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ABSTRACT: In mixed quantum-classical dynamics, the time evolution of the quantum
subsystem can involve both wave function and particle-like descriptions, which may
yield inconsistent results for the expectation value of the same physical quantity. In this
study, we propose a novel detailed complementary consistency (DCC) method, which
achieves fully consistent results based only on the principle of internal consistency in
nonadiabatic dynamics. Namely, wave function tells particle how to hop along each
trajectory, while particle tells wave function how to collapse based on the occupation
of active states. As benchmarked in a diverse array of representative models, DCC not
only gives identical populations based on both wave functions and active states, but
also closely and systematically reproduces the exact quantum dynamics. Due to the
high performance, our new DCC method provides a promising approach toward more
consistent mixed quantum-classical description of nonadiabatic dynamics with much

better reliability and efficiency for general applications.
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In chemistry, physics, biology, and materials science, many important processes
(e.g. proton transfer!-?, charge transport®*, exciton diffusion>%, energy relaxation’*, and
singlet fission>!”) all belong to the category of nonadiabatic dynamics. Due to the
presence of quantum transitions, the traditional Born-Oppenheimer approximation is
no longer valid, and the electronic and nuclear dynamics are strongly coupled. To
accurately simulate these processes, different quantum dynamics methods have been
proposed, including, for instance, the multiconfigurational time-dependent Hartree
(MCTDH)!!"!2| the time-dependent density matrix renormalization group (TD-
DMRG)'*!*, and the hierarchical equations of motion (HEOM)'>!®. Despite the great
successes, fully quantum dynamics generally needs high computational cost, which has
significantly limited their applications in nonadiabatic dynamics problems of large
complex systems.

Mixed quantum-classical dynamics has emerged as a promising alternative to fully
quantum dynamics for studying complex nonadiabatic processes!”"'8. We may consider
a general system with both electronic and nuclear degrees freedom, whose coordinates
are r and x, respectively. At each time ¢ along each trajectory j, the nuclear coordinates
are given by x,(¢) and the electronic wave function |!// ; (r,l‘)> reads

v, (r.0)= 2w/ 0] 4), (1)
J
where |4,(r)) is the electronic basis for state i. In a mixed quantum-classical manner,

the nuclei move classically and the electron is propagated quantum mechanically along
the trajectory. As a result, the wave function description for the population distribution

on electronic state i at position X is given by!®
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Pt k) = X 0f 8- x,0), )

where N is the number of trajectories. To give a particle-like description of the same
distribution, we also assume that each trajectory j occupies an active electronic state

a;(t) at time 7. Then, the population distribution can be calculated by the probability

that a trajectory stays at the specific position x and state i,
as 1
P60 =528, (% =X,(0). 3)
J

In principle, these two descriptions should yield identical results because they represent
different interpretations of the same population distribution. In the discussions below,
this is referred to as the principle of internal consistency.

As a seminal mixed quantum-classical dynamics method, Tully’s fewest switches
surface hopping (FSSH)? has been widely utilized in many different fields. However,
the standard FSSH does not guarantee the internal consistency due to the presence of
frustrated hops and lack of decoherence?!**. Recently, we proposed the auxiliary
branching corrected surface hopping (A-BCSH)?® method, which achieved much better
accuracy and consistency simultaneously compared to FSSH. In addition, by
introducing the particle-like description to the Ehrenfest mean field (EMF)?® dynamics,
the auxiliary branching corrected mean field (A-BCMF)?” method not only gives
correct channel populations but also captures the time-dependent spatial distribution of
population. Both of these two auxiliary trajectory methods indicate an underlying

connection between accuracy and internal consistency in mixed quantum-classical

dynamics.
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When inconsistency arises, equating p;" (x,#) and p(x,#) cannot be directly
carried out due to the ambiguity regarding the accuracy of these two quantities. To solve
this problem, we can apply the consistency correction in some order. On one side, the
wave function propagation follows the time-dependent Schrédinger equation (TDSE),
giving the first-order derivative of population with respect to time and defining the
population fluxes between any two states. These population fluxes cannot be directly
obtained by the particle-like description based on active states, in which the trajectories
move on adiabatic potential energy surfaces (PESs) by classical dynamics. Thereby, it
is natural to use these fluxes to redistribute occupation of active states, which ensures
the unidirectional consistency from wave function to particle-like descriptions. Namely,
wave function tells particle how to hop, just as in the traditional FSSH. On the other
side, the classical nuclear dynamics conserves the total energy and gives the reliable
spatial distribution?®?’. In comparison, the wave function evolution could increase the
population of a specific state with higher energy than the total energy. Thereby, using
active states to guide the wave function collapse also helps to achieve the internal
consistency between wave function and particle-like descriptions. The surface hops do
not directly impact the spatial distribution, and thus should be made prior to the wave
function collapse. As a result, the internal consistency is realized for population
distributions in both the nuclear phase space and the electronic state space.

Based on the internal consistency, a general detailed complementary consistency
(DCC) method is given below. The total Hamiltonian can be written as

ﬁzfnJrﬁle(r;x), “4)
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where 7 represents the kinetic energy operator of the nuclei, and A (r;x) is the
electronic Hamiltonian operator at the given nuclear position x. By solving the time-
independent Schrodinger equation,

H,(r;x)|¢,(r;x)) = E,(x)|¢,(r; x)) » (5)
we can get the adiabatic energies E (x) and the corresponding orthonormal adiabatic

states {| P.(r; X)>} . The electronic wave function |y/(r)) can be linearly expanded as

|z//(r)> = ZCI. |¢,.(r;x)> s (6)

i

where ¢, are the expansion coefficients. Substituting Eq. (6) into the TDSE results in
. d e
lhEci=ch(VU—1hx-dU.), (7)
J
where V), = <¢, (r;x)| ﬁe (r;x)| ¢, (r;x)> are the matrix elements of the adiabatic
Hamiltonian and d; :<¢i(r;x) |V, 9, (r; X)> are the nonadiabatic couplings (NACs)

between adiabatic states i and j. The time evolution of the density matrix element

p,; =cc, along the trajectory is then given by

L d e e
lhE'oij:;[pkj(l/ik_lhx.dik)_pik(VAj_th'dkj):|' (8)
The nuclei are evolved on the active PES a through the Newtonian equation

dp

L_ vy, 9

dt X aa ( )

where p represents the nuclear momenta.

In principle, different approaches exist to ensure the consistency of active states
based on the wave function. For instance, surface hopping probabilities can be defined
based on NACs as in FSSH?® and global fluxes as in the global flux surface hopping
(GFSH)?®. Recently, we have shown that both FSSH and GFSH with proper branching

correction gives identical results in multilevel scattering systems’!. In addition, this
5
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consistency correction can be realized via either coupled or independent trajectories.
For simplicity, we here adapt the FSSH hopping probabilities and use velocity rescaling
along the NAC direction for successful surface hops to conserve the total energy.
Considering the consistency correction to the wave function based on active states,
each trajectory has the corresponding wave function, the total number of wave function
variables is larger than the total count of linear equations. Thereby, there also exist a

variety of potential solutions for the correction. In this study, we propose the simplest

approach. In detail, the diagonal elements of the density matrix p,, is set as
o= at (10)
where p:° represents the local occupancy of active states. Subsequently, we rescale

the off-diagonal density matrix elements by

PP
Py == Pi>s (11)
| p; |

where p, and p/ represent off-diagonal elements of the density matrix before and

after the consistency correction, respectively.
Suppose the nuclear coordinates and momenta along each trajectory i at time ¢ are

given by x,(f) and p,(¢), respectively. For a specified trajectory i, we determine the
number of local neighbors on each PES / within a specified distance ¢ whose directions

of momenta are within a specified angular distance 6,

N P
N =Y 0(=lx -, )0 —=>—cos(6) |3, (12)
= p; (111, /
where a, is the active state of trajectory j, ||| represents the Euclidean norm, and

O(x) is the Heaviside step function defined as
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I, x>0

. 13
0, x<0 (13)

O(x) = {

Given Eq. (12), we can estimate the local trajectory density for the /-th trajectory as
N, Ny
N

i,as

Py = (14)

Here, we have introduced the parameters ¢ and 6 to estimate the number of trajectories
within a local range to a specified trajectory, which significantly enhance the numerical
stability and efficiency.

To benchmark the performance of DCC, we here investigate a variety of two-level
models, which have been extensively studied in the literature. Atomic units are used
unless otherwise noted. We first focus on three one-dimensional standard scattering
models proposed by Tully?°, including the simple avoided crossing (SAC), the dual
avoided crossing (DAC), the extended coupling with reflection (ECR) models. We then
study two more challenging two-dimensional scattering models proposed by
Subotnik®>¥, ie., STD-1 and STD-2 models. Finally, we consider three one-
dimensional bound-state models proposed by Agostini**¥ i.e., BS-1, BS-2 and BS-3
models. Using the exact quantum dynamics by the discrete variable representation
(DVR)*® method as references and the FSSH results for comparison, we reveal the
universal applicability of DCC. To check the internal consistency, the DCC (FSSH)
results based on active states and wave functions are named as DCC-as and DCC-wf
(FSSH-as and FSSH-wf), respectively.

In Figure 1A, we show the channel population of transmission on the upper PES
as a function of the initial momentum £ in the SAC model. While FSSH-as properly

characterizes the dynamics, FSSH-wf performs well only for £ >10. In the small & cases,
7
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many trajectories do not have enough kinetic energies to hop to the upper state in the
interacting region, leading to frustrated hops and inconsistency between active states
and wave functions. As these trajectories leave the interacting region, the wave function
calculated by TDSE still contributes to transmission on the upper PES, while the active
states do not have such probabilities. Due to the inherent internal consistency, DCC
naturally solves these issues. Regardless of the analysis method, both DCC-as and
DCC-wf consistently reproduce the exact quantum dynamics. Figure 1B shows strong
Steuckelberg oscillations in the transmission on the upper PES in the DAC model due
to quantum interference. Compared with the exact quantum solutions, FSSH shows
smaller oscillation amplitudes and different phases. Again, FSSH-as and FSSH-wf give
inconsistent results for small £. In contrast, DCC gives fully consistent results and more
closely reproduces the exact quantum dynamics.

In Figures 1C and 1D, we study reflection on the lower PES and transmission on
the upper PES in the ECR model, respectively. It is apparent that FSSH shows even
more significant inconsistency. In high & cases, both DCC and FSSH agree well with
the quantum dynamics. In principle, when the kinetic energies are not enough to afford
surface hops to the upper PES, there should be no transmission on the excited PES. For
small k, the FSSH-as and FSSH-wf results diverge from each other, with evident
oscillations and overestimated strengths in the reflection probabilities on the lower PES.
The inconsistent FSSH trajectories become more problematic when they re-enter the
interaction region, leading to wrong population fluxes and errors in the reflection

channel. In comparison, DCC always maintains the consistency, ensuring accurate
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fluxes even when multiple interaction regions are present. These results highlight the
importance of consistency in complex systems.

Besides the final channel populations, we also examine the spatial distribution of
population at different time to further benchmark the performance of FSSH and DCC.
As an illustration, we consider the ECR model with the initial £ = 10. Figure 2 illustrates
three critical snapshots of the dynamics, i.e., entry of the initial wave packet into the
interaction region, reflection of the wave packet on the upper PES due to insufficient
kinetic energy, and reentry of the reflected wave packet into the interaction region. In
the ECR model, the absence of significant splitting in the adiabatic potential energies
within the interaction region allows the trajectories to have enough energy for surface
hops, resulting in relatively consistent performance of FSSH in the first snapshot. As a
result, both FSSH and DCC produce the spatial distributions of population that agree
well with the exact quantum dynamics regardless of the trajectory analysis approach
(see Figures 2A and 2D). However, inconsistency emerges in FSSH-as and FSSH-wf
results when the wave packets exit the interaction region and branch on different PESs
(see Figures 2B and 2E). In particular, FSSH-wf underestimates (overestimates) the
population of the upper (lower) state for x < -1.5, and it is the opposite for x > 1.5. As
shown in Figures 2C and 2F, the inconsistency of FSSH results in inaccurate transitions
upon re-entering the interaction region, significantly deviating from the exact quantum
dynamics. Encouragingly, DCC consistently reproduces the correct spatial distributions
of population throughout the simulation.

In the one-dimensional scattering models studied above, DCC has demonstrated
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consistency and high accuracy simultaneously. We further investigate whether the DCC
method can effectively describe more complex problems involving more classical
degrees of freedom. We consider two representative models proposed by Subotnik. The

Hamiltonian of the STD-1 model is defined by

Hll(x:y):_Al ta’nh(le)a (15)
H,,(x,y)=A4, tanh[B,(x-1)+ C, cos(D,y+ 7 /2)]+34, /4, (16)
H, (x,y) = A4, exp(-B,x*), (17)

where 4, =0.05, B, =0.6,4,=0.2,B,=0.6, C,=2.0, D, =0.3, 4, =0.015, and B, =
0.3. In the original study of Subotnik, an initial Gaussian wave packet is placed on the
upper surface at (x,, y,) where x, = -4.0 and y, ranges in -2.0, -1.0, 0.0, 1.0 and 2.0. To
assess the performance of our DCC method across a broader range of parameters, we
here expand the range of (x,, y,) for the initial wave packet. Namely, x, still takes the
value of -4.0, but y, now spans in -2.0, -1.0, 0.0, 1.0, 2.0, 3.0, 4.0, 5.0, and the initial
momentum is oriented at angles of 15, 30, and 45 degrees relative to the x-axis. The
wave packet is placed on either the adiabatic ground state or excited state. When the
initial wave packet is on the ground (excited) state, the momenta range from 8 to 20 (4
to 16). We use a time step of df = 0.2 and obtain a snapshot every 500 time steps. The
boundaries are set from -15 to 15. For each set of initial parameters, the maximum
simulation time for the dynamics corresponds to the time at which the electronic
population of 10" passes through the boundary in exact quantum dynamics. The entire
space is divided by two central lines (i.e., x = 0 and y = 0) into four sections. This
division, along with the incorporation of two electronic states, results in a total number

10
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of eight channels. The population of each channel is calculated by integrating the
electronic population density within the corresponding channel.
In Figure 3, we show the root mean square errors (RMSE) in channel populations

at the final snapshot for different initial conditions. The RMSE is defined as

RMSE = \/

where M represents the number of total initial conditions, 2™"*/ is the population

z (Pimethod,j _BDVR,j )2 , (18)

M 8
j=1 i=1

oo | —

of the i-th channel for the j-th initial condition by a surface hopping method. The RMSE
quantifies the average error between the results of a method and the exact quantum
solutions, providing a comprehensive measure of accuracy in predicting channel
populations for a large range of initial conditions.

Figures 3A and 3B show notable RMSE differences between the FSSH-as and
FSSH-wf results with a value of about 0.09. This divergence points to a considerable
inconsistency in FSSH. Even when employing the active states for analysis, the error
remains at about 0.03. This higher error mirrors the similar challenges seen in the ECR
model. A key issue arises after the wave packet encounters steep PESs, leading to a
significant divergence between the results based on active states and wave functions,
primarily due to the branching of wave packets. In addition, cumulative errors manifest
when the wave packet reenters the interaction region. In contrast, the DCC method is
free from these complications. By consistently holding the internal consistency, it
avoids the error caused by wave packet branching and frustrated hopping, significantly
reducing the errors to about 0.01, a substantial reduction of nearly two-thirds. Notably,

both trajectory analysis methods produce identical results with DCC.
11
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The Hamiltonian of the STD-2 model is defined by

Hll(x’y)z_E07 (19)
Hy,(x,y)=—A exp(—B(0.75(x+ )2 +0.25(x — ) )) (20)
H,(x,y)=H, (x,y) = Cexp(—D(O.25(x +3)’ +0.75(x — )’ )) : 1)

where 4 =0.15, B=0.14, C=0.015, D = 0.06, and E, = 0.05. In conducting a thorough
evaluation of FSSH and DCC, we established initial conditions with x, = -8 and y,
varying from -2 to 5 and altered the angle 0 at intervals of 0°, 15°, 30°, and 45° relative
to the x-axis. An initial wave packet is placed either on the adiabatic ground state or the
excited state. When initiating from the ground (excited) state, the momenta range from
16 to 28 (8 to 20). As a result, we analyzed the channel populations over a
comprehensive set of 832 initial conditions calculated by the FSSH and DCC methods
based on the two distinct analysis strategies. The time step size is fixed at df = 0.2, with
x-axis boundaries from -15.0 to 25.0 and y-axis boundaries from -15.0 to 25.0. The
definition of channel populations is consistent with that in STD-1.

As shown in Figures 3C and 3D, FSSH-as and FSSH-wf produce inconsistent
results, with errors about 0.04 when compared to the exact quantum dynamics. In
contrast, DCC-as and DCC-wf yield identical results, consistently reducing the error
for each initial momentum to approximately 0.01. As a result, this represents a
substantial reduction of nearly 75% in error. These results further suggest that ensuring
the internal consistency between occupation of active states and population based on
wave functions can significantly reduce the errors inherent in FSSH. As a result, the

DCC method not only provides qualitatively accurate results but also achieves smaller

12
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quantitative errors, enhancing the overall reliability and precision.

We further select an initial condition for the STD-2 model where the trajectory
starts from the excited state with initial parameters x =-8, y =0, § = 15° and k= 16. In
Figures 4a and 4b, we show the population distributions of the excited and ground states
at the final snapshot # = 1900 au. As the initial wave packet enters the interaction region
from the left, a new wave packet component is formed on the excited PES due to the
NAC. These wave packets branch in the interaction region. While the initial wave
packet remains in this region, it spawns another wave packet on the ground PES.
However, because the interaction is not strong at the edge of the interaction region, the
intensity of the new wave packet is relatively weak. At the final moment, the wave
packets are completely separated, resulting in two primary population channels and a
secondary population channel. It is apparent that the FSSH population distribution
based on wave functions shows wrong numbers of wave packets on both the ground
and excited PESs. In contrast, DCC successfully reproduces both the shape and peak
intensity of the exact quantum dynamics. This further demonstrates the accuracy of
DCC in handling branching within the interaction region.

To further examine the performance of DCC in condensed phase systems, we
consider a one-dimensional bound-state model, which consists of one nuclear degree of

freedom and two electronic states. The Hamiltonian is given by

Hy () = KR= R 22)
H,,(x, )= %k(R _RY+A, (23)
H,, =H, =be "%, (24)

13
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where £ =0.02, a = 3.0, R = 6.0 and R> = 2.0. We consider different energy difference
A and reorganization energy E, =k(R —R,)’/2. BS-1 and BS-3 are in the direct
regime and BS-2 is in the inverted regime. The other parameters are listed in the
Supporting Information. In BS-1 and BS-2, the initial wave packets are fully promoted
to the excited state. In BS-3, however, 20% of the probability density gets vertically
promoted to the excited state creating a coherent superposition to mimic the effect of a
short laser and the wave packet is simulated from this state with the field turned off.

The excited state populations can be calculated as

as 1
Py (1) = N Z 52,(1/0) ) (25)
J

w 1 . 2
o :W;W o) - (26)

With the population distributions in Eq. (2), we can define the coherence as

O-lz(t):jdx pll(X,t)p22(X’t) (27)

P (X0 + Py (%,1)”

which indicates the intensity of overlap for the wave packets.

As shown in Figure 5, the excited-state population in the exact quantum dynamics
experiences stepwise transitions to the ground state, as the nuclear wave packet
periodically evolves through the crossing region. And the coherence shows periodic
increase and subsequent decay to zero because of the reflection and separation of wave
packets on different surfaces. In all the three investigated bound-state models under
various parameters and initial conditions, DCC shows accurate and consistent results
between occupation of active states and population based on wave functions.

Conversely, the FSSH method yields inconsistent and inaccurate results. As shown in
14
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Figure 5E, the wave functions in FSSH even erroneously give an increase in the
population of the excited state. In addition, FSSH-as overestimates the population
transfer from the excited state to the ground state due to the lack of decoherence, leading
to substantial deviations from the exact quantum dynamics. The shortcomings of FSSH
become more pronounced when its inconsistent wave functions are used in coherence
calculations. As shown in Figures 5B, 5D and 5F, the wave functions remain coherent
after the first coherent event. In comparison, DCC successfully captures the
decoherence by the exact quantum dynamics.

Finally, there are still a few points worth discussing. (1) In principle, multiple
potential solutions are present to ensure the consistency between active states and wave
functions. For clarity, we adopt the simplest approach in the present study, wherein the
population of each state for any trajectory follows the local occupation of active states.
The principle of internal consistency can be also realized by solving more equations.
(2) In this study, the DCC algorithm relies solely on the local occupation of active states,
which can be regarded as the local trajectory density approximation. We have shown
that even this approximation could give encouraging results. Advanced corrections
could be implemented by considering the spatial gradient or higher-order derivatives of
the trajectory density to consider non-local effects. (3) The number of trajectories
needed for direct DCC simulations increases with the spatial dimensionality. To
consider the internal consistency principle for general condensed matter systems (e.g.,
the Fenna-Mathews-Olson complex®’ and the spin-boson models*®**), efficient

strategies are required to reduce the number of trajectories. These studies are currently

15
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under way.

In summary, we have proposed the principle of internal consistency for results
based on wave functions and active states to reproduce the exact quantum results. Based
on this principle, we have presented a novel DCC method for mixed quantum-classical
dynamics. This involves surface hops and wave function collapse based on the
occupation of active states from the neighboring trajectories. DCC has been extensively
benchmarked in both one-dimensional and two-dimensional systems. The results have
consistently exhibited high accuracy, regardless of whether the active states or wave
functions are used for trajectory analysis. The remarkable accuracy achieved by DCC
presents significant potential for its application in general complex nonadiabatic
problems. From some point of view, our DCC method can be regarded as a self-

consistent description of the wave-particle duality and deserves further study.
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Figure 1. Transmission probabilities on the upper surface for (A) SAC and (B) DAC
models, and (C) reflection probabilities on the lower surface and (D) transmission
probabilities on the upper surface for the ECR model. The black open circles represent
the exact quantum dynamics by DVR. The results of FSSH-as, FSSH-wf, DCC-as and

DCC-wf are shown by light blue, blue, light red and red solid circles, respectively.
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Figure 2. Population distributions on the (A-C) upper and (D-F) lower surfaces for the
ECR model with the initial momentum of £ = 10 au. The black lines represent the exact
quantum dynamics by DVR. The results of FSSH-as, FSSH-wf, DCC-as and DCC-wf
are shown by light blue, blue, light red, and red lines, respectively. The upper and lower
adiabatic PESs are shown by grey lines. (A, D), (B, E) and (C, F) correspond to ¢ =

3000, 4000 and 6000 au, respectively.
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Figure 3. RMSE of populations for the STD-1 model when initially starting from the
(A) lower and (B) upper surfaces, and RMSE of populations for the STD-2 model when
initially starting from the (C) lower and (D) upper surfaces. The results of FSSH-as,
FSSH-wf, DCC-as and DCC-wf are shown by light blue, blue, light red and red solid

circles, respectively.
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Figure 4. Spatial distribution of population for the STD-2 model on the (A-C) upper
and (D-F) lower surfaces at # = 1900 au. The initial wave packet is placed on the upper
surface with the parameters x = -8, y =0, 8 = 15° and k= 16. (A, D), (B, E) and (C, F)
correspond to the exact quantum dynamics by DVR, the results by FSSH-wf and DCC-

wf, respectively. The lighter colors indicate higher populations.
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Figure 5. Time-dependent population of the excited-state population and coherence for
the (A, B) BS-1, (C, D) BS-2 and (E, F) BS-3 models. The black lines represent the
exact quantum dynamics. In (A, C, E), the results of FSSH-as, FSSH-wf, DCC-as and
DCC-wf are shown by light blue, blue, light red and red lines, respectively. In (B, D,

F), the results of FSSH and DCC are shown by blue and red lines, respectively.
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