability for the three CDRs that 

make up the binding surface which can be considered synonymous with the paratope of 

conventional antibodies [15]. These CDR loops have variable lengths, composition, and 

structure, with CDR-H3 being the most variable in sequence, with lengths ranging from 12 to 

18 residues [16], and is therefore considered one of the largest contributors to antigen-binding 

specificity [12, 17]. Notably, nanobodies typically possess longer CDR-H3 loops than 

antibodies and can adopt a kinked or extended conformations, allowing nanobodies to access 

binding pockets with finger-like antigen binding paratopes not accessible to the short loop 

counterparts found in the heavy and light chain paratopes of conventional antibodies [16]. As 

a result of this, CDR-H3 loops in nanobodies occupy a larger conformational space than those 

in antibodies as they are not restricted by the paired light-chain domain [18]. The CDR-H3 of 

a nanobody typically contributes to over fifty percent of all binding interactions within the 

entire paratope [19, 20]. The rest of the nanobody is composed of four regions whose sequences 

and structures are more conserved than those in conventional antibodies and are referred to as 

the framework regions  [21]. The hydrophilic nature of the framework at the VH-VL interface 

in nanobodies exceeds that observed in other antibody fragments like Fab and scFv. This 

characteristic mitigates self-association or dimerization, thereby ensuring the preservation of 

nanobodies in a monomeric state [11, 22]. In general, nanobody paratopes exhibit greater 

diversity in the structural segments, the residues used for antigen interaction, and the variety 

of contacts established with the antigen, than the paratopes of conventional antibodies [20]. 

Nanobodies offer several advantages compared to conventional antibodies (MW:  150 kDa), 

including their small size of  110 amino acids (MW:  12−15 kDa), stability, and solubility, 

while retaining the ability to bind to their targets with high affinities, similar to antibodies [11]. 

Additionally, they have gained significant attention due to their favourable biochemical 

properties [11], including high thermostability [23], deep tissue penetration [24], and low 

immunogenicity [11]. Furthermore, nanobodies can be economically produced in appreciable 

quantities by bacterial expression systems, either in the perisplasm or via cell-free methods, 

facilitating the accurate formation of disulphide bonds within the nanobody structure [25, 26], 

unlike larger antibodies, which typically require production in costly eukaryotic expression 

systems [27]. Because of these favourable properties, nanobodies and their derivatives are 

increasingly utilised in numerous biochemical applications, where they can readily substitute 

conventional antibodies [28]. They are also being applied as novel tools to address research 

questions where conventional antibodies have failed, such as stabilising protein conformational 

states and dynamics [29-34], as well as controlling allosteric modulation of G protein-coupled 

receptors [35-37]. Nanobodies have been also used as a carrier protein for the facile detection 

of peptides binding to the immune checkpoint protein programmed death 1 (PD-1) [38]. 

Legobodies (complexes consisting of a nanobody, a Fab, and a fusion protein [39]), as well as 

megabodies (nanobodies grafted onto globular rigid bacterial proteins [40]) are utilised to 

increase particle mass for the structure determination of small proteins by single-particle cryo-

electron microscopy [40]. A recently developed approach named Nanobody-NanoBRET 

(NanoB2) employs nanobodies as fluorescent probes in conjunction with NanoLuciferase-

based bioluminescence resonance energy transfer (NanoBRET) [41] to study ligand binding to 

membrane proteins [42]. The widespread biochemical utility of nanobodies necessitates the 

creation of new nanobodies capable of binding to a diverse array of molecular targets. 

Nanobodies can be conventionally obtained by immunising an animal, typically a camelid such 

as a llama or a camel, with the target antigen [43]. However, with the recent advances in 
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directed evolution, libraries of nanobodies can be generated entirely synthetically within a 

matter of weeks [44]. These libraries typically vary in the length of the main CDR-H3, resulting 

in three unique interaction surfaces: a concave, a protruding loop, and a convex-shaped 

paratope [15]. They can be used to select binders against target proteins, including membrane 

proteins and rare conformational states [32].  

Apart from their clear usefulness in basic biochemical research, nanobodies are increasingly 

employed as diagnostic tools [45, 46], molecular imaging probes [46], and therapeutic agents 

[45-48]. They are currently under clinical investigation for a diverse range of human diseases 

[3], including conditions such as breast cancer [49], brain tumours [24], lung diseases [50], and 

infectious diseases [51]. Nanobodies can also target various tumours [9, 52] and are used in the 

diagnosis and treatment of prostate cancer [7]. Since 2019 and particularly with the COVID-

19 pandemic, several studies, including computational protein design, have emerged 

investigating the potential of nanobodies as antiviral agents [9, 52]. Nanobodies have been 

engineered to specifically target the receptor-binding domain of the SARS-CoV-2 spike protein 

[53-60], including that of the Omicron variants [14], to block its interaction with the human 

angiotensin-converting enzyme 2. By binding to the spike protein, nanobodies interfere with 

the virus's ability to infect human cells and potentially neutralise its infectivity.  

Despite the promising potential of nanobodies as alternatives to conventional antibodies, they 

do suffer from a few limitations. These include changes in their binding properties when 

labelled with imaging agents, high uptake of radiolabelled nanobodies in kidneys and liver, 

which complicates lesion detection and causes organ exposure, and rapid renal excretion of 

nanobodies, reducing efficacy in targeting disease sites [61]. The current availability of 

experimental nanobody–antigen structures is also quite limited. While experimental structural 

data remain invaluable, computational modelling and design offer a complementary approach 

to understanding nanobody–antigen interactions, especially when experimental structures are 

lacking. These methods accelerate the discovery, optimisation, and redesign of nanobodies with 

high specificity and affinity for a wide range of antigens. Computational and artificial 

intelligence-based methods for antibody modelling [62], development [63, 64] and for protein 

design for COVID-19 research and emerging therapeutics [9, 65, 66] have already been 

reviewed. For nanobodies, structural characteristics enabling precise and robust target binding 

have also been reviewed highlight emerging technologies for identification, structural analysis, 

and humanisation [3]. Similarly, the different strategies that allow for rapid identification of 

target-specific nanobodies and the engineering technologies that broaden their application [67] 

have been recently reviewed elsewhere. Here, we review computational modelling and design 

strategies to help leverage computational approaches in the development of next-generation 

nanobody-based therapeutics and biotechnological solutions. Specifically, we will highlight 

recent developments in computational approaches for nanobody-antigen interactions, binding 

affinities, structural predictions, and nanobody design. 

 

https://doi.org/10.26434/chemrxiv-2024-7t6h7 ORCID: https://orcid.org/0000-0002-1099-2803 Content not peer-reviewed by ChemRxiv. License: CC BY-NC 4.0

https://doi.org/10.26434/chemrxiv-2024-7t6h7
https://orcid.org/0000-0002-1099-2803
https://creativecommons.org/licenses/by-nc/4.0/


 5 

 

 
 

Fig. 1. Graphical representations of a conventional antibody, a heavy-chain-only antibody and a 
nanobody as well as antibody fragments. A three-dimensional structure of a nanobody (cyan) binding 
lysozyme (grey), illustrating the three CDR loops and the disulphide bond (PDB ID: 1ZVH).   

 

Nanobody databases 
 

Nanobody databases play an important role in providing resources and information for 

research, facilitating nanobody development, enabling target discovery and validation, and 

supporting comparative analysis. Most of the available databases primarily contain data for 

antibodies, with some also including information on nanobodies [63, 68]. In recent years, there 

has been a significant increase in the gathering of nanobody-related data driven by 

advancements in both research and practical applications. This abundance of information has 

consequently fostered the expansion of databases specifically designed for nanobodies. The 

Integrated Database of Nanobodies for Immunoinformatics (INDI) contains more than 11 

million nanobody sequences [69]. Its search tool finds the closest matching variable sequence 

in the INDI database, while the CDR-H3 search tool helps locate nanobodies with similar CDR-

H3 regions as the query sequence. The Structural Antibody Database SAbDab-nano is an 

explicit nanobody-tracking sub-database of SAbDab [70] that contains 1454 nanobody 

structures as of March 2024 and is updated weekly [71]. This is in addition to a non-redundant 

dataset of 123 nanobody–antigen crystal structures, including their amino acid sequences and 

annotated CDR regions. Furthermore, interaction properties, including the number of 

intermolecular interactions, experimental binding affinities and changes in the solvent 

accessibility upon complex dissociation, are listed [72]. To address the challenges posed by 

heterogeneity, inconsistency, and the lack of interoperability among data across diverse 

databases, a novel database termed Nanobody Library and Archive System (NanoLAS) has 

been developed [73]. NanoLAS integrates and standardises nanobody data sourced from 

multiple databases, offering a user-friendly, efficient, and interactive platform for date querying 

and analysis. In complement to existing structure and sequence databases, NbThermo serves 

C H1C
H1

Conventional antibody Heavy-chain-only antibody

Nanobody

CDR-H1

CDR-H2

CDR-H3

Lysozyme

C L

V H

V L

V
H

V
L

C
L

Antigen

Fragment of antigen binding 
(Fab)

Single-chain variable fragment 
(scFv) 

V H

V L

V
H

V
L

C
L

Antibody fragments

~ 150 kDa ~ 90 kDa

~ 15 kDa

~ 50 kDa ~ 25 kDa

2.5 nm 4.0 nm

C
H1 V HH

V HHV
HH

C
H

2

C
H

2

C
H

3

C
H

3

C
H

2

C
H

2
C

H
3

C
H

3

https://doi.org/10.26434/chemrxiv-2024-7t6h7 ORCID: https://orcid.org/0000-0002-1099-2803 Content not peer-reviewed by ChemRxiv. License: CC BY-NC 4.0

https://doi.org/10.26434/chemrxiv-2024-7t6h7
https://orcid.org/0000-0002-1099-2803
https://creativecommons.org/licenses/by-nc/4.0/


 6 

as a pioneering database, compiling melting temperatures (Tm) data for hundreds of nanobodies 

[74]. Its pivotal role extends to the development of algorithms for accurate Tm prediction in 

nanobody engineering and understanding the complex structural basis of nanobody 

thermostability. While there appear to be no apparent differences in the sequence pattern of the 

frameworks of nanobodies with lower and higher melting temperatures, it is evident that the 

highly variable loops play a crucial role in defining thermostability [75].  

 

Computational Approaches for Nanobody Modelling 
 
Exploring nanobody and nanobody–antigen interactions using molecular 
dynamics simulations  

 
Molecular dynamics (MD) simulations are valuable for investigating antigen–nanobody 

interactions and dynamics [76-78]. These simulations offer unique insights into identifying 

changes in the flexibility of CDR loops upon antigen–nanobody binding [79], and elucidating 

the molecular mechanisms underlying antigen–nanobody interactions, providing perspectives 

that complement experimental observations. Integrating computational and experimental 

approaches enhances our understanding of these interactions, thereby facilitating the rational 

design of nanobodies [80]. 

MD simulations have been employed to explore the impact of linker length and flexibility on 

the architecture of bivalent nanobodies [81]. The findings revealed that flexible linkers enhance 

the binding affinity of bivalent nanobodies irrespective of linker length, whereas rigid linkers 

require an ideal length for optimal performance [81]. They also facilitated the design of a novel 

nanobody probe for the detection of naturally occurring DNA G-Quadruplex structures in 

human chromatin [82]. MD simulations have recently been used to understand the binding 

mechanism of a high-affinity nanobody, designed to detect one of the earliest markers of human 

immunodeficiency virus infection, p24. The simulations have unveiled that binding takes place 

at a negatively-charged region on p24, complemented by the positive surface of the nanobody's 

binding interface, which involves the CDR loops [83]. These simulations also underscored the 

significance of a salt bridge interaction, hydrogen bonding, and electrostatically 

complementary regions in facilitating the high-affinity binding. Moreover, MD simulations 

have been employed in conjunction with existing NMR and X-ray crystallography data on the 

human prion protein (HuPrP) and two of its disease-linked mutants (E219K and V210I) [84]. 

These simulations elucidated the dynamic conformational landscapes of HuPrP and its mutants 

prior to binding to its associated nanobody. Previous studies have highlighted the nanobody's 

capability to inhibit prion aggregation in vitro by uniquely stabilising two disordered epitopes 

[84, 85]. During the simulations, experimentally-determined binding-competent conformations 

within the ensembles of pre-existing conformational states were observed. This observation 

highlights the significance of a key residue Met166 in conformational changes and nanobody 

binding (Fig. 2A) [84]. Indirect of antigen binding, high-temperature MD simulations of 

nanobodies revealed the importance of CDR-H3 residues [86] and the interactions between 

CDR-H3 and the framework residues [23, 86] for maintaining the VHH structural stability at 

high temperatures. Introducing mutations disrupting these interactions resulted in significant 

loss of affinity and thermal stability [23]. High-temperature MD simulations (at 400 K) are 

believed to enhance the dynamics without perturbing the structures of the nanobodies [87]. The 

fraction of native atomic contacts (Q) displayed a good correlation with the experimentally-

determined melting temperatures (Tm). Q values of hydrophilic residues exhibited an even 
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better correlation, suggesting that nanobody stabilisation is correlated with favourable 

interactions of hydrophilic residues (Fig. 2B) [87].        

 

Fig. 2. (A) Plot of  and  dihedral angle distributions for a key residue Met166 involved in 

conformational changes of E219K HuPrP. In black dots,  and  pairs from MD snapshots (apo MD) 

are reported; in red dots, the ones extracted from the NMR structures (apo NMR); in green dots, the 
ones from simulated E219K HuPrP bound to the nanobody (holo MD); and in blue squares with green 
background, the ones extracted from the crystallographic structure of WT HuPrP bound to the nanobody 
(holo XRD). Figure adapted from reference [84]. (B) Average Q value over the final 30 ns with standard 
deviation against the experimental Tm per group pair for the 400 K simulations. The hydrophilic-all group 
is the average Q value between the hydrophilic residues (Asp, Glu, Gln, Asn, Arg, Lys, and His) versus 
all residues, the all–all group is the regular average Q value and the hydrophobic-small group is the 
average Q value between the hydrophobic (Phe, Tyr, Trp, Leu, Val, Ile, Met, Cys, and Pro) versus the 
small (Gly, Ala, Ser, and Thr) residues. Figure adapted from reference [87].  

 

Exploring conformational dynamics of nanobody–antigen complexes using 
enhanced sampling simulations  
 

Enhanced sampling simulations are used to explore the conformational space of nanobodies 

more efficiently and comprehensively than conventional MD simulations [88]. They aim to 

overcome the limitations of standard simulations, which may not adequately sample rare or 

high-energy conformations. Gaussian accelerated MD (GaMD) is an enhanced sampling 

technique that works by applying a harmonic boost potential to smooth the energy surface, 

reduce the system energy barriers, and accelerate the structural dynamics by orders of 

magnitude [89]. GaMD simulations investigating nanobody binding to a G-protein-coupled 

receptor (GPCR) demonstrated that the orthosteric ligand-binding pocket of the receptor 

underwent allosteric closure consistent with recent experimental findings (Fig. 3A) [90, 91]. In 

the absence of nanobody binding, the receptor's orthosteric pocket sampled both open and fully 

open conformations (Fig. 3B). These simulations provided valuable insights into the intricate 

mechanism of GPCR−nanobody binding, showcasing the capability of GaMD in effectively 

modelling dynamic protein–protein interactions. Accelerated MD was also used to investigate 

the conformational dynamics of the binding domain of the immune checkpoint PD-L1 [92]. 

The maximum structural displacements observed in both PD-L1 crystal structures and MD 
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trajectories were mainly by a specific loop, particularly when PD-L1 is bound to its nanobody 

(Fig. 3C). Principal component (PC) score plots identified three regions with high density, and 

all of them represent open loop conformations (Fig. 3D). This highlights the potential benefits 

for targeting the region close to this flexible loop and could be a good target for allosteric small 

molecule ligands [92]. While GaMD improves sampling efficiency and reduces computational 

costs compared to conventional MD simulations, it encounters challenges related to insufficient 

sampling [93]. This hinders the calculation of converged free energy profiles required for 

studying large, complex systems or events spanning hundreds of milliseconds. To address this 

issue and maintain accurate free energy calculations, an integration of GaMD with replica 

exchange algorithms is proposed [93]. 

      
         

 

Fig. 3. Two-dimensional potential of mean force calculated using GaMD simulations between the 
Tyr104−Tyr403−Tyr426 triangle perimeter and RMSD of the nanobody relative to the X-ray 
conformation (A) when the nanobody is bound showing the low-energy conformational state as the 
closed and (B) when the nanobody sis unbound showing two low-energy conformational states as open 
and fully open. Figure adapted from reference [91]. (C) The superimposed structure of free PD-L1 (PDB 
ID: 4Z18, cyan) over PD-L1 cocrystallised with its nanobody (PDB ID: 5JDS, yellow). Figure adapted 
from reference [92]. (D) PC score plots of the PD-L1 structures extracted from the GaMD simulations 
projected over the two largest principal components (PC1 and PC2). The figure gives representative 
structures of the low energy (high density) BC loop conformations. Figure adapted from reference [92].  

 

 

(A) (B) 

(C) (D) 
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Structural predictions of nanobody–antigen complexes 
 

The prediction of nanobody structures continues to pose a challenge, in particular the accurate 

prediction of the CDR loop conformations [94]. Specifically, CDR-H3, the most variable loop 

in length and amino acid composition, is the most difficult to predict [12, 21]. Several machine-

learning methods have been developed to facilitate nanobody structure prediction and design 

[64]. AlphaFold version 2.2 was used to model nanobody structures and was found to correctly 

predict the CDR-H3 loop conformations when compared to experimental structures [18]. The 

recently developed tool ImmuneBuilder, predicts CDR-H3 loops with an average RMSD of 2.9 

Å, representing a 0.5 Å improvement over AlphaFold2 [95]. NanoNet, trained specifically for 

nanobody structure prediction, offers rapid (a few milliseconds per nanobody) and efficient 

structural predictions allowing high-throughput structure modelling [96]. To assess the global 

structural flexibility and local conformations of a nanobody, MD simulations were carried out 

on both an experimentally determined structure and a model predicted by NanoNet. Notably, 

CDR-H1 and significant portions of CDR-H3 converged on distinct conformations [97]. This 

underscores the complexity of nanobody modelling, emphasising that a static experimentally-

derived “snapshot structure” may not comprehensively capture all the intriguing conformations 

nanobodies adopt. IgFold is a rapid and precise deep-learning method designed to predict 

antibody and nanobody structures based on sequence information [98]. The accuracy of IgFold 

predictions aligns with recent AlphaFold2 models, yet it operates at a significantly faster pace 

[94]. AbNatiV, a newly-developed deep learning tool, assesses the nativeness of antibodies and 

nanobodies, predicts immunogenicity likelihood and provides a residue-level profile to guide 

the engineering of antibodies and nanobodies that closely resemble those derived from the 

immune system [99]. 

Another challenge is the prediction of antibody– and nanobody–antigen complex structures  

[100, 101] and binding affinities [101]. While predictive docking of nanobody–antigen 

complexes and the identification of interaction surfaces still remains challenging [101], a study 

showed that using the empirical Dreiding force field [102] to calculate the interaction energies 

in nanobody–antigen complexes is effective. This approach was particuraly useful for 

reproducing the experimental binding poses predicted by the docking software ZDOCK [103]. 

The data-driven docking webserver Haddock [104], has also been widely used for predicting 

antigens binding to their nanobodies [80, 105-108]. It demonstrates superior performance and 

produces models of higher accuracy compared to other docking methods [109]. HDOCK [110] 

was found to be the most suitable program for docking of novel nanobodies to the receptor-

binding domain of SARS-CoV-2 with high accuracy [111]. While RosettaAntibody [112, 113] 

is also being used to predict nanobody–antigen complexes [114-116], there is ongoing research 

aimed at improving its accuracy and speed of CDR-H3 loop modeling [113]. PatchDock, which 

employs an algorithm capable of automatically detecting the CDRs of the antibody and restricts 

the search to these specific regions [117], has been integrated into a computational dock-and-

design workflow [79]. In this workflow, the docking poses generated by PatchDock closely 

resembeled the native ones [79]. A benchmarking study showed that the most recent iteration 

of AlphaFold (version 2.3.0) demonstrates a notable enhancement in near-native nanobody–

antigen modelling success of 27% versus 14% of cases for antibody–antigen complexes. This 

is a higher success rate compared to the previous version 2.2 of AlphaFold [118]. The better 

performance of modelling nanobody–antigen complexes versus antibody–antigen complexes 

was attributed to the lower number of CDR loops and, therefore, a smaller search space. 

Recently, a method involving the utilisation of AlphaFold2 with aggressive sampling, know as 

AFsample, emerged as the best approach for multimer prediction in CASP15 [119]. It was able 

to improve the quality of the generated models (DockQ score = 0.55) by employing extensive 
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sampling with a notable improvement compared to AlphaFold-Multimer v2 (DockQ score = 

0.41) [120].  

Estimating the binding affinities of nanobody–antigen complexes 
 

Estimating the binding affinities of nanobody–antigen complexes is a crucial aspect of 

understanding their interactions, optimising their therapeutic or diagnostic potential and 

identifying mutations that cause certain diseases. While experimental techniques are typically 

used as the gold standard to quantitatively assess binding affinity, computational methods can 

provide valuable insights into binding interactions which can facilitate the discovery of new or 

improved affinity binders, especially in cases where experimental data is limited or expensive 

to obtain. For instance, computational tools could be used to improve nanobody–antigen 

binding affinity by affinity maturation [79, 121], CDR-swapping mutagenesis [122], or the 

design of multivalent nanobodies [2, 56, 59, 60, 81]. Alchemical binding free energy 

perturbation calculations were used to estimate the free energy changes of antigen binding 

caused by nanobody residue mutations [123, 124]. Binding free energies between the 

nanobody–antigen complexes could also be calculated following MD simulations using the 

Molecular Mechanics/Poisson Boltzmann Surface Area (MM/PBSA) [79, 84] or Molecular 

Mechanics/Generalised Born Surface Area (MM/GBSA) [82] methods or docking scoring 

functions [125]. Experimental measurements reflect average values of numerous binding 

events, while MD enables construction of an equilibrium ensemble for accurate assessment of 

nanobody–antigen complexes. Evaluating binding affinity based on this ensemble rather than 

a single configuration, especially for complexes lacking structural information, minimises 

potential errors [125]. A recently developed unsupervised binding energy prediction tool 

DSMBind outperformed most of the unsupervised approaches and matched the performance 

of supervised models despite not using any binding affinity labels during training [126]. Its 

design capability was showcased through PD-L1 nanobody design task. Here, all three CDRs 

were randomised and the best CDR sequences were selected based on DSMBind score. The 

designed nanobodies were then tested experimentally and lead to the successful discovery of a 

novel PD-L1 specific binder [126]. While computational methods for predicting nanobody–

and antibody–antigen affinity have shown considerable advancements, there remains ongoing 

development to enhance accuracy further. This field is evolving rapidly, with increasing 

integration of machine learning algorithms [127, 128], suggesting a promising trajectory 

towards more precise and reliable affinity prediction in the future. 

 

Computational Approaches for Nanobody Design 
 

Structure- and fragment-based design of nanobodies 

 
Structure-based design of nanobodies involves rational engineering and modification to 

enhance binding affinity, improve stability, reduce immunogenicity, fine-tune biophysical 

properties, or tailore for specific applications. As an example, sequences of fibril-capping 

amyloid inhibitors (VDW, W3 and WIW) were grafted onto a previously reported nanobody 

CDR-H3 scaffold (PDB ID: 6HEQ) to halt tau aggregation linked to Alzheimer disease (Fig. 

4A) [129]. Additionally, a bispecific nanobody combining a blood brain barrier targeting 

nanobody (IR5, a nanobody that targets type 1 insulin-like growth factor receptor) [130] with 

the WIW tau capping nanobody inhibitor joined by a flexible linker (Gly4Ser)3 was designed 

[129]. This nanobody demonstrated improved blood brain barrier penetration suggesting a 
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promising avenue for inhibiting prion-like seeding of tau in neurodegenerative disorders. 

Design of a synthetic nanobody library is characterised by two crucial elements: framework 

selection and CDR design. The VHH framework derived from the recombinant anti-chicken 

lysozyme nanobody cAbBCII10 that possess high stability was selected, CDR-H1 and CDR-

H2 maintained the fixed length of cAbBCII10, while CDR-H3 featured a 14-unit loop to 

establish a convex binding site topology (Fig. 4B) [131]. Guided by the crystal structure 

analysis of cAbBCII10, positions for randomisation were identified, adjusting codon usage to 

ensure stability (Fig. 4B). This included retaining specific amino acids in key locations to 

promote stability, emphasising polarity at solvent-exposed positions, and excluding 

destabilising amino acids. This design strategy could be used on other stable frameworks with 

different CDR-H1-3 lengths [131]. To overcome the limitation of AlphaFold2 in predicting 

antibody-antigen structures [118], very recently, a fine-tuned RoseTTAFold2  and RFdiffusion 

network has been developed to de novo design nanobodies [132]. The designed complex 

display accurate prediction of the CDR loops and overall binding orientation. This protocol is 

expected to be the foundation for structure-based nanobody− and antibody−antigen design in 

the future [132]. In addition to structure-based design of nanobodies, fragment-based 

approaches, which involve the identification and optimisation of smaller antigen-binding 

fragments within the nanobody sequence, could be used. Recently, a fragment-based approach 

that involved the combinatorial design of nanobody binding loops and their grafting onto 

nanobody scaffolds has been developed (Fig. 4C) [133]. Biophysical characterisation has 

demonstrated that all designs exhibit stability and effectively bind their intended target human 

serum albumin with affinities in the nanomolar range. This strategy would facilitate the 

generation of lead nanobodies binding to preselected epitopes. 
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Fig. 4. (A) X-ray crystal structure of the WIW nanobody inhibitor showing its CDRs. CDR-H1 in green, 
CDR-H2 in blue, and CDR-H3 in red (PDB ID: 8FQ7). Figure adapted from reference [129]. (B) 
AbBCII10 structure (PDB ID: 3DWT). CDR-H1, CDR-H2 and CDR-H3 are coloured in blue, green, and 
red, respectively. Coloured spheres in CDR-H1 and CDR-H2 represent the randomised positions, while 
grey spheres represent CDR positions that were kept fixed. Figure adapted from reference [131]. (C) 
Grafting of designed CDR motifs onto antibody scaffolds. The structure of human serum albumin (HSA) 
is shown in grey, and the designed CDR motifs selected for experimental validation are shown in blue, 
yellow, and purple docked onto their respective epitopes. Two fragments (blue) are grafted into separate 
CDRs (CDR-H1 and CDR-H3) of a nanobody scaffold. The yellow and purple motifs are instead grafted 
into the CDR-H3 of a scaffold resilient to CDR-H3 substitutions. Figure adapted from reference [133]. 

 

 

Computational affinity maturation of nanobodies  
 

Computational affinity maturation of nanobodies refers to the process of using computational 

techniques to enhance the binding affinity of nanobodies by iteratively designing and 

optimising nanobody sequences or structures to improve their interactions with target antigens 

[121]. Computational methods enable the exploration of vast sequence and structural space to 

identify mutations [134, 135], modifications or non-natural amino acid incorporations [77] that 

enhance nanobody binding affinity while maintaining specificity and stability [76]. A 

computational protocol based on MD simulations, molecular docking scores, FoldX stability 

prediction, CamSol and A3D solubility estimations resulted in accurate  scoring methodologies 

for predicting experimental yields and identifying the structural modifications induced by 

mutations [136]. NanoBERT, a recently developed deep learning model, could be used to 

predict biologically feasible mutations in nanobodies based on their sequences [137]. The 

three-dimensional structure of a nanobody targeting CD20, a phosphoprotein highly expressed 

on B-cells in non-Hodgkin lymphomas, was constructed using homology modelling, followed 

by molecular docking calculations to observe its interaction with CD20 [138]. After identifying 

the key residues, some mutations were introduced using the experimental design (Taguchi 

method) [139] aiming to improve the binding affinity of the nanobody to CD20. Following the 

mutations proposed by the experimental design, two optimised nanobody structures were 

(C) 
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developed, with one demonstrating notably enhanced binding affinity. MD simulations of this 

nanobody, whose sequence has been deposited in the INDI repository and patented (accession 

no. US20180079822), revealed that CDR-H1 and CDR-H3 are essential loops for recognising 

the antigen [138]. In a recent study, various experimental methods in conjunction with in silico 

protein design were used to develop specific nanobodies that recognise one of the C-terminal 

zinc fingers of the transcription factor BCL11A, a pivotal regulator in the transition from fetal 

to adult-type hemoglobin [140]. To enhance their affinity, loops were introduced before and 

after the zinc-finger domain. The protein was then redesigned using Rosetta software [141] by 

introducing mutations at the interaction interface (Fig. 5). Following the design phase, key 

metrics such as the Rosetta score, RMSD, solvent-accessible surface buried in contact, and 

change in binding energy, were assessed to rank the designs. Subsequently, it was discovered 

that a nanobody with the M45D mutation improved binding affinity experimentally [140]. In 

another study, the identification of mutations that should confer higher affinity to the original 

nanobodies was done, exploiting Venn-intersection of multi-algorithms screening (VIMAS). 

VIMAS is a method that combines the results obtained from three different platforms (mCSM-

AB, OSPREY, and FoldX), which use alternative algorithms to predict the effect of mutations 

on affinity [106]. In this strategy, each amino acid was sequentially mutated to each of 17 amino 

acids (excluding Cys and Pro), and the binding affinity change relative to the parent nanobody 

was calculated [107]. Binding free energies of the new nanobody–antigen complexes were then 

calculated using potential of mean forces from umbrella sampling simulations. This allowed 

the identification of a bispecific construct able to bind simultaneously the two clinically 

relevant antigens tumor necrosis alpha and Interleukin 23 [107]. To accurately assess nanobody 

polyreactivity from protein sequences and predict the effects of amino acid mutations on 

polyreactivity, a machine-learning model trained on a diverse naïve synthetic nanobody library 

has been developed recently [142]. In summary, the interdisciplinary application of 

computational and experimental methods has significantly advanced the affinity and specificity 

of nanobodies for therapeutic targets, offering promising prospects for the development of 

improved therapies. Implementing deep learning approaches holds the potential to significantly 

reduce the overall timeline of the in silico maturation pipeline for antibodies and nanobodies 

[121, 143]. However, the current limitation lies in the availability of sufficient data [121]. 

Therefore, benchmarking efforts would prove invaluable in gathering the requisite data to 

ascertain the true state-of-the-art and pinpoint areas demanding focused research efforts. 

 

 

Fig. 5. Structure of zinc finger (ZF6) in complex with the M45D mutant nanobody (Nb6101) and 
BCL11A. Nb6101(M45D) is shown in green, ZF6 in magenta and BCL11A in yellow. Figure adapted 
from reference [140]. 
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Computational design of Quenchbodies  
 

In 2011, Ueda and co-workers introduced an innovative biosensor known as Quenchbody (Q-

body). A Q-body is a type of immunosensor designed for non-competitive homogeneous assays 

targeting a range of antigens, including small molecules [144]. The pivotal aspect of this 

technology involves labelling the antibody fragment with a fluorescent dye, which is quenched 

by intrinsic exposed tryptophan residues in the antibody fragment. When these antibody 

fragments bind to antigens, the fluorescent dye molecule is sterically occluded and moves away 

from the quenching tryptophans, resulting in an increase in fluorescence intensity [144, 145].  

Detecting antigens through fluorescence intensity changes is simple, easy to operate, and 

highly sensitive. The choice of the dye structure [146] the composition of the linker that 

attaches the dye to the antibody fragment (length and flexibility) [146-148], and the position 

of key quenching tryptophans [149, 150] has been studied for maximising the fluorescence 

quenching and antigen-dependent de-quenching. To date, various formats of Q-bodies have 

been developed targeting antigens of interest. Among these are the scFv-based Q-bodies that 

detect the antidepressant fluvoxamine [148] and the proinflammatory cytokine tumor necrosis 

factor alpha [151]. Additionally, there are Fab-based Q-bodies (also referred to as ultra Q-

bodies) that detect the highly-addictive psychostimulant methamphetamine [152], herbal 

cannabis [153] and amyloid β oligomers to aid the diagnosis of Alzheimer’s disease [154]. 

Finally, nanobody-based mini Q-bodies that detect the small hapten methotrexate [146], 

lysozyme [155] and recombinant human growth hormone and its isoforms [149] have been 

developed. Fab-based Q-bodies generally exhibit a more substantial increase in fluorescence 

upon binding to the antigen compared to the scFv-based ones [156]. Nanobody-based Q-bodies 

hold several advantages over scFv- or Fab-based quenchbodies. They have higher stability, 

increased tolerance to mutation, and are easier to produce [145].  Antibody Fab and nanobody 

fragments are also amenable to conversion to coiled Q-bodies (CQ-body) by the augmentation 

of a stable coiled-coil peptide pair comprised of E4 and K4 incorporated by a linker [157]. 

Association of the K3 or K4 coil with a covalently attached fluorophore strategically places the 

fluorescent dye in an ideal position for quenching, facilitating the development of fluorescent 

biosensors by non-covalent peptide labelling [158].  

 

The computational design of Q-bodies has been explored minimally thus far. A promising 

avenue for future endeavours involves leveraging MD simulations for the design of high-

performance Q-bodies. To our knowledge, the first in silico-guided study to understand their 

quenching mechanism has been published only recently [150]. This study identified the key 

quenching tryptophans of nanobody-based Q-bodies of maltose-binding protein (Qb-MBP) and 

lysozyme (Qb-Lys) (Fig. 6A). Through guidance provided by MD simulations (Fig. 6B), this 

study supports a working mechanism for nanobody-based quenchbodies, whereby CDR-based 

tryptophans that directly interface with antigens are the most important tryptophans for 

quenching of the dye [150]. Another computational study investigated the antigen-dependent 

fluorescence response of a single-chain scFv-based quenchbody against Myc-peptide antigen 

(Fig. 6C) [159]. The Myc-peptide antigen is peptide fragment derived from the c-Myc protein, 

which is a transcription factor that plays a crucial role in regulating cell proliferation, growth, 

apoptosis, and differentiation. The free-energy profile for the binding of the antigen to the 

variable heavy (VH) and light (VL) chains calculated from metadynamics MD simulations 

revealed that both chains bind in the presence of the antigen which seems to play an important 

role in binding [159] (Fig. 6D). Simulations also demonstrated that the fluorophore at the N-

terminus of VH interacts most stably with a key tryptophan (Trp103) (Fig. 6E). This provides 

computational support for the proposed experimental mechanism, where antigen presence 

buries tryptophan residues between VH and VL, eliminating fluorophore quenching [159]. 
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Fig. 6. (A) Normalised distribution histograms illustrating the total TAMRA-CDR-tryptophan distances 
(W101, W110 and W115) derived from MD simulations in the absence (blue) or presence (green) of 
antigen for the MBP-binding nanobody (PDB ID: 5M14). TAMRA is considered quenched by tryptophans 
at distances ≤ 10 Å (hatched zone). (B) Proposed mechanism for the MBP-binding quenchbody (blue) 
modelled from PDB ID: 5M14, with covalently-conjugated TAMRA at the N-terminus (green) undergoing 
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quenching due to interaction with the intrinsic CDR-based tryptophans (red spheres). Upon binding to 
the MBP antigen (grey surface model), TAMRA is sterically occluded from tryptophans (W101, W110 
and W115), which is associated with increased fluorescence intensity. Figure adapted from reference 

[150]. (C) Molecular structure of the VH and VL system. Trp36 and Trp103 in VH (stick) and antigen 
molecule (red) are highlighted. (D) Potential of mean force as a function of the VH-VL distance. The red 
curve corresponds to the antibody with the antigen and the blue curve corresponds to the antibody 
without the antigen. (E) Potential of mean force as a function of the distance between the dye rhodamine 
and Trp36 and between rhodamine and Trp103. Figure adapted from reference [159]. 

 

 

Conclusion 
 

In conclusion, the field of nanobody research and design is witnessing remarkable 

advancements driven by computational approaches and experimental investigations. 

Nanobodies, characterised by their small size, high specificity, and stability, hold immense 

promise for various biomedical applications including diagnostics, therapeutics, and 

biosensing. The structural and functional insights into nanobodies, as elucidated by MD 

simulations and experimental studies, have paved the way for rational design strategies aimed 

at enhancing binding affinity, stability, and specificity. Through computational affinity 

maturation techniques, such as MD simulations and machine-learning algorithms, researchers 

can iteratively optimise nanobody sequences to achieve desired properties and functionalities. 

Furthermore, the development of novel computational tools and databases, including those for 

structural prediction, antigen docking, and binding affinity estimation, continues to expand the 

repertoire of resources available for nanobody design and analysis. The emergence of 

innovative biosensing technologies like Q-bodies that can detect small molecules and proteins, 

underscores the versatility and potential of nanobodies in diverse applications beyond 

traditional antibody-based assays. The latter is just one example for how the computational 

design and optimisation of nanobodies is being applied for the development of improved 

nanobody-based research capabilities. In summary, the integration of computational 

approaches with experimental methodologies is revolutionising the field of nanobody research, 

enabling the rapid and precise design of nanobodies with tailored properties for specific 

applications. As computational techniques continue to evolve and improve, they will 

undoubtedly play a pivotal role in accelerating the development and deployment of nanobodies 

across a wide range of biomedical and biotechnological domains, ultimately contributing to 

advancements in healthcare and diagnostics. 
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