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Abstract 
Comparisons to experiments are important when developing kinetic models based on density 
functional theory (DFT) calculations. The comparisons are, however, often challenging due to 
the assumed uncertainties in the energies from which the kinetic parameters are calculated. 
Here, we introduce a genetic algorithm to adjust the DFT-energies to better match 
experimental XPS data, using CO hydrogenation on Rh(111) as an example. The adjustments 
are made to adsorption energies, adsorbate-adsorbate interactions, XPS energies and peak 
shapes. While these parameters improve the experimental agreement considerably, the 
required changes to the DFT energies are relatively large, which indicates the need for refined 
treatments of, for example, possible surface species and reaction steps, surface 
inhomogeneities, or higher levels of electronic structure calculations. We propose the genetic-
algorithm based method as a general tool for assessment of computational models. 

Introduction 
 
Computational methods are an integrated part of heterogeneous catalysis research as they 
provide atomistic understanding of reaction mechanisms and can be used to guide the 
development of new catalytic materials1. In this respect, electronic structure calculations 
based on density functional theory (DFT) play a major role as a means to calculate local energy 
minima and reaction barriers, which form the basis for first-principles-based microkinetic 
modeling (MKM) 2,3. While DFT calculations have proven very useful to develop conceptual 
understanding and to study trends, there are intrinsic limitations in the accuracy. Chemical 
accuracy is typically out of reach, which may significantly affect computed rates and even the 
predicted reaction pathways. To target these issues and obtain estimates of the uncertainties 
in the predicted energetics, the Bayesian Error Estimate Functional (BEEF)4 with van der Waals 
correction has been applied to provide error estimates for the parameters1,5,6. These have 
then been used to generate an ensemble of MKM:s using parameters spanning the 
uncertainties from which error estimates of the resulting rates can be derived5,7. The 
predicted rates or yields can subsequently be compared to experiment to verify the reliability 
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of the constructed MKM and its kinetic parameters in terms of interaction energies, reaction 
barriers and pre-exponential factors8.  
 
For each possible reaction path, the highest barriers often have rate control. Thus, it is 
generally sufficient to establish these with high precision, assuming that the other barriers are 
reasonably beyond the bounds set by the accuracy of the applied DFT scheme. A general 
approach to reach the required accuracy has recently been proposed for reactions on 
transition-metals by Araujo et al.9, on insulators and in physisorption on Pt(111) by Sauer and 
coworkers10-12 through a combination of DFT-calculations with periodic boundary conditions 
and corrections from higher-accuracy methods on smaller cluster models. However, full 
consideration of even a simple reaction as hydrogenation of CO on Rh(111) involves more than 
100 potential species and 2000 possible reaction paths13, making it infeasible to treat all steps 
at the same high-accuracy level. This complexity has been addressed by Nørskov and 
coworkers13 by, as a first step, building a surrogate model based on machine-learned 
adsorption energies, linear-scaling relationships and a classifier for the rate-limiting step along 
each path to find the overall competing reaction pathways and their rate-limiting barriers to 
which higher-level methods can then be applied. In this way, the complete reaction network 
can be investigated. However, the approach relies on the assumption that the reaction 
conditions in terms of the character of the actual, active catalytic surface (facets, steps, 
defects, impurities, dynamics, etc.) are as postulated in the MKM. 
 
Here, we suggest and explore an additional route that has recently become possible through 
the availability of high-pressure X-ray photoelectron spectroscopy (XPS) data on intermediate 
species during the reaction. The spectra contain information about the operando resting state 
of the catalyst, in which species before the rate-limiting step are amassed to a higher degree 
than species after the rate-limiting step. Consequently, the coverages provide information 
that is intuitively linked to the actual mechanistic pathway of the reaction. Thus, instead of 
focusing on rates or yields, which depend sensitively on the computed DFT energies, we take 
an agnostic attitude towards their accuracy. This entails developing and applying a genetic 
algorithm (GA) to evolve the computed adsorption energies and barriers in the MKM to match 
the steady-state coverages on the catalytic surface during operating (temperature and 
pressure) conditions. Combining the results with the knowledge of uncertainties in computed 
DFT values, the comparison between experimental and theoretical coverages makes it 
possible to investigate modeling assumptions in the MKM as well as the accuracy of specific 
values that the GA changes beyond expected error bars. In addition, if such outliers persist, 
this information can be an indication that the MKM needs to be extended with additional side 
reactions and to question whether the catalyst under reaction conditions remains as assumed 
in the model. 
 
XPS can be used to determine the operando surface coverage of a reaction. Traditionally, this 
has only been possible at low pressures, but with a recent set-up from Amann and co-
workers14, measurements can be performed at pressures around 1 bar, which is close or closer 
to realistic reaction conditions. This high-pressure setup has been applied to investigate, e.g., 
CO hydrogenation on Ni15, carbide formation in Fischer-Tropsch synthesis on Fe(110)16, CO 
and CO2 hydrogenation on stepped Rh(211)17, the Haber-Bosch process18, and methanol 
synthesis over Zn/ZnO/Cu(211)19. Here, we focus on measurements of coverages of oxygen- 
and carbon-containing species on Rh(111) during CO hydrogenation at 150 mbar and 
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temperatures from 175 to 325 C 20. In the case of carbon spectra, the resolution is sufficient 
to distinguish several peaks, to which groups of surface species can be assigned based on their 
different experimental or computed C 1s XPS binding energies. 
 
CO hydrogenation on Rh(111) is an important reaction that has been the topic of several DFT 
studies in combination with MKM5-7,13,21,22. Here, we use the now available XPS data to 
illustrate a systematic approach to assess theoretical models and DFT data, by building an 
MKM for CO hydrogenation and using a genetic algorithm (GA) to modify computed energies 
and barriers, such that coverages deduced from the XPS spectra are reproduced. Knowledge 
of the steady-state coverages during the reaction gives stronger constraints on the 
parameters of an MKM model than when only the overall (temperature- and pressure-
dependent) rate is compared to experimental data. Naturally, if the rate of the target reaction 
has been measured, the GA and MKM can be constrained even further. If the assumptions of 
the MKM are consistent with the actual experimental conditions and reaction network, and 
the parameters of the MKM (adsorption energies, reaction barriers and pre-exponential 
factors) are correctly obtained by the computational model, then the changes to these 
parameters generated by the GA are expected to be within the error bars of the applied 
computational model (typically DFT). In such a case, the accuracy can potentially be further 
improved by applying techniques to reduce the errors, such as suggested in Refs. 9-12, to 
determine the kinetic parameters for the critical steps, fix those at the calibrated values and 
allow the GA to readjust the remaining parameters in an iterative process. 
 
If there are important reaction steps or interactions missing in the MKM or the wrong catalytic 
surface is assumed in the MKM, the GA will still attempt to fit the target, but now by changing 
the DFT computed parameters beyond expectation. When this happens, it is an indication to 
reevaluate the assumptions behind the constructed MKM after ensuring that the errant values 
have been computed correctly.  
 
Key to a successful GA is the fitness function that specifies the target toward which the process 
evolves. Here, we mainly use the extracted temperature-dependent carbon and oxygen 
coverages and XPS spectra. The genes defining each individual in a step (generation) of the 
algorithm are at first simply the adsorption energies and reaction barriers that enter the MKM, 
with more variable parameters added if more complexity is needed. The first generation is 
populated by the required number of individuals with genes as random variations of the 
computed energetics. At each step, the MKM is solved for each individual and the result 
ranked according to the computed fitness. The more fit individuals, plus a random selection 
of individuals with lower fitness (to avoid inbreeding), are taken to generate the next 
generation by cross-over, i.e. the first part of the new gene is taken up to a random point from 
the first randomly selected “parent” and the rest from the second randomly selected “parent”. 
The “offspring” is thereafter subjected to random mutations and the thus generated new 
generation used as input to a new series of MKM models. To obtain results that are not 
completely unphysical, it is necessary to restrict the inputs, e.g., penalizing (by fitness 
contribution) or putting strict limits on the deviation from DFT energies. Importantly, the most 
fit individual(s) are transferred intact to the next generation as a guarantee that fitness can 
only improve. Like in evolution by natural selection, it is thus enough for an individual to not 
be among the least fit to be guaranteed to procreate and contribute its gene to the next 
generation. 
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Methods 
Energy calculations for minima and transition states 
Density functional calculations for minima and transition states were performed using 
VASP523-26, where the projector-augmented wave (PAW)27 method was used to model the 
interactions between the valence electrons and the core. The Kohn-Sham orbitals were 
represented by a plane-wave basis set with 500 eV as cutoff energy and a Gaussian smearing 
of 0.05 eV applied to the Fermi level discontinuity. BEEF-vdW4 was used as exchange-
correlation functional. 
 
The Rh(111) surface was modeled as four-layer p(3x3) slabs, separated by a vacuum of 20 Å 
and sampled with (4,4,1) k-points in a Monkhorst-Pack grid. The gas phase species were 
computed in a (20x20x20) Å cell using only the gamma point. The quasi-Newton method was 
used for structure relaxations with a total residual force of 0.02 eV/Å as convergence criterion.  
Transition states were calculated using the dimer method28,29 or the climbing image nudged-
elastic band method30. Vibrational modes were calculated by diagonalization of the Hessian 
matrix, where the derivatives of the forces were computed by means of the central difference 
approximation with a displacement of 0.05 Å. The energies for gas phase molecules, 
adsorbates and transition states are defined as formation energies from the stoichiometric 
amount of gas-phase CO, H2 and H2O and a clean Rh(111) surface. 
 

XPS 
Density functional calculations for XPS binding energies were performed with pairs of single-
point calculations in VASP using 600 eV as cutoff on four-layer p(4x4) slabs with (4,4,1) k-

points. The number of calculated bands for the core-hole state was chosen to be 
𝑛𝑒

2
 + 150, 

where 𝑛𝑒 is the total number of electrons in the supercell, to allow proper relaxation of the 
valence; for ground state calculations, the default is enough. Other relevant parameters are 
the same as for the minima calculations above. 
 
The XPS binding energy (BE) shifts were obtained by simulating a core-ionized state where the 
PAW potential included the explicit core-hole. The final BE was obtained using the expression 
 

𝐵𝐸 = 𝐸𝑓𝑖𝑛𝑎𝑙 − 𝐸𝑔𝑠 

 
where 𝐸𝑓𝑖𝑛𝑎𝑙 is the total electronic energy of the final (core-hole) state, and 𝐸𝑔𝑠 is the total 

electronic energy of the ground-state. Because of error cancelation, XPS shifts are more 
accurately computed than absolute XPS binding energies and are furthermore less sensitive 
to the choice of functional31. Thus, on-top CO was taken as computational reference and all 
computed XPS energies shifted such that the absolute value for CO coincided with the 
experimentally determined XPS value (C: 286.0 eV32). 
 
XPS spectra were modeled assuming Gaussian broadening around the BE peak. The 
broadening, i.e., the standard deviation 𝜎 of the normal distribution, is estimated from the 

experimental peak at 325 C (in, e.g., Figure 2) to be 0.45 eV, which is used unless the 
broadening is allowed to vary. The experimental C 1s spectra and total coverages are taken 
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from Ref. 20. The reason that we do not use the O 1s spectra is that there was an overlap 
between the electron energy loss peak and the O spectra in the experiment. It also means that 
the accuracy of the total C coverages is higher than the total O coverages.  

 

Microkinetic model 
A mean-field microkinetic model (MKM) without lateral adsorbate-adsorbate interactions 
results in a CO-poisoned surface, in contrast to experimental results. The reason for this is that 
the CO adsorption energy is coverage-dependent 32. Thus, Yang et al.5 introduced a DFT-based, 
piecewise linear adsorbate-adsorbate interaction for CO with itself and other intermediates. 
In the present work, we apply a simplified model with adsorbate-adsorbate interactions (AAI) 
included in a linear fashion, such that 

𝐸𝑆 = 𝐸𝑆,0 + ∑ 𝑚𝑆,𝐴𝜃𝐴

𝐴

, 

where 𝐸𝑆 is the differential adsorption energy of surface species 𝑆 (adsorbate or transition 
state), 𝐸𝑆,0 the corresponding differential adsorption energy at zero coverage, 𝜃𝐴 the coverage 
of adsorbate 𝐴, and 𝑚𝑆,𝐴 the linear parameter for the interaction between 𝑆 and 𝐴. The 
parameter between two adsorbates is symmetric, i.e., 𝑚𝐴,𝐵 = 𝑚𝐵,𝐴 where 𝐵 is also an 

adsorbate. To further simplify the model, cross-interaction parameters between adsorbates 

were approximated as the average of the self-interaction parameters, i.e., 𝑚𝐴,𝐵 =
𝑚𝐴,𝐴+𝑚𝐵,𝐵

2
. 

 
A microkinetic model was constructed for the hydrogenation of CO to methane, water, and 
methanol. Note that higher carbon-containing (C2+) species were not included. Similarly to 
Yang et al.5 and Schumann et al., 6 atomic hydrogen occupies up to 1 monolayer (ML)  in a 
reservoir site (*_h), while the rest of the adsorbates share a maximum of 1 ML on regular 
surface sites (*_s); hydrogen is, thus, assumed to not compete for sites while still affecting 
other species through AAI.  
 
The following reactions were included in the model: 
 
CO(g) + *_s <-> CO_s 
H2(g) + *_h <-> 2 H_h 
CO_s + H_h <-> COH_s + *_h 
CO_s + H_h <-> CHO_s + *_h 
COH_s + *_s <-> C_s + OH_s 
CHO_s + H_h <-> CH2O_s + *_h 
CHO_s + H_h <-> CHOH_s + *_h 
CH2O_s + H_h <-> CH3O_s + *_h 
CHOH_s + H_h <-> CH2OH_s + *_h 
CH3O_s + H_h <-> CH3OH_g + *_s + *_h 
CH2OH_s + H_h <-> CH3OH_g + *_s + *_h 
COH_s + *_s <-> C_s + OH_s 
CHOH_s + *_s <-> CH_s + OH_s 
C_s + H_h <-> CH_s + *_h 
CH_s + H_h <-> CH2_s + *_h 
CH2_s + *H_h <-> CH3_s + *_h 
CH3_s + H_h <-> CH4_g + *_s + *_h 
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OH_s + H_h <-> H2O_s + *_h 
H2O_s <-> H2O_g + *_s 
 
The resulting ordinary differential equations (ODEs) have the form: 

𝑑𝜃𝑛

𝑑𝑡
= ∑ 𝜈𝑛,𝑖𝑟𝑖

𝑖

 

where n,i is the stoichiometric coefficient of species n in elementary reaction step i and ri is 
the reaction rate of elementary reaction step i. The reaction rates are functions of rate 

constants ki and species coverages n. The forward and reverse rate constants k of the 
activated surface reactions were calculated according to the transition state theory (TST) with 
the Eyring-Polanyi equation: 

𝑘 =
𝑘𝐵𝑇

ℎ
𝑒−𝐺𝑎/𝑘𝐵𝑇 

where Ga is the activation free energy of the elementary step, T is temperature, and kB and h 
are the Boltzmann and Planck’s constants, respectively. The forward (reverse) activation free 
energy is the difference in the Gibbs free formation energy between the transition state and 
the reactant (product) species of a given elementary reaction. For the adsorption reactions 
the rate constants were calculated according to the Hertz-Knudsen equation: 

𝑘𝑎𝑑𝑠 =
𝑝𝐴

√2𝜋𝑚𝑇𝑘𝐵

  

where p is the partial pressure of the gas phase species, A is the area of the adsorption site, 
and m is the mass of a single molecule of the gas. The Gibbs free energies were calculated 
using the thermochemistry module found in the Atomic Simulation Environment (ASE) 
software package33.  The ideal gas approximation was used for all gas species, while surface 
intermediates and transition states were evaluated using the harmonic approximation. The 
mean-field microkinetic model, i.e. the set of ODEs, was solved with Python by numerical 
integration. The numerical integration was performed using the solve_ivp function found in 
the Scipy package scipy.integrate34. 
 

Genetic algorithm 
A genetic algorithm was used (see Figure 1) to modify the energies of the species, to which 
later AAI parameters and XPS peak and broadening parameters are added. The fitness 
function that should be minimized had four components: 

1. Agreement between the output coverages from the MKM and the experimental XPS 
signal. The spectrum deviation averaged over data points and temperatures is denoted  
𝑆̅. 

2. Agreement between output total coverage and total experimental coverages. The 
deviation between total coverage averaged over temperature and element (C,O) is 
denoted 𝐶̅. 

3. Agreement with DFT energies. While it is within the scope of the algorithm to alter the 
energies from DFT, it is important to control this process so that the results remain 
reasonable. Particularly, only a subset of all energies will affect the coverages, 
corresponding to rate-controlling steps for the overall rate. Thus, energies should only 
be altered if it leads to better experimental agreement fitness. To be more tolerant to 
small changes and more penalizing to large changes, the penalty is proportional to the 

square of the energy deviation averaged over all species, 𝐸2̅̅̅̅ . 
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4. Adsorbate-adsorbate interaction. If a parameter is greater than a threshold, it is 
included and contributes with a constant penalty; if a parameter is smaller than a 
threshold, it is not included. The threshold was set to 0, under the approximation that 
only repulsive interactions will be of significance. The proportion of used AAI 
parameters, i.e., the number of used parameters divided by the number of possible 
AAI parameters, is denoted 𝜇. 

 
The fitness function is calculated as 
 

𝑓 = 𝑐𝑆𝑆̅ + 𝐶̅ + 𝑐𝐸𝐸2̅̅̅̅ + 𝑐𝑚𝜇 
 
where 𝑐𝑆 = 10, 𝑐𝐸 = 1, 𝑐𝑚 = 0.05 are empirically determined coefficients, in order to 
prioritize the components in the order spectra, total coverage, DFT agreement, and AAI, while 
still having a noticeable impact from each term. 
 

 

We used an initial population of 1000 individuals and subsequent populations of 200 
individuals. The 100 fittest individuals were selected as parents, plus 20 more individuals at 
random. The fittest two individuals survive without changes to the next generation, and 10 % 
of the “children” were mutated. Convergence is defined as 250 generations without fitness 
improvement or reaching a maximum of 2000 generations. To improve optimization, we 
perform 50 runs with the same parameters, and then 5 more, where the fittest individuals 
among the 50 runs are included in the initial population. 

Results and Discussion 
Energies, barriers, and vibrations were calculated with DFT, and the raw data is available in 
the SI. Running the microkinetic model with the DFT-calculated energies and barriers without 
lateral interaction resulted in a coverage of >99% of a ML CO at all temperatures, in 

Figure 1. Overview of Genetic algorithm with Microkinetic Modeling. 
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accordance with previous DFT results5,6. As the experimental CO coverages were <15% of a 
ML for all temperatures and the coverage of pure CO on Rh(111) is known to saturate at 75% 
of a ML 32, it was clear that the adsorption energy of CO needed to be changed to match the 
experiment. 
 
We calculated the C 1s binding energies of carbon-containing adsorbates, which are displayed 
in Table 1 in addition to reported experimental data. The raw data is available in the SI. As 
described in the Method section, calculated values are calibrated so that the CO binding 
energy is equal to the experimental value of 286.0 eV. To simulate spectra from calculated 
coverages, we choose the experimental value (or averages if there are several), with the 
exception of CH3O for which we only have the data on Cu(111), otherwise the DFT value. When 
we allow XPS binding energies to be altered below, we allow a maximum change of 0.3 eV 
based on the spread of the data in the table. 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
*Experimental XPS binding energy for CH3O on Rh is not available, so we approximate it with the 
reported binding energy on Cu(111)37. Since the CH3O species binds through the O atom rather than 
the C atom, the binding energy in a C 1s spectrum is not largely affected by the different metal 
substrates. 

 

GA with altered energies and barriers 
As a first illustration of the GA approach, we apply the GA to the MKM without including the 
adsorbate-adsorbate interaction (AAI) in the model, i.e., assuming that it is only a question of 
DFT uncertainties. This is intentional to demonstrate how the GA can be used to find 
deficiencies in the assumed MKM model. In Figures 2a and 2c, we show spectra and total C 

Table 1. C 1s binding energies (BE) for reaction intermediates. 

  BE (eV) Source Used BE (eV) 

CH2OH 284.95 This work 284.95 

CH2O  284.61 This work 284.61 

CH2 283.65 This work 283.80 

  283.7 Solymosi35   

  283.9 Klivenyi36   

CH3O 285.98 This work 285.98 

  285.7 Orozco (on Cu(111))*37   

CH3  284.05 This work (fcc) 284.35 

  284.2 Solymosi35   

  284.5 Klivenyi36   

CHOH 284.83 This work 284.83 

CHO  284.93 This work 284.93 

CH 283.51 This work 283.70 

  283.7 Vesseli38   

COH 285.21 This work 285.21 

CO  286.00 Smedh32 286.00 

C 283.64 This work 283.30 

  283.3 Vesseli38   
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and O coverages, respectively, where the energies of gases, adsorbates and transition states 
are allowed to be altered by up to 0.3 eV, which is a reasonable margin with respect to typical 
DFT errors1,39. It is immediately clear that, even allowing these alterations, the XPS spectrum 
cannot be reproduced, as specifically seen in the coverage of CHx species (peak around 284 
eV) at higher temperatures. The presence of a notable amount of CH is the only difference 
compared with applying the MKM with purely DFT energies (which leads to a surface poisoned 
by CO). We do not display the calculated hydrogen coverage, which lacks experimental data 
to be compared with; the hydrogen coverage behaves like a Langmuir isotherm, which is 
expected in the model, as there is no competition for surface sites with other species and AAI 
is not included in the present case. 
 
In Figures 2b and 2d we show that with larger energy margins (1.0, 0.5, and 0.3 eV for 
adsorbates, transition states, and gases, respectively), it is possible to approach an 
experimental fit within this MKM even in the absence of AAI. The CHx coverage at higher 
temperatures has now been pushed down (note the differences in scale between Figures 2a 
and 2b) at higher temperatures, but the agreement with experiment is not convincing. The 
total O coverage is worse than before, but as stated in the Method section, the O coverage is 
the least accurate of the experimental data. However, in terms of total C coverage, we find a 
significant improvement in the comparison with experiment. These larger energy margins are 
used for Figures 3 and 4, where we discuss the significant changes of the computed adsorption 
energies and barriers. 
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 Figure 2. C 1s spectra (a, b; note the different y axis scales) and coverages (c,d) without AAI. Experimental data shown in blue and calculated 

in red. Specific (calculated) species are indicated by different shades of red. Changes in energies are limited to 0.3 eV for all species in (a, c) 

and 1.0, ±0.5 ,±0.3 eV for adsorbates, transition states, and gases (b, d), respectively. 

a b c 

d 
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Figure 3 shows the changes introduced by the GA to the DFT computed adsorption energies, 
gas energies, and activation energies. Adsorbed CO is weakened by almost 0.8 eV, and 
consequently, the barriers to form COH and CHO are lowered; this prevents the CO poisoning 
with DFT values above and allows the reaction to move on. Note that the variable limited by 
±0.5 eV is the transition state energy relative to gas phase, and that the shown activation 
energies in Figure 3b are relative to the adsorbate precursors. The strengthened adsorption 
of CH2 and CH3 and increase of the barriers to CH3 and CH4 increases the coverage of the 
former adsorbates (Figure 2d). It is not clear why H2O adsorption is weakened (with a similar 
formation barrier). 
 

In Figure 4, we compare energy landscapes with DFT energies and GA-generated energies for 
the reaction path with the highest rate obtained with the latter energies. This path produces  
methane and water. 

 
We conclude that the GA manages to find modified adsorption energies and barriers that 
result in a clearly improved agreement with the experimental temperature-dependent 

Figure 3. Difference between GA and DFT energy for (a) adsorbates (blue) and gas species (red, but barely 
visible), (b) activation energies (green). 

Figure 4. Energy landscape for the reaction with the highest rate. DFT energies are shown in blue and GA-generated 
energies in red. 

a b 
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coverages, but this requires an unphysically large change in the CO adsorption energy, leading 
to a much more weakly bound CO. Thus, the GA indicates that the effective CO adsorption 
energy should be weakened, which, in a more physical approach, can be achieved by including 
the well-known adsorbate-adsorbate interaction (AAI) in the MKM. 
 

Including AAI in the GA 
Knowing that a larger energy change in CO adsorption energy is necessary, and similar to 
previous studies on the system5,6 we extend the MKM to include adsorbate-adsorbate 
interaction in the GA. The linear parameters 𝑚𝑆,𝐴 were allowed to vary in the interval [0,1] 
and the energies by at most 0.3 eV. The optimized solution is shown in Figures 5-7 and in Table 
2. 
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Figure 5. C 1s spectra and coverages with AAI and GA restricted to 0.3 eV variations. Experimental data is shown in blue 
and calculated in red. Specific (calculated) species are indicated by different shades of red (b).  

a b 
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In Figure 5, we see that the inclusion of AAI has improved the fit to experiment significantly, 
compared to both energy margins in Figure 2. At high temperatures, the spectra agree very 
well, and at low temperatures, the peak at 284 eV matches experiment reasonably but with 
broader width of the calculated peak. However, the transitional regime at 250 °C and 275 °C 
is not captured to the same extent. The total C coverages agree well, with qualitatively the 
same adsorbates as with high energy margins in Figure 2d. The model indicates notable 
coverages of COH, CH2 and CH3 at low temperatures. The O coverage at high temperatures is 
improved relative to the same settings, but still deviates from experiment at high 
temperatures.  
 

In Figure 6, we see that the GA still alters the adsorbate, gas, and transition state energies 
significantly while still being within the assumed 0.3 eV range of DFT errors. In particular, CO 
and C adsorption are weakened while CH2 and CH3 adsorption are strengthened. The barriers 
to form CH3, CH4 and HCOH are increased, mainly following strengthening of precursor 
adsorption (including H), which can explain the increase in coverage of CH2, CH3 and COH. In 
addition to the coverage-independent adsorption energy, the AAI has a contribution. AAI 
parameters corresponding to self-interaction and TS cross interaction with notable adsorbates 
are shown in Table 2.  
   

CO  COH CH2 CH3 C CH H 

self-inter. 0.89 
   

0.78 0.72  

CH2-H 
 

0.8 
   

  

CH3-H 0.39 0.95 0.06 0.39 
 

 0.15 

H-OH 
   

0.25 
 

 0.09 
Table 2. GA Self-interaction slopes for notable adsorbates and slopes with transition states. Empty cells indicate lack of 
interaction. 

The interaction energy for CO comes from self-interaction (0.89 * 𝜃CO, < 0.1 eV at all 
temperatures) and cross-interaction with the present co-adsorbates CH2, CH3, COH, and H. As 
all of these have zero self-interaction parameter, and the cross-interaction is the average of 

Figure 6. Difference between (non-AAI) GA and DFT energy for (a) adsorbates (blue) and gas species (red), 
(b) activation energies (green). 

a b 
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the self-interaction parameters, the cross-interaction contributes with 0.44 * (𝜃CH2 + 𝜃CH3 +

𝜃COH + 𝜃H), which is 0.88 eV at 175 C. Similarly, the adsorption of C and CH are weakened by 
0.77 and 0.71 eV, respectively. As the algorithm favors increased adsorption of CH2, CH3, and 
COH, it is reasonable that as little AAI is introduced for them as possible. Thus, they do not 
have a self-interaction slope, which means that they do not experience any self-interaction or 
interaction with each other, but only cross-interaction with CO (0.44 * 𝜃CO). The fact that the 
GA does not introduce self-interaction for CH2, CH3, and COH (or H) should not be interpreted 
as an indication that it does not exist, but rather that the introduction of such interactions 
does not improve the fitness, i.e., the experimental fit or decrease the DFT deviation. Lastly, 
the transition states in the table have cross-interaction with adsorbates in a straightforward 

way, e.g., 0.8 * 𝜃COH, for CH2-H. CH3-H is destabilized by 0.56 eV at 175 C because of its 
interactions. 
 

Figure 7 shows the energy landscapes for the reaction with highest rates after application of 
GA including AAI at 175 °C and 325 °C, compared to the same reaction with the AAI component 
removed for each surface species, and compared to the original DFT. The point is to visualize 
the components; e.g., for CO adsorption, the non-AAI energy change Δ𝐸0 = 0.25 eV comes 
from Figure 6a and Δ𝐸AAI = 0.88 eV at 325 °C due to high co-adsorbate coverage discussed 
above. 
 
From these results, we can conclude that it is possible to explain the main disagreements 
between pure DFT and experiment with reasonable DFT uncertainties plus AAI. We do not 
suggest that our AAI model is “correct”, but rather simple enough to work within our GA 
variable framework and indicate whether AAI could be enough.  
 

Allowing altered BE peaks and broadening 
The spectra fit in Figure 5a could be improved, so we investigate if it can be explained by small 
changes in the XPS parameters. Thus, as a last addition to the GA, we allow the XPS BE peaks 
and broadening (𝜎, the standard deviation of the normal distribution) to vary. We allow a 
range of 0.3 eV around the computed or chosen value in Table 1, which notably allows the 
variation to cover both computed and experimental values for the binding energies shown in 

Figure 7. Energy landscape for the reaction with highest rate. Pure DFT data is shown in blue. The part of the GA-generated 
data that is related only to the direct energy change is shown in red. The GA-generated data with AAI is shown in green (175 
°C) and magenta (325 °C). 

https://doi.org/10.26434/chemrxiv-2024-5c9p3 ORCID: https://orcid.org/0000-0003-1133-9934 Content not peer-reviewed by ChemRxiv. License: CC BY-NC 4.0

https://doi.org/10.26434/chemrxiv-2024-5c9p3
https://orcid.org/0000-0003-1133-9934
https://creativecommons.org/licenses/by-nc/4.0/


the table. Noting that the calculated peak at 284 eV at low temperatures in Figure 5 is too 
broad, we set the range of 𝜎 to [0.2, 0.5] eV, i.e., mostly lower than the value based on the 
286 eV peak at high temperatures (0.45 eV). We do not add any penalty for changes; the point 
of that is to single out the most important contributions, and in this case, these are the 
adsorbates with notable coverage. 
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Figure 8. C 1s spectra and coverages with AAI and variable XPS peaks and broadenings. Experimental data is shown in blue and 
calculated in red. 

a b 

https://doi.org/10.26434/chemrxiv-2024-5c9p3 ORCID: https://orcid.org/0000-0003-1133-9934 Content not peer-reviewed by ChemRxiv. License: CC BY-NC 4.0

https://doi.org/10.26434/chemrxiv-2024-5c9p3
https://orcid.org/0000-0003-1133-9934
https://creativecommons.org/licenses/by-nc/4.0/


Figure 8 shows the spectra and total coverages with AAI and variable XPS peaks and 
broadenings. The spectra are now in good agreement, though not perfect at the transitional 

temperatures of 250 C and 275 C. However, while the total C coverages agree well, the 
adsorbate distribution is different from before, compared to CH2 and CH3 contributions in 
Figures 2d and 5b. At low temperatures, it is now CH that dominates. As can be seen from the 
GA-generated XPS BEs and broadenings in Table 2, the CH peak is moved by the maximum 
amount to higher energy, ending up at the 284 eV peak in the spectra. The CH2 peak is also 
changed to 284 eV, so in isolation, it could have been responsible for the peak. However, high 
CH2 coverage required strengthening of the CH2 adsorption energy in Figures 3a and 6a; thus, 
as CH coverage replaces CH2 coverage, there is no need for the CH2 energy change, as seen in 
Figure 9a. If the BE parameter range is smaller, e.g., ±0.15 eV instead of ±0.3 eV, the CH peak 
cannot shift enough, leading to the previously observed behavior of CH3, CH2, and COH 
domination at lower temperatures. We show this effect in the SI. 
 

  GA BE (eV) 
ΔBE 
(rel. to used BE) σ (eV) 

CH2OH 284.95 0.00 0.27 

CH2O 284.66 +0.05 0.21 

CH2 284.00 +0.20 0.49 

CH3O 286.26 +0.28 0.26 

CH3 284.52 +0.17 0.24 

CHOH 284.79 -0.04 0.35 

CHO 284.63 -0.30 0.20 

CH 284.00 +0.30 0.38 

COH 285.38 +0.17 0.50 

CO 285.89 -0.11 0.48 

C 283.17 -0.13 0.37 
Table 3. GA-generated XPS binding energies, the change from the previously used BEs (experimental value on Rh(111) if 
possible, otherwise DFT), and broadening parameter 𝜎. 
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The other changes in XPS BE in Table 3 relating to adsorbates with notable coverage (COH, 
CO) and adsorbates with notable coverage in previous runs (CH2, CH3) are smaller. The 
broadening of the CH peak is less than the previously fixed 0.45 eV, as expected, but the COH 

and CO broadenings remain high. 
 
In Figure 9a, no change is applied by the GA to CH2 and CH3 adsorption, as these adsorbates 
in this case do not contribute to the coverage. Instead, CHO adsorption is strengthened, which 
only results in a small impact regarding coverages. Otherwise, the COH and H strengthening, 
and the CO weakening are in line with previous results in Figure 6a. Regarding activation 
energies in Figure 9b, it mostly follows from the adsorption energies that barriers from CHO 
are increased the most. The barriers are increased more, generally speaking, than in Figure 
6b. 
 
The important AAI parameters can be seen in Table 4. Similar to in Table 2, the CO and C cross-
interaction with the significant adsorbates (in this case CH, COH, and H) with the average 
parameter of self-interactions, i.e., 0.41, contributes the most to the energy correction, which 

sums up to 0.82 and 0.76 eV at 175 C for CO and C, respectively. Compared to the case 
without altered peak parameters, more transition states have significant interaction. 
 

  CO COH CH2 C H 

self-inter. 0.84     0.77   

C-OH         0.91 

CH2-H 0.68         

CH3-H 0.92 0.98       

CO-H   0.63     0.69 

H-COH         0.97 

H-CO     0.93     
Table 4. GA Self-interaction slopes for notable adsorbates and slopes with transition states. Empty cells indicate lack of 
interaction. 

Figure 9. Difference between GA and DFT energy for (a) adsorbates (blue) and gas species (red), (b) activation 
energies (green). 
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In Figure 10, we see that the reaction path with highest rate has changed from Figure 7, going 
through CHO rather than COH. This is interesting, as the coverage of COH is higher than CHO, 
but it is possible that the reaction paths through COH are slower. The AAI impact is moderate 
in comparison with Figure 7, with the exception of CO adsorption. 
 
Allowing altered XPS BEs and broadenings improved the spectrum fit, with changed coverage 
distribution and dominant reaction path. Either the CH2 adsorption energy or the CH XPS 
binding energy needs to be altered to fit to experiment, in addition to, e.g., CO adsorption 
weakening. While caution needs to be exercised in the process, the introduction of variation 
in the XPS peak parameters can give direction for spectrum interpretation in cases where the 
accuracies of both computed and experimental reference spectra are uncertain. 
 
A natural extension is to add reaction steps leading to C2+ species, as there are, e.g., ethanol 
intermediates that could have similar C XPS binding energies and thus contribute to the 
observed high coverages of hydrocarbon species, i.e. some CHx species being CyHx allowing 
multiple carbons associated with a Rh atom. Another possible next step is to study the 
adsorbates and barriers, that needed altered energies, on edges or defects. Inclusion of such 
sites – even though the experiment was performed on single-crystal Rh(111) – may be justified 
as single-crystals can have a defect density of 1 per 20th unit cell. The induced defect density 
may be particularly high under operating conditions with strongly interacting molecules, such 
as CO. Although not the case here at 150 mbar pressure, it has been observed previously17 
that at a higher pressure of 2 bar undercoordinated adatoms may move from the lattice onto 
the surface. Furthermore, the presence of step sites and point defects has been shown to 
destabilize CO on Rh40, in accordance with the prediction of the GA. 
 
Of course, species needing AAI should be considered with a more realistic model of AAI, such 
as in Ref. 5, and higher orders of electronic structure calculations can be considered for the 
species with large energy changes. Note that, AAI involving hydrogen is included in the MKM 
even though hydrogen is treated as a reservoir and does not compete for sites. 
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However, we limit ourselves in the present work to the proof of concept with the coupled 
genetic algorithm and MKM modeling to compare with experimental high-pressure XPS data. 
The method can be expanded to a wide range of models of heterogeneous catalysis and 
provide a new method of construction and validation. 

 
 

Conclusions 
To improve microkinetic modeling based on DFT calculations, which is an important tool to 
better understand reaction mechanisms in heterogeneous catalysis, we have developed and 
applied a genetic algorithm (GA) to modify the parameters of the microkinetic (MKM) model 
to target a reference experiment. Given a microkinetic model of CO hydrogenation to 
methanol, methane and water on Rh(111), we investigated what energies and barriers would  
need to be changed in the MKM to agree with experimental coverage data determined under 
reaction conditions using high-pressure XPS. We found that CO adsorption must be 
substantially weaker relative to the computed DFT energy. However, introducing a simple, 
linear adsorbate-adsorbate interaction allows the changes of low-coverage adsorption energy 
to remain < 0.3 eV and improves the experimental fit. Furthermore, letting the XPS binding 
energies and broadenings vary, improves the spectrum fit even further, with changed 
coverage distribution and preferred pathway. This opens up a question on what is more 
reliable: adsorption energies or XPS binding energies. We conclude that the model indicates 
the need for more complexity, such as, e.g., expansion of the model with C2 species, 
introducing edges or defects, going to higher orders of electronic structure calculations. 
 
The GA in combination with the temperature-dependent coverages in terms of XPS peaks has 
thus highlighted problems with the initial DFT MKM model. We propose that the combination 
of GA and MKM and now available detailed coverage data can be used to iteratively increase 
the accuracy of a given MKM, together with interpretation and hypothesis testing. The GA 

Figure 10. Energy landscape for the reaction with highest rate. Pure DFT data is shown in blue, while the GA-generated data 
with AAI is shown in green. The part of the GA-generated data that is related only to the direct energy change is shown in 
red.   
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approach can be used as a complement and test of DFT in heterogeneous catalysis in general 
when reliable coverage data, such as the present, becomes available. 
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