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ABSTRACT: In mixed quantum-classical dynamics, the time evolution of the quantum 

subsystem can involve both wave function and particle-like descriptions, which may 

yield inconsistent results for the expectation value of the same physical quantity. In this 

study, we propose a novel detailed complementary consistency (DCC) method, which 

achieves fully consistent results based only on the principle of internal consistency in 

nonadiabatic dynamics. Namely, wave function tells particle how to hop along each 

trajectory, while particle tells wave function how to collapse based on the occupation 

of active states. As benchmarked in a diverse array of representative models, DCC not 

only gives identical populations based on both wave functions and active states, but 

also closely and systematically reproduces the exact quantum dynamics. Due to the 

high performance, our new DCC method provides a promising approach toward more 

consistent mixed quantum-classical description of nonadiabatic dynamics with much 

better reliability and efficiency for general applications. 
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In chemistry, physics, biology, and materials science, many important processes 

(e.g. proton transfer1,2, charge transport3,4, exciton diffusion5,6, energy relaxation7,8, and 

singlet fission9,10) all belong to the category of nonadiabatic dynamics. Due to the 

presence of quantum transitions, the traditional Born-Oppenheimer approximation is 

no longer valid, and the electronic and nuclear dynamics are strongly coupled. To 

accurately simulate these processes, different quantum dynamics methods have been 

proposed, including, for instance, the multiconfigurational time-dependent Hartree 

(MCTDH)11,12, the time-dependent density matrix renormalization group (TD-

DMRG)13,14, and the hierarchical equations of motion (HEOM)15,16. Despite the great 

successes, fully quantum dynamics generally needs high computational cost, which has 

significantly limited their applications in nonadiabatic dynamics problems of large 

complex systems. 

Mixed quantum-classical dynamics has emerged as a promising alternative to fully 

quantum dynamics for studying complex nonadiabatic processes17,18. We may consider 

a general system with both electronic and nuclear degrees freedom, whose coordinates 

are r and x, respectively. At each time t along each trajectory j, the nuclear coordinates 

are given by ( )j tx  and the electronic wave function ( , )rj tψ  reads 

( , ) ( ) ( )r rj
j i i

j
t w tψ φ=∑ ,       (1) 

where ( )riφ  is the electronic basis for state i. In a mixed quantum-classical manner, 

the nuclei move classically and the electron is propagated quantum mechanically along 

the trajectory. As a result, the wave function description for the population distribution 

on electronic state i at position x is given by19 
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2wf 1( , ) ( ) ( )( )x x xj

ii i j
j

t w t
N

tρ δ= −∑ , (2) 

where N is the number of trajectories. To give a particle-like description of the same 

distribution, we also assume that each trajectory j occupies an active electronic state 

( )ja t  at time t. Then, the population distribution can be calculated by the probability 

that a trajectory stays at the specific position x and state i, 

 , ( )
as 1( , ) ( ( ))x x x

ji ai ti j
j

t
N

tρ δ δ= −∑ . (3) 

In principle, these two descriptions should yield identical results because they represent 

different interpretations of the same population distribution. In the discussions below, 

this is referred to as the principle of internal consistency. 

As a seminal mixed quantum-classical dynamics method, Tully’s fewest switches 

surface hopping (FSSH)20 has been widely utilized in many different fields. However, 

the standard FSSH does not guarantee the internal consistency due to the presence of 

frustrated hops and lack of decoherence21-24. Recently, we proposed the auxiliary 

branching corrected surface hopping (A-BCSH)25 method, which achieved much better 

accuracy and consistency simultaneously compared to FSSH. In addition, by 

introducing the particle-like description to the Ehrenfest mean field (EMF)26 dynamics, 

the auxiliary branching corrected mean field (A-BCMF)27 method not only gives 

correct channel populations but also captures the time-dependent spatial distribution of 

population. Both of these two auxiliary trajectory methods indicate an underlying 

connection between accuracy and internal consistency in mixed quantum-classical 

dynamics. 
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When inconsistency arises, equating wf ( , )xii tρ  and as ( , )xii tρ  cannot be directly 

carried out due to the ambiguity regarding the accuracy of these two quantities. To solve 

this problem, we can apply the consistency correction in some order. On one side, the 

wave function propagation follows the time-dependent Schrödinger equation (TDSE), 

giving the first-order derivative of population with respect to time and defining the 

population fluxes between any two states. These population fluxes cannot be directly 

obtained by the particle-like description based on active states, in which the trajectories 

move on adiabatic potential energy surfaces (PESs) by classical dynamics. Thereby, it 

is natural to use these fluxes to redistribute occupation of active states, which ensures 

the unidirectional consistency from wave function to particle-like descriptions. Namely, 

wave function tells particle how to hop, just as in the traditional FSSH. On the other 

side, the classical nuclear dynamics conserves the total energy and gives the reliable 

spatial distribution28,29. In comparison, the wave function evolution could increase the 

population of a specific state with higher energy than the total energy. Thereby, using 

active states to guide the wave function collapse also helps to achieve the internal 

consistency between wave function and particle-like descriptions. The surface hops do 

not directly impact the spatial distribution, and thus should be made prior to the wave 

function collapse. As a result, the internal consistency is realized for population 

distributions in both the nuclear phase space and the electronic state space. 

Based on the internal consistency, a general detailed complementary consistency 

(DCC) method is given below. The total Hamiltonian can be written as 

 ˆ ˆ ˆ ( ; )n eH T H+= r x , (4) 
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where n̂T   represents the kinetic energy operator of the nuclei, and ˆ ( ; )eH r x   is the 

electronic Hamiltonian operator at the given nuclear position x. By solving the time-

independent Schrödinger equation, 

 ˆ ( ; ) ; ) ; )((( )e i i iEH φ φ=r x r x x r x , (5) 

we can get the adiabatic energies ( )iE x  and the corresponding orthonormal adiabatic 

states { }; )(iφ r x . The electronic wave function ( )ψ r  can be linearly expanded as 

 (( ) ; )i i
i

cψ φ=∑r r x , (6) 

where ic  are the expansion coefficients. Substituting Eq. (6) into the TDSE results in 

 ( )x di j ij ij
j

di V i
d

c c
t

⋅= −∑ 
  , (7) 

where ˆ( ; ) | ( ; ) | ( ; )ij i e jV Hφ φ= r x r x r x   are the matrix elements of the adiabatic 

Hamiltonian and ( ; ) | ( ; )xd r x r xij i jφ φ∇=   are the nonadiabatic couplings (NACs) 

between adiabatic states i and j. The time evolution of the density matrix element 

*
ij i jc cρ =  along the trajectory is then given by 

 ( ) ( )ij kj ik ik ik kj kj
k

di V i V i
dt
ρ ρ ρ = − ⋅ − − ⋅ ∑ x d x d 

  

. (8) 

The nuclei are evolved on the active PES a through the Newtonian equation 

 aa
d

t
V

d
= −∇x

p , (9) 

where p represents the nuclear momenta. 

In principle, different approaches exist to ensure the consistency of active states 

based on the wave function. For instance, surface hopping probabilities can be defined 

based on NACs as in FSSH20 and global fluxes as in the global flux surface hopping 

(GFSH)28. Recently, we have shown that both FSSH and GFSH with proper branching 

correction gives identical results in multilevel scattering systems31. In addition, this 
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consistency correction can be realized via either coupled or independent trajectories. 

For simplicity, we here adapt the FSSH hopping probabilities and use velocity rescaling 

along the NAC direction for successful surface hops to conserve the total energy. 

Considering the consistency correction to the wave function based on active states, 

each trajectory has the corresponding wave function, the total number of wave function 

variables is larger than the total count of linear equations. Thereby, there also exist a 

variety of potential solutions for the correction. In this study, we propose the simplest 

approach. In detail, the diagonal elements of the density matrix iiρ′  is set as 

 as
ii iiρ ρ=′ , (10) 

where as
iiρ  represents the local occupancy of active states. Subsequently, we rescale 

the off-diagonal density matrix elements by 

 
| |

ii jj
ij ij

ij

ρ ρ
ρ ρ

ρ

′ ′
′ = , (11) 

where ijρ  and ijρ′  represent off-diagonal elements of the density matrix before and 

after the consistency correction, respectively. 

Suppose the nuclear coordinates and momenta along each trajectory i at time t are 

given by ( )i tx  and ( )i tp , respectively. For a specified trajectory i, we determine the 

number of local neighbors on each PES l within a specified distance ε whose directions 

of momenta are within a specified angular distance θ, 

 ( )2 2
,

1
|| || cos( )

|| | ||| | | j

N
i ji

i j
i

l l a
j j

N ε θ δ
=

 ⋅
Θ − Θ −  

 
=

⋅
−∑

p p
x x

p p
, (12) 

where ja  is the active state of trajectory j, || ||⋅  represents the Euclidean norm, and 

( )xΘ  is the Heaviside step function defined as 
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1, 0

( )
0, 0

x
x

x
≥

Θ =  <
. (13) 

Given Eq. (12), we can estimate the local trajectory density for the l-th trajectory as 

 ,as
i

i l
ll i

ll

N
N

ρ =
∑

. (14) 

Here, we have introduced the parameters ε and θ to estimate the number of trajectories 

within a local range to a specified trajectory, which significantly enhance the numerical 

stability and efficiency. 

To benchmark the performance of DCC, we here investigate a variety of two-level 

models, which have been extensively studied in the literature. Atomic units are used 

unless otherwise noted. We first focus on three one-dimensional standard scattering 

models proposed by Tully20, including the simple avoided crossing (SAC), the dual 

avoided crossing (DAC), the extended coupling with reflection (ECR) models. We then 

study two more challenging two-dimensional scattering models proposed by 

Subotnik32,33, i.e., STD-1 and STD-2 models. Finally, we consider three one-

dimensional bound-state models proposed by Agostini34,35, i.e., BS-1, BS-2 and BS-3 

models. Using the exact quantum dynamics by the discrete variable representation 

(DVR)36 method as references and the FSSH results for comparison, we reveal the 

universal applicability of DCC. To check the internal consistency, the DCC (FSSH) 

results based on active states and wave functions are named as DCC-as and DCC-wf 

(FSSH-as and FSSH-wf), respectively. 

In Figure 1A, we show the channel population of transmission on the upper PES 

as a function of the initial momentum k in the SAC model. While FSSH-as properly 

characterizes the dynamics, FSSH-wf performs well only for k >10. In the small k cases, 
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many trajectories do not have enough kinetic energies to hop to the upper state in the 

interacting region, leading to frustrated hops and inconsistency between active states 

and wave functions. As these trajectories leave the interacting region, the wave function 

calculated by TDSE still contributes to transmission on the upper PES, while the active 

states do not have such probabilities. Due to the inherent internal consistency, DCC 

naturally solves these issues. Regardless of the analysis method, both DCC-as and 

DCC-wf consistently reproduce the exact quantum dynamics. Figure 1B shows strong 

Steuckelberg oscillations in the transmission on the upper PES in the DAC model due 

to quantum interference. Compared with the exact quantum solutions, FSSH shows 

smaller oscillation amplitudes and different phases. Again, FSSH-as and FSSH-wf give 

inconsistent results for small k. In contrast, DCC gives fully consistent results and more 

closely reproduces the exact quantum dynamics. 

In Figures 1C and 1D, we study reflection on the lower PES and transmission on 

the upper PES in the ECR model, respectively. It is apparent that FSSH shows even 

more significant inconsistency. In high k cases, both DCC and FSSH agree well with 

the quantum dynamics. In principle, when the kinetic energies are not enough to afford 

surface hops to the upper PES, there should be no transmission on the excited PES. For 

small k, the FSSH-as and FSSH-wf results diverge from each other, with evident 

oscillations and overestimated strengths in the reflection probabilities on the lower PES. 

The inconsistent FSSH trajectories become more problematic when they re-enter the 

interaction region, leading to wrong population fluxes and errors in the reflection 

channel. In comparison, DCC always maintains the consistency, ensuring accurate 
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fluxes even when multiple interaction regions are present. These results highlight the 

importance of consistency in complex systems. 

Besides the final channel populations, we also examine the spatial distribution of 

population at different time to further benchmark the performance of FSSH and DCC. 

As an illustration, we consider the ECR model with the initial k = 10. Figure 2 illustrates 

three critical snapshots of the dynamics, i.e., entry of the initial wave packet into the 

interaction region, reflection of the wave packet on the upper PES due to insufficient 

kinetic energy, and reentry of the reflected wave packet into the interaction region. In 

the ECR model, the absence of significant splitting in the adiabatic potential energies 

within the interaction region allows the trajectories to have enough energy for surface 

hops, resulting in relatively consistent performance of FSSH in the first snapshot. As a 

result, both FSSH and DCC produce the spatial distributions of population that agree 

well with the exact quantum dynamics regardless of the trajectory analysis approach 

(see Figures 2A and 2D). However, inconsistency emerges in FSSH-as and FSSH-wf 

results when the wave packets exit the interaction region and branch on different PESs 

(see Figures 2B and 2E). In particular, FSSH-wf underestimates (overestimates) the 

population of the upper (lower) state for x < -1.5, and it is the opposite for x > 1.5. As 

shown in Figures 2C and 2F, the inconsistency of FSSH results in inaccurate transitions 

upon re-entering the interaction region, significantly deviating from the exact quantum 

dynamics. Encouragingly, DCC consistently reproduces the correct spatial distributions 

of population throughout the simulation. 

In the one-dimensional scattering models studied above, DCC has demonstrated 
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consistency and high accuracy simultaneously. We further investigate whether the DCC 

method can effectively describe more complex problems involving more classical 

degrees of freedom. We consider two representative models proposed by Subotnik. The 

Hamiltonian of the STD-1 model is defined by 

 11 1 1( , ) tanh( )H x y A B x= − , (15) 

 22 2 2 2 2 2( , ) tanh[ ( 1) cos( / 2)] 3 / 4H x y A B x C D y Aπ= − + + + , (16) 

 2
21 3 3( , ) exp( )H x y A B x= − , (17) 

where A1 = 0.05, B1 = 0.6, A2 = 0.2, B2 = 0.6, C2 = 2.0, D2 = 0.3, A3 = 0.015, and B3 = 

0.3. In the original study of Subotnik, an initial Gaussian wave packet is placed on the 

upper surface at (x0, y0) where x0 = -4.0 and y0 ranges in -2.0, -1.0, 0.0, 1.0 and 2.0. To 

assess the performance of our DCC method across a broader range of parameters, we 

here expand the range of (x0, y0) for the initial wave packet. Namely, x0 still takes the 

value of -4.0, but y0 now spans in -2.0, -1.0, 0.0, 1.0, 2.0, 3.0, 4.0, 5.0, and the initial 

momentum is oriented at angles of 15, 30, and 45 degrees relative to the x-axis. The 

wave packet is placed on either the adiabatic ground state or excited state. When the 

initial wave packet is on the ground (excited) state, the momenta range from 8 to 20 (4 

to 16). We use a time step of dt = 0.2 and obtain a snapshot every 500 time steps. The 

boundaries are set from -15 to 15. For each set of initial parameters, the maximum 

simulation time for the dynamics corresponds to the time at which the electronic 

population of 10-6 passes through the boundary in exact quantum dynamics. The entire 

space is divided by two central lines (i.e., x = 0 and y = 0) into four sections. This 

division, along with the incorporation of two electronic states, results in a total number 
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of eight channels. The population of each channel is calculated by integrating the 

electronic population density within the corresponding channel. 

In Figure 3, we show the root mean square errors (RMSE) in channel populations 

at the final snapshot for different initial conditions. The RMSE is defined as 

 ( )
1

2method,j DVR,j
8

1

1RMSE
8 i i

M

j i
PP

= =

= −∑∑ , (18) 

where M represents the number of total initial conditions, method, j
iP  is the population 

of the i-th channel for the j-th initial condition by a surface hopping method. The RMSE 

quantifies the average error between the results of a method and the exact quantum 

solutions, providing a comprehensive measure of accuracy in predicting channel 

populations for a large range of initial conditions. 

Figures 3A and 3B show notable RMSE differences between the FSSH-as and 

FSSH-wf results with a value of about 0.09. This divergence points to a considerable 

inconsistency in FSSH. Even when employing the active states for analysis, the error 

remains at about 0.03. This higher error mirrors the similar challenges seen in the ECR 

model. A key issue arises after the wave packet encounters steep PESs, leading to a 

significant divergence between the results based on active states and wave functions, 

primarily due to the branching of wave packets. In addition, cumulative errors manifest 

when the wave packet reenters the interaction region. In contrast, the DCC method is 

free from these complications. By consistently holding the internal consistency, it 

avoids the error caused by wave packet branching and frustrated hopping, significantly 

reducing the errors to about 0.01, a substantial reduction of nearly two-thirds. Notably, 

both trajectory analysis methods produce identical results with DCC. 
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The Hamiltonian of the STD-2 model is defined by 

 11 0( , )H x y E= − , (19) 

 ( )( )2 2
22 ( , ) exp 0.7 ) 0.25(5( )H x y A B x y x y= +− − + − , (20) 

 ( )( )2 2
12 21( , ) ( , ) exp 0.25 7( 0) . 5( )H x y H x y C D x y x y= = − + −+ , (21) 

where A = 0.15, B = 0.14, C = 0.015, D = 0.06, and E0 = 0.05. In conducting a thorough 

evaluation of FSSH and DCC, we established initial conditions with x0 = -8 and y0 

varying from -2 to 5 and altered the angle θ at intervals of 0°, 15°, 30°, and 45° relative 

to the x-axis. An initial wave packet is placed either on the adiabatic ground state or the 

excited state. When initiating from the ground (excited) state, the momenta range from 

16 to 28 (8 to 20). As a result, we analyzed the channel populations over a 

comprehensive set of 832 initial conditions calculated by the FSSH and DCC methods 

based on the two distinct analysis strategies. The time step size is fixed at dt = 0.2, with 

x-axis boundaries from -15.0 to 25.0 and y-axis boundaries from -15.0 to 25.0. The 

definition of channel populations is consistent with that in STD-1. 

As shown in Figures 3C and 3D, FSSH-as and FSSH-wf produce inconsistent 

results, with errors about 0.04 when compared to the exact quantum dynamics. In 

contrast, DCC-as and DCC-wf yield identical results, consistently reducing the error 

for each initial momentum to approximately 0.01. As a result, this represents a 

substantial reduction of nearly 75% in error. These results further suggest that ensuring 

the internal consistency between occupation of active states and population based on 

wave functions can significantly reduce the errors inherent in FSSH. As a result, the 

DCC method not only provides qualitatively accurate results but also achieves smaller 
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quantitative errors, enhancing the overall reliability and precision. 

We further select an initial condition for the STD-2 model where the trajectory 

starts from the excited state with initial parameters x = -8, y = 0, θ = 15° and k = 16. In 

Figures 4a and 4b, we show the population distributions of the excited and ground states 

at the final snapshot t = 1900 au. As the initial wave packet enters the interaction region 

from the left, a new wave packet component is formed on the excited PES due to the 

NAC. These wave packets branch in the interaction region. While the initial wave 

packet remains in this region, it spawns another wave packet on the ground PES. 

However, because the interaction is not strong at the edge of the interaction region, the 

intensity of the new wave packet is relatively weak. At the final moment, the wave 

packets are completely separated, resulting in two primary population channels and a 

secondary population channel. It is apparent that the FSSH population distribution 

based on wave functions shows wrong numbers of wave packets on both the ground 

and excited PESs. In contrast, DCC successfully reproduces both the shape and peak 

intensity of the exact quantum dynamics. This further demonstrates the accuracy of 

DCC in handling branching within the interaction region. 

To further examine the performance of DCC in condensed phase systems, we 

consider a one-dimensional bound-state model, which consists of one nuclear degree of 

freedom and two electronic states. The Hamiltonian is given by 

 2
11 1

1
2

( ) ( )H x k R R= − , (22) 

 2
22 2

1( , ) ( )
2

H x y k R R= − + ∆ , (23) 

 2
3 )

12 21
(a R RH beH − −== , (24) 
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where k = 0.02, a = 3.0, R1 = 6.0 and R2 = 2.0. We consider different energy difference 

Δ and reorganization energy 2
1 2( ) / 2rE k R R= −  . BS-1 and BS-3 are in the direct 

regime and BS-2 is in the inverted regime. The other parameters are listed in the 

Supporting Information. In BS-1 and BS-2, the initial wave packets are fully promoted 

to the excited state. In BS-3, however, 20% of the probability density gets vertically 

promoted to the excited state creating a coherent superposition to mimic the effect of a 

short laser and the wave packet is simulated from this state with the field turned off. 

The excited state populations can be calculated as 

 as
2,22 ( )

1( )
ja t

j
t

N
ρ δ= ∑ , (25) 

 
2

22
wf

2 (1 )j

j
w t

N
ρ = ∑ . (26) 

With the population distributions in Eq. (2), we can define the coherence as 

 1 22

22

1
12

11

( , ) ( , )d
( , ) (

)
, )

( t t
t t

t ρ ρσ
ρ ρ+

= ∫
x xx

x x
, (27) 

which indicates the intensity of overlap for the wave packets. 

As shown in Figure 5, the excited-state population in the exact quantum dynamics 

experiences stepwise transitions to the ground state, as the nuclear wave packet 

periodically evolves through the crossing region. And the coherence shows periodic 

increase and subsequent decay to zero because of the reflection and separation of wave 

packets on different surfaces. In all the three investigated bound-state models under 

various parameters and initial conditions, DCC shows accurate and consistent results 

between occupation of active states and population based on wave functions. 

Conversely, the FSSH method yields inconsistent and inaccurate results. As shown in 
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Figure 5E, the wave functions in FSSH even erroneously give an increase in the 

population of the excited state. In addition, FSSH-as overestimates the population 

transfer from the excited state to the ground state due to the lack of decoherence, leading 

to substantial deviations from the exact quantum dynamics. The shortcomings of FSSH 

become more pronounced when its inconsistent wave functions are used in coherence 

calculations. As shown in Figures 5B, 5D and 5F, the wave functions remain coherent 

after the first coherent event. In comparison, DCC successfully captures the 

decoherence by the exact quantum dynamics. 

Finally, there are still a few points worth discussing. (1) In principle, multiple 

potential solutions are present to ensure the consistency between active states and wave 

functions. For clarity, we adopt the simplest approach in the present study, wherein the 

population of each state for any trajectory follows the local occupation of active states. 

The principle of internal consistency can be also realized by solving more equations. 

(2) In this study, the DCC algorithm relies solely on the local occupation of active states, 

which can be regarded as the local trajectory density approximation. We have shown 

that even this approximation could give encouraging results. Advanced corrections 

could be implemented by considering the spatial gradient or higher-order derivatives of 

the trajectory density to consider non-local effects. (3) The number of trajectories 

needed for direct DCC simulations increases with the spatial dimensionality. To 

consider the internal consistency principle for general condensed matter systems (e.g., 

the Fenna-Mathews-Olson complex37 and the spin-boson models38-40), efficient 

strategies are required to reduce the number of trajectories. These studies are currently 
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under way. 

In summary, we have proposed the principle of internal consistency for results 

based on wave functions and active states to reproduce the exact quantum results. Based 

on this principle, we have presented a novel DCC method for mixed quantum-classical 

dynamics. This involves surface hops and wave function collapse based on the 

occupation of active states from the neighboring trajectories. DCC has been extensively 

benchmarked in both one-dimensional and two-dimensional systems. The results have 

consistently exhibited high accuracy, regardless of whether the active states or wave 

functions are used for trajectory analysis. The remarkable accuracy achieved by DCC 

presents significant potential for its application in general complex nonadiabatic 

problems. From some point of view, our DCC method can be regarded as a self-

consistent description of the wave-particle duality and deserves further study. 
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Figure 1. Transmission probabilities on the upper surface for (A) SAC and (B) DAC 

models, and (C) reflection probabilities on the lower surface and (D) transmission 

probabilities on the upper surface for the ECR model. The black open circles represent 

the exact quantum dynamics by DVR. The results of FSSH-as, FSSH-wf, DCC-as and 

DCC-wf are shown by light blue, blue, light red and red solid circles, respectively. 
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Figure 2. Population distributions on the (A-C) upper and (D-F) lower surfaces for the 

ECR model with the initial momentum of k = 10 au. The black lines represent the exact 

quantum dynamics by DVR. The results of FSSH-as, FSSH-wf, DCC-as and DCC-wf 

are shown by light blue, blue, light red, and red lines, respectively. The upper and lower 

adiabatic PESs are shown by grey lines. (A, D), (B, E) and (C, F) correspond to t = 

3000, 4000 and 6000 au, respectively. 
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Figure 3. RMSE of populations for the STD-1 model when initially starting from the 

(A) lower and (B) upper surfaces, and RMSE of populations for the STD-2 model when 

initially starting from the (C) lower and (D) upper surfaces. The results of FSSH-as, 

FSSH-wf, DCC-as and DCC-wf are shown by light blue, blue, light red and red solid 

circles, respectively. 
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Figure 4. Spatial distribution of population for the STD-2 model on the (A-C) upper 

and (D-F) lower surfaces at t = 1900 au. The initial wave packet is placed on the upper 

surface with the parameters x = -8, y = 0, θ = 15° and k = 16. (A, D), (B, E) and (C, F) 

correspond to the exact quantum dynamics by DVR, the results by FSSH-wf and DCC-

wf, respectively. The lighter colors indicate higher populations.  
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Figure 5. Time-dependent population of the excited-state population and coherence for 

the (A, B) BS-1, (C, D) BS-2 and (E, F) BS-3 models. The black lines represent the 

exact quantum dynamics. In (A, C, E), the results of FSSH-as, FSSH-wf, DCC-as and 

DCC-wf are shown by light blue, blue, light red and red lines, respectively. In (B, D, 

F), the results of FSSH and DCC are shown by blue and red lines, respectively. 
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